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Toward data-driven resolvent analysis of
nonlinear flows

By C. G. Hernandez, K. Cao, B. Herrmannt, S. L. Brunton}
AND B. J. McKeon

1. Motivation and objectives

The resolvent is a linear operator that governs how harmonic forcing inputs are am-
plified by the linear dynamics of a system and mapped onto harmonic response outputs.
Resolvent analysis refers to the examination of this operator (a transfer function in the
frequency domain) to find the most responsive inputs, their gains and the most receptive
outputs. The analysis of this operator is related to the pseudospectrum of the linear
operator, and its approximation of the dynamics of the full system is useful for modeling
and controlling purposes. Trefethen et al. (1993) first introduced its use in the context of
shear-driven flows, identifying the non-normality of the linearized operator as the cause
of transient energy amplification of disturbances, even for cases where the eigenvalues
were stable. McKeon, B. J. & Sharma, A. S. (2010) showed that resolvent analysis can
be used to study the statistical structure of wall turbulence by interpreting the nonlin-
ear term in the Fourier-transformed Navier—Stokes equations as an exogenous harmonic
forcing.

Recently, Herrmann et al. (2021) proposed a method to perform resolvent analysis of
linearly stable flows purely from time-resolved snapshot data. The method relies on Dy-
namic Mode Decomposition (DMD) (Schmid 2010) to approximate the eigenvalues and
eigenfunctions of the system based on snapshots from one or more transient trajectories
of the flow. They showed that, using an appropriate inner product, the resolvent of the
matrix of DMD eigenvalues is the resolvent of the system projected onto the span of the
DMD eigenvectors. These eigenvectors are then utilized to synthesize the resolvent modes
in physical coordinates. Their algorithm was tested on data from the Ginzburg—Landau
equation and transitional channel flow forced with various initial conditions to obtain
the leading input and output resolvent modes and their associated gains without equa-
tions or data from adjoint simulations. This would enable resolvent analysis based also
on experimental data.

Residual DMD (ResDMD) has recently been introduced in Colbrook et al. (2023) and
is another method that can be utilized to obtain the eigenvalue-eigenvector pairs of a
finite-dimension approximate Koopman operator and the residual values for how close
they are compared to the true eigenvalue-eigenvector pairs of the underlying infinite-
dimension Koopman operator (and thus the ‘true dynamics’) from the data snapshots of
the system of interest. With certain formulations, the finite-dimension Koopman operator
can be related directly to the DMD matrix used in the Data-Driven Resolvent Framework,
and the residual values can be treated as uncertainty quantification for DMD. Eigenvalue-
eigenvector pairs with significantly large residuals can be eliminated before constructing
the projected resolvent operator.
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However, data-driven resolvent analysis relies on DMD, which can give a contaminated
estimate of the linearized operator in the case of strong nonlinear effects. Generally, this
is the case for turbulent flows, especially at high Reynolds numbers. Therefore, a new
method was needed that is capable of separating the linear and nonlinear dynamics driv-
ing the evolution of spatiotemporal measurements of the system. By contrast, sparse
identification methods learn the fully nonlinear models, disambiguating the linear and
nonlinear effects, but they are restricted to low-dimensional systems. A recent method es-
pecially well suited to deal with these two issues is‘Linear and Nonlinear Disambiguation
Optimization’ (LANDO) (Baddoo et al. 2022). LANDO performs kernel regression on
a sparse dictionary of samples that contribute meaningfully to the dynamics, efficiently
handling high-dimensional data, and is flexible enough to incorporate partial knowledge
of system physics. Once the linear model contribution is obtained, the resulting operator
evaluated on the data can be readily used for resolvent analysis.

In this brief, we combine all three methods, namely, data-driven resolvent analysis,
ResDMD and LANDO to leverage data-driven resolvent analysis of nonlinear flows.
The approach is tested on data from simulations of transitional channel flow and the
Kuramoto-Sivashinsky (KS) equation on the attractor. Additionally, some preliminary
results will be shown for turbulent channel flow in a minimal box unit. The remainder
of the brief is organized as follows: A formulation of the data-driven resolvent analysis
as well as ResDMD and LANDO methods are presented in Section 2. A description of
the datasets employed in this work and preliminary results are provided in Section 3.
Finally, our conclusions are offered in Section 4.

2. Formulation

Let us consider a forced linear dynamical system
x=Ax+Tf, (2.1)

where x € R" is the state vector, A € C"*" is the discretized linear operator, f € C"
is the external force and the dot denotes time differentiation. Now suppose x is the
deviation from a stable steady state. For a harmonic f in the form f(t) = fe=™ + c.c.,
where c.c. means complex conjugate, w € R is the angular driving frequency, and t € R
is the time variable. The long-term response is also harmonic x(t) = Xe~™“! + c.c., with
X governed by the particular solution to Eq. (2.1)

R = (—iwl — A)~'f = H(w)f, (2.2)

where I is the n x n identity matrix and H(w) is the resolvent operator. We seek the
largest input-output gain, optimized over all possible forcing vectors f
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o1(w) = , (2.3)

where [|X|g, = X*QX measures the size of the state based on the metric given by the
weighting matrix Q, which accounts for the integration quadratures and nonuniform
discretization. The asterisk denotes the conjugate transpose in this context. Using the
Cholesky decomposition (Q is positive definite) to factorize Q = F*F, we obtain

o1 (w) = |FH@)F|. (2.4)
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The solution to Eq. (2.4) is then given by the singular value decomposition (SVD) of the
weighted resolvent

FH(W)F ! = Op(w)2(w)®h(w), (2.5)

where 3 € R is a diagonal matrix containing the gains o1 > 09 > --- > o, > 0,

and ®p = F (o1, 09, - ,¢,] and p = F [1h1, 19, -+ ,1b,] are unitary matrices whose
columns, when left multiplied by F~1, are the input/output resolvent modes, respectively.

2.1. Data-driven resolvent analysis

Data-driven resolvent analysis (Herrmann et al. 2021) uses DMD to approximate the
eigenvalues and eigenvectors of the dynamical system under study. In the absence of
forcing, the evolution of measurements of Eq. (2.1) is given by

Xp4+1 = exp(AAL)xy, (2.6)
where xj, is the measurement at time ¢ty = kAt, with At the sampling time. In the 2-norm
framework

Fx; 11 = Fexp(AAt)F 'Fx;, = OFxy, (2.7)

where ® = Fexp(AAt)F~1 evolves the weighted measurements. Therefore, using the
weighted measurements, we can proceed using DMD to approximate the linear operator.
As outlined in Herrmann et al. (2021), the steps to perform data-driven resolvent analysis
are listed below

1) The snapshots of the flow are collected as follows

X _F [ N B e B O BN T TR O BN () } o
1 1 1 2 2 2 ’
Y=F [0 ool o o alll ) o al), ]
where in the sample 3:,(5), the subscript k& € {1,--- ,;m + 1} denotes the sample number,
and the superscript j € {1,--- ,p} denotes different trajectories starting from p initial
conditions.
2) A rank-r truncated SVD of the snapshots is performed
X =V, yD, W], (2.9)
whose eigenvalues and eigenvectors are related to those of A via A\, = log(p;) /AL,
V,=F 1V, g and W, = F"'W, ¢ that satisfy
AV=VA and ATW = WA* (2.10)

for an unknown operator A, where At = Q7 1A*Q is its Q-norm adjoint. The subscript
r has been omitted. Here, DMD is used as a data-driven eigendecomposition.

3) We now seek an approximation of H(w) built on A,.,V,, W,. We consider an eigen-
vector expansion of x and f as follows

x(t) = V,a(t), f(t)=V,b(t), (2.11)

where a, b are the expansion coefficients in eigenvector coordinates. The projected system
is then

a=A.a+b. (2.12)

Because we are now working in different coordinates, if we want to retain the physical
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meaning of the norm, we need to adjust our inner product accordingly, and the new
weighting matrix is [|x[|§ = x*Qx = a*VQV,a = |[Fall3, where we have defined F
from the Cholesky factorization of V;QV, = F*F.

4) Resolvent analysis of a = A,a + b. The weighted resolvent modes and gains are
obtained from the SVD of the projected resolvent as follows

~ i~ .
F(—iwI—-A,) Fl= Ui (w)E(w) PR (w). (2.13)
In physical coordinates, we can now recover the resolvent modes
®=V,F'®. and ¥=V,F '¥z (2.14)
2.2. ResDMD

The method described by Colbrook et al. (2023) aims at obtaining the eigenvalue-
eigenvector pairs of a finite-dimension approximate Koopman operator and the residual
values for how close they are compared to the true eigenvalue-eigenvector pairs of the
underlying infinite-dimension Koopman operator from the data snapshots of the system
of interest. The algorithm is as follows:

1) Given a dictionary (set of basis functions) {uy, -+ ,9¥n} of observables, DMD con-
structs a matrix K € CN*N from the snapshot data {x(m),y(m)}i\::l that approxi-
mates K (the infinite-dimension Koopman operator) on the finite-dimension subspace
VN = Span{d’l,"‘ 7¢N}

2) The solution to the optimization problem that minimizes the residual (error) obtained
by the application of K to approximate the Koopman operator via a quadrature rule is

K = (W) (W) = (VW) VW, (215)

where W is the weighting matrix and ¢, ¢, € CM*N,

3) The residual of the eigenvalue-eigenvector pair (A, g) is approximated as follows

2T (VWb — AWy — MWy, + (A2 Wi, | g
g* [ViWib,l g

for A € C and g = Vg € Vy, where g is the projection of a new observable onto the
current dictionary of observables.

4) Now, we solve the eigenvalue problem (YW1, )g = A (YviW41,) g, and the residual
res(A, g) is computed. Finally, the eigenvalues with res(J, g) > ¢ are discarded, with ¢ > 0
the goal accuracy.

res(A, g) (2.16)

2.3. LANDO

The method introduced in Baddoo et al. (2022) will be used here to separate the linear
and nonlinear contributions. The steps of the algorithm are listed below.
1) The snapshots are collected as usual

X = [mg%g) R B T DRI D) xg;;)} 7
(1),.(1) (1) (2),.(2) (2) ®),.(p) (p) (2.17)
Y:[% L3 "‘xm+1|x2 L3 "'xm+1|""x2p133p"'xnf+1]-

2) Our optimization problem consists of finding a function f that suitably maps the
training data. The function f is typically restricted to a given class of models (e.g.,
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linear, polynomial, etc.), so that it may be written as the expansion

N
f= Z £0;(x) = Zp(x), (2.18)

where f is our model, ¢ describes the feature library of N candidate terms and = contains
the coefficients that determine which model terms are active and to what degree. The
optimization problem to be solved is

argmin|[Y — E¢(X)[| + aR(E), (2.19)

where the second term aR(Z) is a regularizer. However, ¢ is generally large and the
optimization problem becomes intractable, so we use an appropriate kernel function

f= iwjk‘ (xj,2) = WE(X, z), (2.20)

where the sum is over the number of snapshots (m) instead of the number of library
elements (V). The optimization problem now becomes

argmin||Y — WE(X, X)|| + aR(W). (2.21)
w

3) An additional reduction to help handle large numbers of snapshots is the use of sparse
dictionaries to learn kernel models, as follows

= wik(zj,7) = Wk(X,z) ~ Wk(X, 2), (2.22)
Jj=1

where X is the dictionary, and, the tilde means that the quantity is connected to it.
The dictionary is constructed by considering each sample and determining whether it
should be included in the dictionary. This is decided by checking if the sample can be
approximated in the feature space using the current dictionary. This method is called the
‘almost linearly dependent’ (ALD) test: If a sample is almost linearly dependent on the
current dictionary, then it is not added; otherwise, the dictionary must be updated with
the current sample. Once the dictionary has been learned, the weights are calculated as

W = YE(X, z)'. (2.23)

This kernel model is implicit, meaning that without further analysis we cannot interpret
the model and understand the physical relationships that the model has learned.

3. Results
3.1. Data sets

Three data sets will be used to test our combined method: (1) transitional channel flow
simulated in a small box L,/h = 2r, L,/h = 7, with resolution N, = 32, N, = 65,
N, = 32, Reynolds number Re = 2000 and N = 1000 snapshots are considered, with
At = 0.5, the initial condition is a localized impulse [computed with the spectral code
CHANNELFLOW (Gibson et al. 2008)]; (2) KS equation on the chaotic attractor for ¢ finq =
15,000 with At =1 (computed with MATLAB’s ODE45); and (3) turbulent channel flow
simulated in a minimal box [using DIABLO (Bewley 2018)], L, /h = 7, L, /h = 7/2 with a
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Figure 1: Eigenvalues D, and A, of the linear operator for the transitional channel
flow case, regressed with LANDO (no dictionary) using linear and quadratic kernels.
The number of POD modes retained is 7 = 100, onto which the snapshots have been
projected. The operator-based eigenvalues are plotted in gray.

resolution N, = 64, N, = 129, N, = 64 at Reynolds number Re = 4348 and Re, = 185,
with converged second-order statistics and N = 500 snapshots. The laminar profile has
been subtracted in (1), and the mean flow has been subtracted from the data in (3).

3.2. Transitional channel flow

In this work, only a polynomial kernel of degree up to two will be considered, owing to
the quadratic nature of the nonlinear terms in the Navier—Stokes equations. The kernel
k(z) has the form

k(r) = a + bz + cz?, (3.1)
where ¢ = 0 and b = 1, ¢ = 0 for the linear case, and b = ¢ = 1 for the quadratic case.
Another important point worth clarifying is that there is an equivalence between DMD
and LANDO with a linear kernel as explained below.
1) DMD: The SVD of the snapshots is X = UXV™; therefore, the DMD matrix is A=
U*yYvy-1i
2) LANDO with linear kernel: The kernel is constructed as K = X*X = VX2V*. Now,
the weights are W = YK = YVE~2V*. Therefore, A = U*WVE = U*YVE 2V*VE =
U*YVX~!, which is equivalent to the DMD matrix.

Figure 1 shows the eigenvalues of (a) the snapshots D, and (b) the linear operator
A estimated with DMD and regressed with LANDO using linear and quadratic kernels.
Here, 100 proper orthogonal decomposition (POD) modes have been retained and the
operator has been projected onto them, with the aim of improving numerical accuracy
given that the matrices resulting from the application of the algorithm in Section 2 often
have very large condition numbers. For this first example, the effect of the dictionary
has been eliminated by considering X = X; that is, we consider all snapshots in our
dictionary. It can be observed that the eigenvalues agree extremely well: The markers for
the DMD and LANDO linear cases sit behind those for the LANDO quadratic case. The
operator-based eigenvalues are plotted in gray, showing a fair agreement as well. For the
case under consideration (negligible nonlinear effects), LANDO with quadratic kernel is
still able to give a great estimate of the linear operator.

Figure 2 shows the largest resolvent gain o as a function of w for the three methods
outlined above. The three match within 0.01%—1%. Figure 3 shows the Q-norm difference
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Figure 2: (a) Largest gain o1 (w) and (b) relative difference with respect to DMD
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Figure 3: Q-norm difference of the resolvent modes regressed with LANDO ® and ¥ with
respect to DMD for various w. The modes are orthonormal.

of the resolvent modes ® and W from the linear operator regressed with LANDO with
respect to those from DMD. The differences are in the range of 1% — 30% for ® and
0.01% — 30% for W. In effect, Figure 4 shows the first four forcing ®;, and response
W, resolvent modes. It can be observed that they look very similar in the three cases
compared.

Additionally, Figure 5 shows a color map of the residuals [Eq. (2.16)] of the eigenvalues
calculated with DMD. The ResDMD algorithm, integrated with LANDO to leverage
data-driven resolvent analysis of a turbulent flow, would discard the eigenvalues with
larger residual, notably those in orange and yellow.

3.3. KS equation
The KS equation is a partial differential equation used to model a variety of (chaotic)
physical phenomena like turbulence or chemical reactions. Here, we use data from a
simulation of
1

Ut + Ugppagr + Ups + 51@ =0, (3.2)
on the attractor (transient removed) for = € [-L/2,L/2], with L = 44.91 and ¢ €
[0,15,000] with At = 1, periodic boundary conditions and some given initial condition.
The KS equation has some elements of the Navier—Stokes equations (nonlinearity, dif-
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Figure 5: Residuals [Eq. (2.16)] of the eigenvalues calculated with ResDMD.

fusion, unsteadiness) and serves as an intermediate step to test our method after the
transitional channel flow case (linear) and just before fully-nonlinear turbulent channel
flow.

Figure 6 shows a comparison of the eigenvalues of Eq. (3.2): analytical A, = (2n7/L)%—
(2nm/L)*, and those obtained with DMD and LANDO. Clearly, LANDO outperforms
DMD, obtaining regressed eigenvalues that match the analytical ones. This toy problem
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Figure 6: Eigenvalues of the linear operator of the KS equation: analytical, DMD and
regressed with LANDO. The close-up shows a detailed view of the comparison. The size
of the markers of the LANDO eigenvalues corresponds to the average projection of the
training data onto the associated eigenvectors.
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Figure 7: Eigenvalues D, and A, of the linear operator for the turbulent channel flow
case, regressed with LANDO using linear and quadratic kernels. The number of POD
modes retained is 7 = 100, and N = 500 snapshots are considered. The operator-based
eigenvalues are plotted in gray.

is interesting because it shows that LANDO can regress eigenvalues of the linear operator
of a nonlinear equation on the attractor, which is our case of interest in turbulent channel
flow (sampling is done once the statistically steady state is achieved).

3.4. Turbulent channel flow

Now, our method is tested on time-resolved snapshot data from a numerical simulation
of turbulent channel flow in a minimal box unit at Re, = 185. The snapshots (N = 500)
are taken once the statistically steady state is reached and the second-order statistics are
converged.

Figure 7 shows the eigenvalues of the linear operator calculated with DMD and LANDO
with a linear and quadratic kernels. The DMD eigenvalues lie near the real axis, as do
the eigenvalues regressed by LANDO with linear kernel. Even though the results for
LANDO with quadratic kernel are far from satisfactory when compared to the operator-
based eigenvalues, we can see that the eigenvalues have larger real part, making the
disambiguation slightly better than with the precedent methods.

4. Conclusions and future work

In this brief, we have investigated the data-driven resolvent analysis of several systems,
ranging from almost-linear to fully-nonlinear turbulent channel flow. The methods em-
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ployed, namely, data-driven resolvent analysis (Herrmann et al. 2021), LANDO (Baddoo
et al. 2022) and ResDMD (Colbrook et al. 2023), have been shown to work well for a
case with negligible nonlinearity, and LANDO clearly outperformed DMD for a simpler
(although nonlinear) toy problem (KS equation). Preliminary results have shown that
turbulent channel flow is a fairly more difficult problem, revealing an improvement in
the regression of the linear operator but still far from the results given by operator-based
resolvent analysis. More work is needed in this direction to understand the role of the
coefficients of the kernel function [Eq. (3.1)] and other parameters like the size of the
dictionary or the actual number of snapshots. Moreover, the robustness of the methods
described here needs to be addressed in a comprehensive manner especially for the transi-
tional channel flow case, where only a localized impulse initial condition has been verified.
More work is needed to test other initial conditions like random or optimal disturbances.
Finally, it is uncertain whether sampling one trajectory on the attractor is enough to
regress the linear operator in turbulent channel flow or if the sampling must contain
more departing trajectories on the attractor itself or in the transient phase. Future work
will address these notable challenges.
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