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Stationary states of forced two-phase turbulence

By S. S. Jain AND A. Elnahhas

1. Motivation and objectives

The deformation, fragmentation, and coalescence of bubbles and droplets in a turbulent
environment is an important problem in various environmental and industrial settings
(Jain 2017; Ni 2024). In the atmosphere, the enhanced efficiency of water droplet
collision—coalescence events due to air turbulence heavily influences cloud formation and
warm rain initiation (Grabowski & Wang 2013). At the ocean—atmosphere interface,
underwater turbulence generated due to breaking waves breaks apart large entrained
air pockets into smaller bubbles, facilitating mass transfer between the ocean and the
atmosphere (Dieke 2022). Finally, turbulent emulsions, i.e., a homogenized mixture of
two fluids of similar densities, are ubiquitously formed for use in pharmaceutical and
industrial processing (Wang et al. 2007; Kilpatrick 2012). As such, an understanding of
how turbulence influences (and is influenced by) the dispersed phase, as parameters such
as density and viscosity ratios between the carrier and dispersed phases, as well as the
volume fraction occupied by the dispersed phase, are varied, is of paramount importance
to understanding these ubiquitous flows.

While these examples contain irreducible effects due to anisotropy and large-scale
shear, the simplest setup to study the essential physics of deformation, fragmentation, and
coalescence of bubbles and droplets in a turbulent environment is homogeneous isotropic
turbulence (HIT). In this setup, the dynamics and statistics of droplets and bubbles,
both larger and smaller than the Hinze scale, the scale at which inertial forces due
to turbulence causing fragmentation are balanced by the restorative force of the surface
tension, can be studied in the absence of large-scale anisotropy. Recent studies that utilize
two-phase HIT as a testbed can be broken down into two categories: The first category
considers the detailed dynamics of individual bubbles and emulsions during the first few
breakup events, characterizing and quantifying things such as the generation of sub-
Hinze scale bubbles due to rapid successive breakup events and capillary fragmentation
(Riviére et al. 2021, 2022), the effect of eddies far away from the two-phase interface on
the deformation process (Vela-Martin & Avila 2021), bubble deformation modes due
to turbulent fluctuations (Perrard et al. 2021), the non-vanishing probability of breakup
at sub-Hinze scales due to increasingly intermittent turbulent fluctuations (Vela-Martin
& Avila 2022), and the role of the viscosity ratio between the two phases on the rate
of bubble breakup and the critical Weber number at which they break (Farsoiya et al.
2023). The second category considers characterizing the statistical properties of numerous
bubbles and droplets present simultaneously in a turbulent environment. Within this
category, Dodd & Ferrante (2016) studied the turbulent kinetic energy (TKE) budgets
of droplets at various density ratios within decaying HIT. Crialesi-Esposito et al. (2022,
2023) studied the influence of viscosity ratios and volume fractions of the dispersed phase
at unity density ratios in a forced HIT setting on the scale-by-scale energy budgets while
linking the droplet-size distribution (DSD) to the local dissipation rate of turbulence,
once again highlighting the importance of intermittency in the breakup dynamics. Finally,
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Begemann et al. (2022) and Krzeczek et al. (2022) utilize a linear forcing approach to
study the segregation properties of emulsions, highlighting that even minor variations in
the density ratio of the two phases from slightly below to slightly above unity shifts the
DSD to have fewer super-Hinze bubbles and more sub-Hinze scale drops.

In all the aforementioned studies, decaying turbulence cases are utilized considerably.
However, the initial velocity fields inside the dispersed phase are somewhat arbitrarily
chosen as zero. It is unclear whether this affects the breakup statistics, as no systematic
study of the effect of the internal initial condition on the breakup statistics has been
performed. To overcome this ambiguity, it would be best to characterize the breakup
dynamics at a statistically stationary state, where individual events can be tracked. To
achieve this state, forcing is necessary to sustain the continuously dissipating turbulence,
ensuring that the turbulence properties do not change during the breakup processes. In
the cases where forcing has been used, both simultaneous (both phases) and single-phase,
linear, physical-space forcing have been utilized in various studies (Lundgren 2003; Ros-
ales & Meneveau 2005). However, single-phase (carrier) forcing is only used for the
cases that study single bubbles in HIT (Riviére et al. 2021, 2022), while simultaneous
mixture-phase (both phases) forcing has been applied only to density ratios representa-
tive of emulsions (Begemann et al. 2022; Crialesi-Esposito et al. 2022; Krzeczek et al.
2022; Crialesi-Esposito et al. 2023). As such, there remain open questions concerning the
differing effects of simultaneous mixture-phase (both phases) forcing and single-phase
(carrier) forcing, as well as how the aggregate properties of the two-phase HIT vary with
density ratio when forced.

In this work, we perform forced numerical simulations of two-phase HIT. This study
will primarily belong to the second category in the classification of existing studies above.
We formulate various forcing schemes, including mixture-phase and single-carrier-phase
forcing for two-phase turbulent flows combined with proportional controllers (Bassenne
et al. 2016), and use them to characterize the aggregate statistical properties of stationary
two-phase turbulence with non-unity density ratios, representing suspended heavier drops
in turbulence, lighter bubbles in turbulence, and turbulent emulsions. We study these
global aggregate statistics by varying density ratio, void fraction, and Weber number.
These aggregate statistics will help in the understanding of the global behavior of the
two-phase mixture and will influence future choices in designing cases to probe the more
detailed dynamics of the two-phase turbulent breakup problem. This study will also
aid in the development of subgrid-scale models for larger-scale simulations of two-phase
turbulent flows.

The rest of the report is structured as follows: Section 2 presents the governing equa-
tions, numerical scheme, the two-phase global energetic equations, formulations of the
various tested forcing schemes, and the computational setup. Section 3 presents results
on the variation of the energy of each phase as non-dimensional parameters such as
void fraction, density ratio, and large-scale Weber number are varied for various forc-
ing schemes. We also discuss the use of filtering to extract the spectrum of a two-phase
flow, and report the effect of void fraction on the spectrum of both phases. Furthermore,
the variation of DSD as a function of large-scale Weber number is discussed for forced
emulsions. Finally, a summary of the findings and concluding remarks are presented in
Section 4.
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2. Methodology

2.1. Governing equations and numerical methods

In this work, we consider incompressible two-fluid flows. A phase-field/diffuse-interface
method is used as an interface-capturing method. The details of the formulation are
presented in the following subsections.

2.1.1. Phase-field model

In this method, the volume fraction of one of the fluids is indicated by the phase-
field variable ¢ = ¢1, which satisfies the relation Zl:1,2 ¢1=1 by definition, where the
subscript [ denotes phase index. Then, the accurate conservative diffuse-interface (ACDI)
model for ¢ (Jain 2022) can be written as
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where « is the velocity, I' denotes the velocity-scale parameter, and € is the interface
thickness scale parameter. Here, ¢ is an auxiliary variable and represents the signed-
distance-like function from the interface, which is defined as
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Note that a small number ¢ is added to both the numerator and denominator to avoid
division by 0, and ¢ is chosen as ¢ = 10719, The right-hand-side (RHS) term of Eq. (2.1)
is the interface-regularization term, which is an artificial term that is added to main-
tain the constant thickness of the interface. The interface-regularization term contains
a diffusion and a sharpening term, which balance each other to maintain a constant in-
terface thickness on the order of €. The ACDI model is discretized using a second-order
skew-symmetric split central discretization (Jain & Moin 2022).

Jain (2022) showed that ¢ remains bounded between 0 and 1 using a central scheme,
provided I'/|t|mqe > 1 and €/A > 0.5 conditions are met, where A represents the grid
size. Therefore, in this work, I'/|t|maex = 1 and €/A = 0.51 are used for all the simulations.

The recently developed ACDI method (Jain 2022) has been shown to be suitable for
complex turbulent flow simulations (Jain 2022; Hwang & Jain 2023) and a wide range
of other multiphysics flow problems (Collis et al. 2022; Scapin et al. 2022; Brown et al.
2023; Jain 2023). It is known to be more accurate than other existing phase-field models
because it maintains a sharper interface (with only one-to-two grid points across the
interface) while being non-dissipative, robust, less expensive, and conservative (without
the need for any geometric treatment). Because of these advantages, the ACDI method
is chosen as the interface-capturing method in this work.

2.1.2. Momentum equation

Furthermore, the effect of the interface-regularization term on the RHS of Eq. (2.1) is
considered in the momentum equation as
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where 7 and j are the Einstein indices, 7;; is the stress tensor expressed as 7;; = 215;; =
p(Ou; /Oxj 4+ Ouj/dx;), p is the pressure and f is the implied artificial mass flux that can
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f= {(p1 — po)T {s% - %1 [1 — tanh? <%)} %}} , (2.4)

which results in global kinetic energy conservation with the ACDI model (Jain 2022).

be written as

2.1.3. Surface tension modeling

The surface tension forces, f7 [last term in Eq. (2.3)], are modeled using a continuum-
surface force (CSF) formulation (Brackbill et al. 1992), where ¢ is the surface tension
coefficient and & is the surface curvature, defined as k = —V -7 = =V - (V)/|V4)|). The
use of ¢ to compute curvature in the surface tension force was shown in Jain (2022) to
improve modeling of the surface tension force and reduce spurious currents significantly.
This improved CSF model results in lower spurious currents compared to other existing
models in the literature, including the free-energy based surface tension models. Hence,
the improved CSF formulation is used to model surface tension forces in this work.

2.2. Two-phase energetics
2.2.1. Mixture equations
We can write the TKE equation as
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(2.5)

where u; represents a fluctuating velocity. Averaging in space, we get the mean TKE
equation

ok

E = \IJ — €, (26)
where k = (pu;u;/2) is the TKE, ¥ = (u;f7) is the surface tension power, and e =
(13;0u;/0x;) is the dissipation; for all these terms, the averaging operator is defined as
() = [fy(-)av]/v.

Similarly, we can write the mean surface energy equation (Dodd & Ferrante 2016) as
dse
— =V 2.7
-, (27)
where se = (0¢) is the surface energy (SE), for which ¢ is the local three-dimensional
Dirac delta function active at the interface location (Tryggvason et al. 2011). If we define
total energy as the sum of TKE and surface energy, then summing up Egs. (2.6) and
(2.7), we get the total energy equation
ok . Jse
ot ot
Figure 1 is a schematic illustrating the phase-mixed energy buckets available in a
two-phase flow, and the energy transfer mechanisms between the buckets.

— (2.8)

2.2.2. Individual phase equations

The individual phase momentum equations in a two-fluid formulation are
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FIGURE 1. A schematic representing the different energy buckets of a multiphase flow (phases
are combined) and the exchange terms between them along with energy injection point corre-
sponding to forcing term, F.

where the jump condition of the stresses across the interface satisfies
Z (—prbij + Tijk) Ny = ORNG ko, (2.10)
k

indicating that the balance of normal viscous and pressure forces is what contributes to
surface tension forces. Then, the TKE equation for each phase k can be written as
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If we now define volume averaging within each phase k as
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and averaging in space within each phase k, we get the phase-averaged TKE equation
Oky,
— =V — P, — 2.12
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where ki, = (Prprti kUi k/2)/{$r) is the phase-averaged TKE, Vi, = (¢y (Ou; 1 7ij.1x/0x;)) /{Pr)
is the phase-averaged viscous transport contribution, Py = (¢ (Ou; xpr/0x;))/{dk) is the
phase-averaged pressure transport contribution, and e, = (px7;; (Ou;/0x;))/{Pk) is the
dissipation of phase k [see Dodd & Ferrante (2016) for a sharp-interface formulation of
phase-averaged TKE].

Figure 2 is a schematic illustrating the individual-phase energy buckets available in a
two-phase flow, and the energy transfer mechanisms between the buckets.

2.3. Forcing formulation

To maintain the turbulent state of the flow, we can include forcing in mean TKE equation,
which yields

ok
— =0 —ec+ . 2.13
ot €+ I (2.13)
Then the mean total energy equation is
Ok  Ose
— 4+ — = —e+ Fi. 2.14
Bn + o e+ I (2.14)

Note, we can also force the mean surface energy equation in Eq. (2.7) by adding
a nonzero force Fy. This will directly modify the energy transfer at the interface and
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FIGURE 2. A schematic representing the different energy buckets of a two-phase flow (with the
individual phases separated) and the exchange terms between them along with energy injection
points corresponding to forcing terms, F3 .

modify the breakup and coalescence of drops/bubbles. This could be unphysical, and
hence, we set F5 = 0 (hereafter).
Similarly, we can include forcing in the phase-averaged TKE equation, which yields
Oky,

H_t =Vi.—P. — ¢, + FS,k- (2.15)

While there are many possible forms for the forcing terms Fy and F3y, it has been
shown that a linear forcing term in velocity applied in physical space generates more
favorable statistics of third-order structure functions, and presumably other inertial range
statistics, as compared with low-wavenumber forcing (Lundgren 2003). Given that we
wish to study the breakup and coalescence of droplets in the inertial range of turbulence,
this fact, combined with the ease of implementation, leads us to use linear forcing. If we
adopt linear forcing of the form pAu, for the mixture momentum equation and pA¢yu;
for the phase momentum equation, where A is a constant with the units of time, then
the forcing terms in the energy equations will be

F = Alpuu;) = 2Ak, (2.16)
and
Fyp= ALPRORUN) o gy (2.17)
)
If we use a controller (Bassenne et al. 2016) of the form
9q 7~ 4o
—=T+F 2.1
5 +F+G ( e ) (2.18)

then the generic forcing will be of the form
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2.3.1. Constant TKE
From Eq. (2.13), if we set,

Fi=¢e— VU, (2.20)
then the TKE will be constant in stationary state. To achieve this, we need
e—VU
A= 2.21
— (221)

or with the controller,

tl,oo
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2.3.2. Constant total energy
From Eq. (2.14), if we set
) =¢, (2.23)

then the total energy (TE) = TKE + SE will be constant in stationary state. To achieve
this, we need

A=—, (2.24)

or with the controller,

ce— QG (k+se—tlkoo—seoo)
A= : .

o7 (2.25)
2.3.3. Constant individual phase TKE
From Eq. (2.15), if we set
Fs = ex+ Pp = Vi, (2.26)
then the phase TKE will be constant in stationary state. To achieve this, we need
e+ — Vi
A= B TR (2.27)
or with the controller,
e+ Py — Vi — G (R
A= ' . (2.28)

2ky,
The effect of holding each of these energy choices constant in the subsequent simula-
tions is examined. Figure 2 also shows the energy injection points in the schematic.

2.4. Computational setup

For all cases presented in this study, the computational setup consists of a triply periodic
domain of size (27)? discretized using N3 points with N = 256. First, a single-phase
flow is forced using the controlled forcing in Eq. (2.22) with ¥ = 0, such that the final
Taylor microscale-based Reynolds number, Re), achieved is Rey = 87. This corresponds
to a local average resolution of the Kolmogorov length scale, 7, of k,,q.n = 1.5, where
Kmaz is the largest wavenumber resolved by the grid, consistent with the direct numerical
simulation of single-phase flow reported in Bassenne et al. (2016). This process takes
around 307, to complete, where 7, is the large eddy turnover time.

The final stationary single-phase HIT state (Figure 3) is used to initialize all the two-
phase HIT simulations. This is done by inserting a second phase sphere (either droplet
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FIGURE 3. Volume rendering of enstrophy of the HIT along with the interface, showing the
initial condition for the two-phase simulations.

or bubble) in the center of the domain of diameter L; = 1. To completely disregard the
effect of the initialized velocity field inside the second phase, we run this setup using the
various controlled forcings until the global surface area of the interface reaches a steady
state, after which we collect statistics and make the findings reported below.

Using this setup, we run a variety of cases to test the effect of varying non-dimensional
parameters such as the density ratio, p;/p2, the viscosity ratio, p/pus, the average void
fraction of the dispersed phase, (¢4), and the integral scale Weber number of the flow
defined as We; = (2/3)peuile/o. Here, p. is the carrier phase density, /. is the integral

length scale of the single-phase flow defined as [, = k32 /€, where k. and e are the targeted
kinetic energy and dissipation of the HIT, respectively, and wu; is the RMS velocity of
the single-phase turbulence before the insertion of the bubble, which is related to the
kinetic energy through k. = 3/ 2ul2. Table 1 reports all the properties used for all cases
examined in this study. Case A is the base case from which variations in non-dimensional
parameters are studied, and all subsequent plots include case A as a reference point along
with the corresponding numbered cases for each parameter variation.

3. Results
3.1. Effect of different forcing types

For base case A, which has unity-density and unity-viscosity ratios, low void fraction,
and a high We;, promoting breakup, we test all three possible forcings, Eqgs. (2.22),
(2.25), (2.28), i.e., holding TKE constant, holding TKE + SE constant, and holding only
the TKE of the carrier phase constant, respectively. Figure 4 shows that the control
schemes work at maintaining constant kinetic and total energies. However, the net effect
on the final SE for the different forcing types is minimal. Hence, for the remainder of the
study, we limit ourselves to constant TKE forcing of either a single phase or both phases
simultaneously.

3.2. Effect of void fraction

While maintaining unity density and viscosity ratios, we first quantify how the energy is
distributed between the two phases when they are simultaneously forced as (¢4) increases
from a small value to approximately 0.5, reaching a symmetric binary system.
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Case p1 p2  p1/p2 p1 p2 pr/pe (¢1)  (da) o We
A 1 1 1 2.0334 x 1072 2.0334 x 1073 1 0.0655 0.0655 0.079 19.5
| Void fraction variation |

Bl 1 1 1 2.0334x1072% 2.0334x 1072 1 0.221 0.221 0.079 19.5
B2 2.0334 x 1072 2.0334 x 1073 1 0.524 0.476 0.079 19.5
B3 1 1 1 2.0334x1072% 2.0334x107% 1 0.738 0.262 0.079 19.5

—
—_
—

| Weber number variation |

Cl 1 1 1 20334 x 107% 2.0334 x 1073 1 0.0655 0.0655 0.158 9.75
c2 1 1 1 20334 x107% 2.0334 x 1073 1 0.0655 0.0655 0.79 1.95

| Density ratio variation |

DI 1 1072 100 2.0334 x 1073 2.0334 x 1073 0.0655 0.0655 0.079 19.5
D2 1 107% 10 2.0334 x 1073 2.0334 x 1073 0.0655 0.0655 0.079 19.5
D3 1 10 0.1 2.0334x 1073 2.0334 x 1073 0.0655 0.0655 0.079 19.5
D4 1 10* 0.01 2.0334 x 1073 2.0334 x 1073 0.0655 0.0655 0.079 19.5

— e

TABLE 1. The properties used for all cases examined in this study: the density of each phase,
p1,2, along with their ratio, p1/p2, the viscosity of each phase, 1,2, along with their ratio w1 /2,
the average volume fraction of phase 1, (¢1), along with the dispersed phase volume fraction,
(¢a), the surface tension coefficient, o, and the large-scale Weber number, We;.
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FIGURE 4. Effect of different forcing schemes on the stationary state of case A, showing (a)
mixture TKE, (b) mixture dissipation, and (c) SE. The legend applies to all the plots.

Figure 5 showcases the variation of the specific TKE of each phase, k. Since p;/py = 1
and ju1/p2 = 1, and both phases are forced, we would expect k, to be 1 (same) for both
phases, but we see that the specific kinetic energy in the dispersed phase is less than
in the carrier phase. We hypothesize that this difference could be due to the confining
effect of the interface, which acts as a soft wall on the dispersed phase and inhibits the
formation of large-scale eddies (turbulent fluctuations larger than the drop/bubble size).

We also find that the specific kinetic energy of the dispersed phase increases approxi-
mately linearly with the increase in void fraction, reaching that of the “carrier” phase as
(¢pq) — 0.5, since there is no longer a distinction between the two phases of the emulsion
at (¢q4) = 0.5. This is probably because of the increase in the size of bubbles/drops as
the void fraction of the dispersed phase increases. Larger bubbles/drops can now accom-
modate larger eddies, which is consistent with our hypothesis.

By increasing the void fraction of phase 1 past 0.5 (case B3 in Table 1), we find
that the roles of the two phases (phase 1 and phase 2) reverse and the specific kinetic
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FI1GURE 5. Effect of the void fraction on the specific TKE of the dispersed and carrier phases
for simultaneous mixture constant TKE forcing. The dashed line represents the reference sin-
gle-phase value.

energy of the original carrier phase decreases because it now becomes a dispersed phase,
highlighting the inhibition of the turbulent fluctuations within the dispersed phase due
to the interaction with the “soft wall” behavior of the interface.

We can further attempt to verify this claim by computing the phase-dependent TKE
spectra utilizing a filtering approach (Sadek & Aluie 2018). Note that a standard Fourier
spectrum, while valid in the present case, is not a general enough approach for when there
are variations in density and viscosity between the two phases due to the discontinuity
of the velocity derivatives at the interface. Figure 6 showcases the filtering spectrum in
both the carrier and dispersed phases. For the dispersed phase, there are two peaks, a
high and a low wavenumber one, which approach each other as the volume fraction is
increased, culminating with a spectrum that is similar to that of the carrier phase at
the largest (¢g). It is speculated that the two peaks at low (¢4) correspond to the two
internal modes of energy within the dispersed phase, i.e., turbulence within the dispersed
phase at the small scales and the translational energy of the dispersed cloud at the large
scales, [the presence of translational motion of drops was also postulated before by Dodd
& Ferrante (2016)]. Efforts to disambiguate the two are currently in progress. However,
we can observe that the energy content in the large scales is increasing with increase in
(¢a), which could be due to the presence of larger eddies that can now be accommodated
within the drops/bubbles in the dispersed phase, as they grow in size with increase in
(¢q). This observation again corroborates our hypothesis.

Figure 7 showcases the variation of the total surface energy of the emulsion as a
function of (¢4). It can be seen that it increases approximately as SE ~ (¢q)%/3. This
can be easily argued from (¢4) ~ (3, where ( is an average length scale of the diameter
of the dispersed phase, and (A) ~ SE ~ (%, where (A) is the average surface area of the
dispersed phase.

3.3. Effect of Weber number

Figure 8 showcases that, while holding (¢4) constant, decreasing the Weber number
decreases the specific kinetic energy of the dispersed phase. This could be a result of two
possible effects. Firstly, the increased resiliency of the interface to deformation inhibits
the formation of larger eddies (turbulent fluctuations) inside the dispersed phase (our
hypothesis outlined above), and secondly, the reduction in deformation can lead to a
reduction in the number of smaller bubbles formation, reducing the amount of energy
that goes into the translational modes of the dispersed phase cloud. One of these factors
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FIGURE 6. The filtering energy spectrum of the (a) dispersed and (b) carrier phases of the
emulsion for various void fractions. The legend applies to both plots.
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FI1GURE 7. Effect of the void fraction on the surface energy of the mixture for simultaneous
constant TKE forcing.

could be dominant, or it could be both factors that are at play and are responsible for
the reduction in the specific kinetic energy of the dispersed phase. However, we verify
that reduction in Weber number with respect to the base case A, reduces the number of
sub-Hinze scale bubbles in the stationary size distribution of the dispersed cloud, as seen
in Figure 9, due to reduced breakup at lower Weber numbers.

3.4. Effect of density ratio

We now examine the final steady state reached by a two-phase turbulent system as the
dispersed phase changes from low-density bubbles to emulsions to high-density droplets.
Figure 10(a) shows that if we force both phases simultaneously, a large variation in the
energy distribution of the two phases does not exist until we transition to droplets. In that
case, simultaneously forcing both cases dumps a lot of kinetic energy into the droplets
by virtue of their increased density, while draining the carrier phase considerably. This is
considered not physically relevant, as the large-scale energy injection mechanisms likely
act on the carrier phase in cases of interest, so we proceed to individually hold the kinetic
energy of the carrier phase constant as we vary the density ratio. Figure 10(b) shows
that while holding the carrier phase TKE constant, there is a stark difference between
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FI1GURE 8. The specific TKE of each phase as a function of Weber number. The dashed line
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FIGURE 10. Effect of density ratio on the specific TKE of the phases for (a) constant mix-
ture-TKE forcing, (b) constant carrier phase TKE forcing. The dashed line represents the ref-
erence single-phase value.

the behavior of bubbles and droplets. For bubbles, their specific kinetic energy is roughly
constant across two orders of magnitude. However, as soon as the dispersed phase changes
to droplets, its specific kinetic energy decays following at K FEg ~ (p1/p2)~"/? power-law.
This is likely due to the transition from storing energy in internal modes (in bubbles) to
translational modes (in drops).
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4. Summary and conclusions

In this work, we performed forced numerical simulations of two-phase homogeneous
isotropic turbulence and studied the statistical behavior of two-phase turbulent mixture.
We performed simulations for various density ratios (representing bubbles, drops, and
emulsions), Weber number, and void fraction and studied the effect of these parameters
on the global behavior of the two-phase mixture. We also formulated various forcing
schemes, including mixture-phase (both phases) forcing and single-phase (carrier) forcing,
that can hold the turbulent kinetic energy of the mixture or the carrier phase a constant
value in steady state.

In this study, we found that the interface behaves as a “soft wall” and inhibits forma-
tion of larger eddies (turbulent fluctuations) within the dispersed phase. This hypothesis
was developed by looking at the specific turbulent kinetic energy variation as a function
of void fraction and Weber number. The specific turbulent kinetic energy in the dispersed
phase increased with increase in void fraction and Weber number, indicating that larger
eddies can be accommodated in larger bubbles/drops and when the interface is more de-
formable, respectively. Furthermore, the energy spectrum in the dispersed phase showed
increased energy at larger scales as void fraction increased, verifying that the interface
could be blocking the formation of larger eddies.

We also observed and explained that the global surface energy of the two-phase mixture
scales as a 2/3"¢ power-law of void fraction. Moreover, we found that the specific kinetic
energy follows a —1/3"¢ power-law of the density ratio for droplets (heavier dispersed
phase) and is independent of the density ratio for bubbles (lighter dispersed phase). This
interesting observation demonstrates that drops behave fundamentally differently from
bubbles. Overall, this study has significant implications for subgrid-scale modeling for
two-phase turbulent flows.
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