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Parameteric representation and surrogate
modeling of drag for a realistic automotive
geometry
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1. Motivation

The computation of aerodynamic drag is an expensive component of automotive design,
requiring one simulation per design point. It is also an essential component of the design
process; since drag force is quadratic in vehicle velocity, it becomes the dominant mode
of energy loss at high speed, affecting vehicle top speed, fuel efficiency and stability. The
complexity of modern vehicle designs leads to a high-dimensional parameter space that
can be prohibitively expensive to sample. In addition, the evaluation of the quantity of
interest — the drag coefficient — for each single design point is costly, requiring the
solution of the Navier—Stokes equations, typically with a closure model to account for
all or most of the turbulent scales that are dynamically important at realistic Reynolds
numbers, in a computational domain sufficiently large enough to capture the wake behind
the car. Surrogate models are therefore of interest; in particular, given the nature of the
governing equations and the complexity of the geometries of interest, we seek data-
driven models for drag prediction. The surrogate model learns a mapping between the
geometry of the automobile and the drag coeflicient. Since drag depends only on the
wetted surface of the automobile and not the details of the interior, planar projections
of the exterior surface are a natural representation choice for the geometry. Song et al.
(2023) developed a surrogate model that used isometric views of automobile designs from
the ShapeNet database (Chang et al. 2015). Projections can be naturally assembled into
structured image data that can be processed by convolutional neural networks (CNNs).
Unlike unstructured representations such as graphs or point clouds, projections naturally
incorporate geometry modifications. In addition, CNNs are easier to train than graph
neural networks, the architecture of choice for unstructured representations.

The generation of new designs can likewise be performed using a data—driven surrogate,
especially in automotive design where one begins with a baseline geometry and the design
space for aerodynamic optimization is constrained by other considerations such as safety.
In this context, a surrogate model would seek to learn a compressed representation of the
geometry and provide the ability to generate new geometric candidates by interpolation
in the compressed space. In this work, we use convolutional autoencoders (CAEs) to
compress a dataset of automotive geometries that have parameteric design variations. By
interpolating in the latent space of the autoencoder (AE), new designs can be generated,
the aerodynamic performance of which can be evaluated by the aforementioned CNN
model. The CAE and CNN models in conjunction provide an efficient way of sampling
and evaluating designs in the parameter space.
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Parameter Minimum value (m) Maximum value (m)
Ride (p1) 0.001 0.025

Spoiler (p2) 0.1 0.5

Wing mirrors (p3) 0.1 0.5

Radiator (p4) 0.02 0.1

Door handles (ps) 0.02 0.1

TABLE 1. Geometric design parameters and ranges. Ranges are reported as differences
from the baseline DrivAer geometry.

2. Methodology
2.1. Geometry and dataset

To best represent the complexities of a realistic automobile, we consider the DrivAer
model (Heft et al. 2012), an open-source midsize passenger car geometry, developed to
assess the quality of and contrast automotive aerodynamics investigations carried out
using computational fluid dynamics tools. The model is available in three configurations:
a fastback, estate, and sedan, the latter of which is used in the present study. We generate
a dataset of 1024 samples obtained by varying five parameters: the ride height, the wing-
mirror lengths, the offset of the radiator grille, the length of the door handles, and the
length of the boot spoiler. The ranges of these parameters are shown in Table 1. The
parameters are sampled uniformly between the ranges. The ranges chosen are broader
than those encountered in practice, to test performance against a wider range of drag
values. Discrete modifications to distinct features such as these are the paradigm for
automotive optimization, where the basic exterior shape and form is dictated by other
(and sometimes conflicting) considerations such as aesthetics, regulatory compliance, and
manufacturability. From the dataset, 900 samples are used to train the neural networks,
100 samples are used for validation while training, and the remaining 24 samples are used
for model testing. The images are sampled at a resolution of 800 x 500 pixels, with each
pixel binning the normal distance from a plane representing the sensor of the camera
into two bytes of unsigned integer data (2'6 — 1 = 65535 distinct values).

2.2. Composite and synoptic projections

To image the wetted surface of the automobile, one can consider, as others (Song et al.
2023) have done, a composite view comprising different isometric views. While this view
(Figure 1) provides coverage of most of the exterior surfaces and preserves relative scaling
of the features, it has the drawback of being storage-intensive owing to redundancies (for
example, the wing mirrors appear in all four images) and the introduction of whitespace
around each of the components of the composite image. Thus, in this work, we propose
a single, synoptic view that mitigates some of these drawbacks by being uniquely suited
to automotive geometries. This view, shown in Figure 2, is the result of projecting the
external surface of the model onto cylindrical surfaces which are then developed into
two—-dimensional planes. The sequence of operations is formally invertible, resulting in
a manifold exterior surface that can then be imaged. This view highlights the features
of the automotive relevant for drag, while maintaining a compact representation which
allows for higher-resolution sampling of features. The radius of the cylinders used for the
projections are determined by the geometry of the model (the track width, front and rear
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F1aUre 1. Composite view of the DrivAer geometry made up of four planar projections.
The image is colored by distance normal to the camera.

(a) (B) ()

F1GURE 2. Top view of the DrivAer model showing the development of the synoptic view
sequentially: (a) unmodified, (b) after projection about longitudinal axis (black line in
(a)), (c) after projections about two transverse axes (dotted lines in (b)).

overhangs); in our study, these are fixed across the whole dataset. A drawback of this
representation is that it introduces distortion from the polar transformation; however,
we verify that this does not affect the performance in the surrogate models below.

3. Surrogate modeling with CNNs
3.1. Large-eddy simulations

To generate the training dataset for the neural network, large-eddy simulations (LES) of
the airflow past the DrivAer geometry at 8 mph with no wheel rotation are performed
using the CharLES solver. Details of the Voronoi diagram—based meshing paradigm used
in the tool can be found in Bres et al. (2018), and the formulation of the low-Mach
Helmholtz pressure solver is outlined in Ambo et al. (2020). The code has been validated
in aerodynamics analysis of a number of high-Reynolds number flow studies (Goc et al.
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(B)

FIGURE 3. (a) View of the mesh used for the large-eddy simulations, with refinement
zones shown. (b) Instantaneous velocity magnitude contours showing wake behind the
car.

2021). The mesh uses 6 million control volumes, with refinement near the no-slip surfaces
of the car, as shown in Figure 3(a). The Vreman subgrid model is used to approximate
the effects of the subgrid scales on the resolved scales. The flow is initialized with a
converged initial condition from the baseline DrivAer geometry. The simulation is run
for a total time of one second, and statistics are collected for the last 0.6 seconds. A
sample flow visualization depicting the turbulent wake aft of the car is shown in Figure
3(b).

3.2. CNN model evaluation

We train on both the composite and synoptic views of the DrivAer dataset, to predict
the drag coefficient. The CNNs have two convolutional layers, each with an associated
pooling layer, and use ReLU activations. They have O(10%) parameters. The present
investigations are limited to the same Reynolds number; thus, the networks take in
only geometrical representations and make predictions only for the flow conditions in the
training dataset. The CNNs are trained to minimize the mean squared error (MSE) of the
drag coefficient predictions for 1000 epochs. Figure 4 shows the predictions of the model
on the testing set of 24 samples. It is seen that the network predicts C'p to within 2% error
(with the reference being the results from the coarse LES calculations) across the whole
testing set. The probability density function (PDF) of the C'p values in the training set
is displayed in the same figure, and shows a correspondence between the poorly predicted
samples in the training set and the sparsely sampled regions of the training data. Both the
composite and synoptic projections show similar performance, showing that the synoptic
view does not result in loss of information essential to predicting drag.

The training database varies all five independent parameters simultaneously; thus, to
test whether the CNN has learnt to identify the contributions of individual features, we
conduct a one factor at a time (OFAT) test by making predictions on six additional
samples that vary only the extension of the wing mirrors (p3 in Table 1). Figure 5 (a)
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FIGURE 4. Performance of CNNs on testing set of 24 samples, arranged by increasing
Cp. Squares: LES; triangles: synoptic projection; circles: composite projections; dashed
lines: 2% error bounds. PDF of the Cp in the training dataset is also shown.

shows that the network has learned the drag response to the variation in this parameter;
however, the performance for the first sample (p3 = 0), which is not contained in the
training set ranges, is poor. Our empirical observations of the relationship between Cp
and p3 suggest a locally linear manifold structure within the five-dimensional design
parameter space. A data-driven model can capitalize on such low-dimensional structures,
offering a computationally efficient alternative to full CFD simulations of each design
point, further motivating the employment of such surrogates.

An ablation study of the training set size is conducted, the results of which are pre-
sented in Figure 5 (b), showing the effects of number of training samples on the MSE
of the testing test. One observes that comparable accuracy may be achieved even with
a fourfold reduction in sample count. Even with the somewhat contrived nature of the
present design space, it is encouraging to see that the amount of training data required
for the surrogate model is tractable.

4. Parameteric representation with CAEs

We next turn to the question of geometry parameterization. In the previous section,
the generation of each sample requires the manipulation of a surface representation of
the DrivAer model. While not as expensive as the LES evaluation of drag, one may
consider a surrogate representation that recognizes that there are only five independent
parameters in the dataset. Suppose that we were able to compress the dataset into five
variables: one per parameter p;. One would then be able to generate new designs by
varying these parameters, and simply decompressing the encoded representation. Our
structured image representations of the DrivAer geometry allow for the problem to be
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FIGURE 5. (a) OFAT performance of the CNN, varying the wing mirror lengths (ps3).
Squares: LES; circles: CNN; dashed lines: 2% error bounds. (b) Ablation study of training
dataset size. For both (a) and (b), the synoptic view is used.
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FicUrRE 6. CAE reconstruction error for a training sample with parameters p; =
{0.00445,0.154, 0.460, 0.0462,0.0215}

naturally applied to a variety of linear (matrix) methods (Liberty et al. 2007)(Gene &
Reinsch 1971); however, the complexity of the problem precludes linear models from
achieving substantial compression. Thus, we use deep CAEs, which can be thought of as
non-linear extensions of the proper orthogonal decomposition (Milano & Koumoutsakos
2002).

4.1. Convolutional autoencoders

AEs are unsupervised machine learning architectures that aim to identify low-dimensional
representations of the input data. The architecture of an AE consists of two neural
networks, the encoder and the decoder. The approach is unsupervised because the inputs
and the outputs are typically identical: the encoder takes the input data and learns an
equivalent low-dimensional representation, i.e., a vector in the latent space; the decoder
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FIGURE 7. Planar projections of the latent space, colored by the database design pa-
rameters (normalized between 0 and 1) shown in Table 1: (a) ride; (b) spoiler; (c¢) wing
mirrors; (d) radiator; (e) door handles.

starts from the latent vector and reconstructs the input. An AE can be summarized
mathematically as

V=e(@); z=d(V); @=f(x)=d(e(=), (4.1)

where e () is the encoder, d () is the decoder, V' is the vector of latent variables, and =
and & are respectively the input and its reconstruction. &, & € R”; V € R™:s, where
n is the dimension of the input data and N, is the dimension of the latent space. The
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Layer Kernel size Stride Channels In. units Out. units Activation

Conv. 10 5 10 - - ReLLU
Conv. 3 2 20 - - ReLU
Conv. 3 2 100 - - ReLLU
F.C. - - - 93600 200 ReLU
F.C. - - - 200 5 -

TABLE 2. Architecture of the convolutional encoder. For brevity, the decoder is not
reported as its architecture is the mirrored encoder. Conv.: convolutional layer; F.C.:
fully connected layer; In.: input; Out.: output.

architecture of the encoder adopted in this work is reported in Table 2. For brevity, the
decoder is not reported since its architecture is the encoder mirrored.
The model is trained using the loss function

N
L= v Z log(z; + 1) — log(#; + 1)]?

i=1

where N is the number of cases; x; and &; are the input and its reconstruction; (5 is the
weight of the regularization term; £, are the encoder trainable parameters, £, € RVe, Eq.
(4.2) is composed by the root mean squared error (RMSE) and a regularization term that
aims at reducing overfitting; we adopted a simple Ly norm and applied the regularization
only to the encoder weights. Note that the RMSE is computed on the natural logarithm
(log) of the input and its reconstruction, to emphasize small geometrical variations. The
reconstruction error for a single sample is shown in Figure 6; we see a localization of
the error around the varying features. Note that the change in ride height results in a
rescaling of the projection in the image (since the camera is at a fixed distance from the
vehicle for all samples); thus, we see a concentration of the error around the outline of
the vehicle.

4.2. CAEFE reconstruction evaluation

The AE is trained to reconstruct the synoptic projections of the DrivAer geometries,
using the same dataset used for training the CNNs. Given that the five design variables
p; vary independently, the dimension of the latent space has to be at least five. Saetta
et al. (2023) showed that when an AE was trained on a database of 2D airfoil geometries in
which only the thickness and camber were varying independently, the two latent variables
were correlated with variations in these two parameters.

Figure 7 shows planar projections of the five-dimensional latent space. Each point
represents one sample in the training set. The projections of the latent space are colored
by the database design parameters, to check for correlations. Figure 7(a-c) shows an
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FIGURE 8. Contribution to total variance of the training dataset (op,) from each of the
five parameters (p;).

organization to the colormaps; thus, the variations in p; (the ride), po (the spoiler), and
ps (the wing mirrors) have been encoded in the latent space. Figure 7(d) shows a slight
ordering with p4 (the radiator) for the V;—Vj3 pair; however, the ordering is overwhelmed
by noise. Figure 7(e) shows that there is no relationship with the latent variables and
the remaining parameter; thus, its variation across the dataset was discarded as noise.
This is owing to the fact that the total variation in ps and ps is far less than the other
parameters. We quantify the contribution to total variance of the dataset from each
of the five parameters as follows: given a baseline image Iy and images I; with the i-th
parameter p; maximized (i = 1,...,5), the relative impact of each parameter is quantified
as

S ~ 2l — 1)’

Y N N L)
where ) denotes the sum over all pixels and N is the total number of pixels. This
equation calculates the percentage contribution of each parameter to the overall visual
change in the dataset. This quantity, plotted in Figure 8, shows that variations in the
first two parameters dominate the total variance in the dataset, with the third an order
of magnitude smaller, and the last two another order of magnitude smaller. An increase
in the number of latent variables to N;s = 10 shows no improvement in the feature
extraction capabilities of the AE. We also note that using a MSE loss function leads to
a failure to detect ps3; the logarithmic MSE emphasises the smaller features, though, not
sufficiently to identify p4 and ps.

x 100%, (4.3)

4.3. A unit problem: rectangles

To confirm the conjecture that the failure of the AE to encode all the independent
parameters is due to their disproportionate contributions to the total variance of the
dataset, we construct a unit problem that highlights this issue. The dataset consists
simply of rectangular shapes that vary in location and size. Our control dataset (Figure
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FIGURE 9. Samples of rectangles with varying centroids and width using the (a) control
dataset and (b) test dataset.
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FIGURE 10. Projections of the latent space of the control dataset, colored by the three
database design parameters: (a) x coordinate of centroid; (b) y coordinate of centroid,;

(c) width.

9(a)) is constructed such that all three parameters (the z and y locations of the centroid,
and the width b of the rectangle) contribute in equal order of magnitude to the total
variance. The test dataset differs in that the width of the rectangle changes only by one
pixel, an order of magnitude smaller than the changes in the other two parameters (see
Figure 9(b)). We train CAEs using these two datasets, with N;; = 3. We find that for
the control dataset, all three parameters have been encoded (see Figure 10), while for the
test dataset (see Figure 11), as expected, the width of the rectangle does not correspond
to an ordering in the latent space.

5. Conclusions

In this work, we develop and test two components of a data-driven framework for
aerodynamic shape optimization of a realistic automotive geometry. First, we train CNNs
to predict the drag coefficient from images of a projection developed to represent the
wetted surface of the automotive with minimal redundancies. The networks are accurate
to within 2% error. Then, we train CAEs to encode the independently varying features of
the dataset, with a view to generating new geometries whose aerodynamic performance
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FIGURE 11. Projections of the latent space of the test dataset, colored by the three

database design parameters: (a) x coordinate of centroid; (b) y coordinate of centroid;
(¢) width.

can be evaluated by the CNNs. Prima facie investigations indicate that a representation of
the geometry that highlights smaller feature changes is required to encode all the features.
Interpolations within the latent space can then be used to generate new geometries.
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