CONTENTS

Preface 1

Near-wall model for compressible turbulent boundary layers based on an inverse velocity transformation.
K. P. Griffin, L. Fu and P. Moin 3

Studies in large-eddy simulations of the NASA transonic Common Research Model.

Wall-modeled large-eddy simulation of the Sandia Axisymmetric Transonic Bump.
A. Elnahhas, R. Agrawal and P. Moin 31

Wall-modeled LES of the Boeing speed bump using a non-Boussinesq modeling framework.
R. Agrawal, S. T. Bose and P. Moin 43

Progress on slip wall modeled LES for predicting smooth body separation.
M. P. Whitmore, S. T. Bose and P. Moin 59

Wall-modeled LES of laser-scanned rime, glaze, and horn ice shapes.

Estimating the performance of a small-scale non-isolated propeller in hover using WMLES.
J. Svorcan, K. Wang, C. Ivey and A. Kovačević 87

Task-based framework for physics-based ensemble simulation and in situ data processing.
K. Maeda and T. Teixeira 97

Online training of neural networks in a CFD solver for sensor placement and flow inference.
C. Laurent and K. Maeda 111

M. Benjamin, S. Domino and G. Iaccarino 123

A phase-field method for simulations of two-phase flows on unstructured grids.
H. Hwang and S. S. Jain 137
Assessment of WENO and TENO schemes for the four equation-compressible two-phase flow model with regularization terms.

H. Collis, S. Mirjalili, S. S. Jain and A. Mani

Consistent modeling of scalar transport in multiphase flows using conservative phase field methods.

S. Mirjalili, M. Khanwale and A. Mani

Modeling interface-confined scalars and insoluble surfactants in two-phase flows.

S. S. Jain and A. Mani

A generalized Navier boundary condition for modeling contact lines using second-order conservative phase-field methods.

R. Brown, S. Mirjalili, M. Khanwale, B. Ganapathysubramanian and A. Mani

Computational framework for direct numerical simulation of shock-turbulence interaction in thermochemical nonequilibrium.

C. T. Williams, M. Di Renzo and P. Moin

Low-order modeling of non-premixed flames subjected to a transverse acoustic mode.

D. Brouzet and M. Ihme

The linear acoustic equations solved as a finite domain boundary value problem by eigenfunction expansion.

T. Flint

Roster