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Toward predicting turbulence structure in
street canyons using deep learning

By T. M. Jaroslawski, A. Patil AND B. J. McKeon

1. Motivation and objectives

Air quality in urban environments is a pressing contemporary issue, with significant
socio-economic implications. Understanding the urban climate poses challenges due to the
geometric complexity of built areas and the presence of numerous interacting thermody-
namic processes. Turbulence plays a fundamental role in determining the instantaneous
dynamics of airflow. Specifically, the atmospheric flow, combined with the complex geom-
etry of the urban canopy, exhibits pronounced multi-scale characteristics, both in space
and time. The canyon geometry and roughness are found to be important parameters,
with complex non-linear amplitude modulations occurring between the large scales in
the boundary layer and the separated low-frequency flapping shear layer at roof level.
Therefore, comprehending the spatial structure of such flows is crucial, especially when
investigating transient phenomena such as accidental pollutant releases or predicting flow
states with a limited number of sensors.

Recently, machine learning has been applied to study urban flow dynamics. This in-
cludes computing pollution concentrations from mobile field data (Alas et al. 2022),
examining inter-scale turbulent interactions over obstacle arrays (Liu et al. 2023), de-
termining drag coeflicients on buildings using large eddy simulations (LES) (Lu et al.
2023), and even developing reduced-order models of flow dynamics (Xiao et al. 2019).
However, there are few works leverage machine learning (ML) algorithms systematically
to predict spatial-temporal complex turbulent physics, especially when using simplified
idealized experimental data for training to predict results in more complex conditions.

Several studies have focused on spatial and temporal reconstruction, as well as spatial
supersampling (Schmidt et al. 2021). Hybrid deep neural network architectures have been
designed to capture the spatial-temporal features of unsteady flows (Han et al. 2019), and
machine learning—based reduced-order models have been proposed for three-dimensional
complex flows (Nakamura et al. 2021). A deep learning framework combining long short-
term memory networks and convolutional neural networks has been used to predict the
temporal evolution of turbulent flames (Ren et al. 2021).

New deep learning architectures, including transformers, are emerging for temporal
problems in structured and unstructured data. Inspired by convolutional neural net-
works, transformers build input features using self-attention to assess the relevance of
other data points in the dataset, without relying on recurrence. They excel in natural lan-
guage processing tasks and are replacing traditional recurrent neural networks like long
short—term memory networks. Transformers have also been applied in spatio-temporal
contexts, such as video analysis. However, they have not been used for spatio-temporal
prediction in experimental flow fields involving turbulent flows in urban street canopies.

The primary focus of this brief is to tackle the difficult task of understanding urban flow
dynamics, which are characterized by their complex nature, non-linear interactions, and
high-dimensional data. To address this challenge, we employ an experimental PIV dataset
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and introduce an approach that leverages a convolutional encoder-decoder transformer
model along with autoregressive training to make accurate spatio-temporal predictions.
Our findings demonstrate the performance of this method in forecasting flow patterns
and turbulence structure, underscoring the promise of data-driven techniques for solving
intricate problems related to urban flows.

2. Methods
2.1. The experiment

The experimental data was obtained from Jaroslawski et al. (2019, 2020) which con-
sited of wind tunnel campaigns conducted at Ecole Centrale de Nantes, France, using a
low-speed boundary-layer wind tunnel measuring 2 m (width) x 2 m (height) x 24 m
(length) with a 5:1 inlet contraction. The experimental setup is presented in Figure 1.
Street canyons with aspect ratios of 1 and 3, using various upstream roughness config-
urations like staggered cubes or spaced bars, were explored. Stereoscopic particle image
velocimetry (PIV) measurements were taken horizontally at a height of 0.9h £ 0.05h.
The PIV setup, situated beneath the wind-tunnel floor, utilized a Litron double cavity
laser and DANTEC Dynamic Studio software to generate vector fields with a 1.6 mm
spatial resolution and a 7 Hz sampling frequency. An iterative cross-correlation analysis
computed velocity vector fields using a 64 x 64 pixel window size and a 32 x 32 pixel
interrogation window with a 50% overlap and a pulse interval of 500 us. Measurement
uncertainties were estimated at 0.9%, 1.4%, and 3.9% for mean velocity, standard devi-
ation, and turbulent shear stress, respectively, based on 2551 independent samples from
10 000 velocity field recordings. The freestream velocity of U, = 5.9 ms™', measured
using a pitot-static tube, remained constant across experiments, resulting in a Reynolds
number of 1.9 x 10* based on this speed and canyon height, h.

2.2. Machine learning framework

Transformers can be combined with convolutional encoder-decoder models for optimal
performance when dealing with spatio-temporal data. This combination is effective for
various computer vision tasks, including video frame prediction. The self-attention mech-
anism on convolutional layers enhances spatial representation by focusing on crucial fea-
tures and suppressing less important ones. Spatio-temporal learning is formulated as a
task with a given time-series containing N sequential snapshots [.”L’t, DLt Aty eeees :rt+(N_1)At]
in order to predict the same quantity of interest on M steps ahead in time. The in-
put X of the deep learning model is [mt,mtJrAt, ....,:I:t+(N,1)At]7 and the output Y is
[xHNAh . JJt+N+(M_1)At]. Each snapshot x; can be a scalar field or a vector field con-
taining multiple features.

Encoder-decoder architectures are employed to estimate the reduced or latent state.
The encoder extracts relevant information from input tensors and maps it to a high-
dimensional representation. The decoder converts this representation to target output
tensors using up-sampling and convolutions. The encoder and decoder weight matrices
jointly map input to output, enabling small-scale feature learning. The decoder trans-
forms the latent space (n, X n.) to the original spatial dimensions at x;4a;. When
a transformer block follows a convolutional layer, the model learns to emphasize sig-
nificant features across channels and spatial dimensions. Initially, input sequences are
concatenated channel-wise to the input layer, followed by convolutional operations in
the encoder. In convolutional layers, intermediate feature maps F € REXH*W (where
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FIGURE 1. (a) Schematic of a street canyon roughness setup in a wind tunnel. Blue point located
in the middle of the canyon (z,ey = 0,yrey = 0) denotes the reference point used for two-point
correlations. (b) Experimental configurations studied with specified training inputs and outputs
for the ML model.

H and W are input resolutions for each snapshot and C' is the amount of model lay-
ers) from a specific layer pass through the self-attention convolutional transformer layer,
which considers spatial representation and positional embeddings of input sequence chan-
nels. This layer has a 3 x 3 kernel and incorporates convolutional features. Combining
convolutional neural networks with self-attention enhances learning of spatio-temporal
structures, benefiting turbulent flows by capturing spatial filters and temporal depen-
dencies. In turbulent flow problems, dimensionality reduction techniques are valuable
due to complex spatio-temporal dynamics. In addition to the convolutional transformer
layer, the model is trained in an autoregressive fashion. Formally, autoregressive models
are those which forecast future sequences from the previously forecasted sequences in a
cyclical way, and thus here auto indicates the regression of the variable sequence against
itself. For a trained model M as shown in Figure2, multi-step training is performed for
quantity X; in an auto-regressive manner, X;, a; is predicted from previously predicted
X¢, where t is some non—dlmen81onal time. In other WOI'dS an initial condition X; is
inputted to the model to learn Xt+ At, after this predicted Xt+ At is then fed back to the
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model again to learn X;;9a¢ and so on, in an autoregressive manner:
Xeyar = M(Xy),

)?t+2At = M()?Hm), (2.1)

Xt+(n—1)At = M(Xt+(n—2)At)a

where t is the time step and X € RE*H>*W is the input tensor snapshot at instant ¢. In

the following, the autoregressive training sequence length is set equal to two in order to
limit the computational cost. To train the model, the Adam optimizer (Kingma & Ba
2014) is used to iteratively minimize the total equi-weighted mean squared error (MSE)
loss defined by

Ns

L= nis [”Z ((Xt+At)i - (Xt+At)i>2 + Z ((Xt+2At)i - (Xt+2m)i>2 + .-

i=1 i=1

B
(2.2)

The activation function used in the neural network was ReLU, which is known to
help stabilize the weight update during training (Nair & Hinton 2010). During training,
the entire training dataset was presented to the network repeatedly after shuffling, and
each complete pass is called an epoch. An early stopping criterion was used to stop the
training process, along with a learning rate reduction if learning improvement did not
occur after every 100 epochs. The TensorFlow library (Abadi et al. 2016) was used to
implement the deep learning architecture, and Nvidia RTX A4500 GPU was used to
train it. In turbulent flow problems, the high-dimensional state-space is characterized by
intricate spatio-temporal dynamics, and therefore, dimensionality reduction techniques
can be useful. The prediction and reconstruction problems are interpreted as estimating
the reduced or latent state, making it natural to use encoder-decoder architectures. As,
shown in Figure 2, the encoder takes input tensors, learns the most relevant parts, and
maps them to a spatially low-dimensional representation. This spatially low-dimensional
representation is then converted to target output tensors by the decoder, which involves
successive up-samplings and convolutions. By connecting the encoder and decoder, their
weight matrices learn to jointly map the input to the output tensors, allowing small-scale
features to be learned. The decoder aims to transform the latent space representation
with a dimension of n, x n, to the original spatial dimensions of the target output at
time t;ya¢. When a transformer block follows a convolutional layer, the model learns
to highlight significant features across the channel sequence and spatial dimensions. The
input sequences are initially concatenated channel-wise to the input layer, and subsequent
convolutional operations take place in the encoder.

3. Results

This section presents comparisons between the experimental data and the ML model.
Firstly, the mean flow is examined, followed by the results of two-point correlations on
both the experimental and ML data. Subsequently, potential model improvements are
discussed, followed by conclusions.
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FIGURE 3. Time- and spatially- averaged turbulent statistics: (a) streamwise velocity component
and (b) vertical velocity component observed in both the training data and the predicted data.
ML represents the model’s prediction, while PI’ references the experimental data.

3.1. Mean flow

The ML model is trained using the C3hR3h configuration, and its predictive capabilities
are evaluated by applying it to the C1hR1h configuration, which features a smaller aspect
ratio and a different upstream roughness setup. Figure3 presents the training data and
compares the model’s predictions with the test experimental data, illustrating the evolu-
tion of spanwise-averaged streamwise roof-level U (streamwise) and W (vertical) velocity
profiles. A significant difference between the training and test datasets is observed due
to distinct flow regimes. The test case exhibits a skimming flow regime, contrasting the
wake interaction flow regime seen in the training data (Oke 1988), which ensures sub-
stantial differences between the training and test datasets. Particularly notable is the W
velocity component, indicating a larger and asymmetric recirculation that is skewed to-
wards the aft portion of the canyon. Upon examining the model’s predictive capabilities,
a remarkable agreement is observed between the model’s results and the experimental
findings concerning mean flow.
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FIGURE 4. (a) Two-point correlation fields, Ry, of the ML model and PIV dataset. (b)
Spanwise slice at x = 0 of the Ry, field.

3.2. Two-point correlations

To further evaluate the model’s capabilities in predicting turbulence structure, we com-
pared its results to a two-point spatial correlation analysis of the streamwise velocity
fluctuation, denoted as R,,,. Two-point spatial fluctuating velocity correlations offer im-
portant information regarding the structure of the flow field that single-point measure-
ments are unable to provide. A two-point spatial correlation was conducted using the
middle of the street canyon as the reference point. The two-point correlation coefficient
was computed using

R o ul(xrefayref)u/(xv y)
uu

I I N
\/ul(xrefv yTef)\/ul(x7 y)
Figure 4(a) shows contour fields of R,, for both the ML model and the PIV data.
The ML model effectively captures the general spatial structure, particularly near the
reference point Z,ef = 0,yref = 0. In Figure 4(b), a spanwise slice is presented at
the streamwise position of x = 0. This further shows the model’s capability to predict
fluctuations’ decorrelation at smaller spatial lags, indicating its potential in forecasting
the spanwise turbulence structure. We note that the noise observed in the ML results can
be attributed to the use of 400 snapshots for computations, whereas the experimental
data utilized 10000 snapshots.

(3.1)

3.3. Future model itmprovements

The presented ML model exhibits potential for improvement. Figure 5 displays the
spanwise-averaged streamwise roof-level standard deviation profiles for the streamwise
and vertical velocity components, denoted as o, and oy, respectively. These profiles il-
lustrate the comparison between the ML model trained with one configuration (solid
red line) and two configurations (dashed red line). Referring to Figure 5, there is an
underprediction and incorrect spatial evolution in both ¢, and o,. However, after in-
corporating an additional configuration (C3hR1h) into the model’s training, there’s an
improvement in agreement with the experiment. Specifically, the spatial evolution of the
standard deviation is closer to the experimental data, albeit accompanied by a slight
overestimation.

This observation motivates further refinement of the ML model. Our proposed ap-
proach involves leveraging findings from a quadrant analysis and the computation of
amplitude modulation coefficients derived from experimental data. We aim to utilize



Prediction of turbulence in street canyons 21

0.1 0.1

—PIV
=ML

(a) z/h (b) z/h

FIGURE 5. Time- and spatially- averaged turbulent statistics. Standard deviation of the (a)
streamwise velocity component and (b) vertical velocity component. Dashed lines denote ML
model trained with two PIV data sets.

these outcomes as informed constraints, integrating physics-based insights to enhance
the predictive capacity of the present ML model.

4. Conclusions

Urban flow dynamics exhibit high Reynolds numbers nonlinear interactions; and in-
volve high-dimensional data, posing challenges for simulation and modeling. To tackle
these complexities, we leverage an ML algorithm utilizing a convolutional encoder-decoder
transformer model with autoregressive training for accurate spatio-temporal predictions.
An experimental PIV dataset of a street canyon flow is used as the training input.

Our findings demonstrate the ML model’s ability to predict mean flow fields and
capture the spanwise structure of roof-level turbulence in the street canyon. The results
outlined in this brief highlight the framework of the ML model and underscore the clear
potential for further refinement, enabling predictions of higher-order statistics.
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