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simulation of separated flows
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1. Motivation and objectives

In complex engineering flows, the boundary layers over solid surfaces often experience
a combination of favorable and adverse pressure gradients. A favorable pressure gradient
reduces the normal stresses in the near-wall flow, making it more organized (Sreenivasan
1982). In the presence of an adverse pressure gradient, however, the normal stresses near
the wall become stronger (Adams & Johnston 1988). For three-dimensional flows, the
problem is further complicated by the lack of uniformity in any spatial direction. These
nonequilibrium flows can even exhibit a boundary layer separation from the surface
before finally reattaching downstream. The structure of turbulent separation bubbles
has remained a matter of active research (Lighthill 1953; Kiya & Sasaki 1983; Adams
& Johnston 1988). Even in canonical problems of boundary layers experiencing pressure
gradients without separating off the surface, integrated streamwise history effects have
been reported (Bobke et al. 2017) to determine the downstream state of a boundary
layer. Recently, Agrawal et al. (2023a) developed an extension of the Thwaites method
which also serves as a quantitative analysis tool to account for the flow history. For
example, in the flow over an aircraft model, a different pressure gradient distribution can
occur for different angles of attack due to inviscid effects that can change the resulting
effective body shape. The changes in the angle of attack lead to variations in the physical
effects that drive the grid point requirements for converging the quantities of interest
(such as lift, pitching moments, drag, surface pressure, etc). As an example, existing
results from wall-modeled LES (WMLES) for the flow over the Common Research Model
aircraft (Agrawal et al. 2023¢; Kiris et al. 2022; Goc et al. 2023; Kiris et al. 2023) have
demonstrated that converging the predictions (of the pitching moment) from simulations
at the higher angles of attack (near, at, and post-stall regions) is more challenging than
at the lower angles of attack where the flow is primarily attached.

Detailed knowledge of the near-wall structure of equilibrium boundary layers has been
leveraged to establish resolution requirements for both wall-resolved and wall-modeled
large-eddy simulations (e.g., Au, /v ~ O(1) for wall-resolved LES or the validity of the
law of the wall in the logarithmic regions of the velocity profiles in WMLES). Despite
the augmentation of the structure of the turbulent boundary layer in the presence of
strong pressure gradients, existing grid point estimates still rely on the phenomenology
of equilibrium boundary layers (Chapman 1979; Choi & Moin 2012; Yang & Griffin
2021). These studies suggest that the grid point requirements for WMLES scale linearly
with the Reynolds number if resolution with respect to the boundary layer remains
fixed. There are two shortcomings of this approach. First, the conclusions regarding the
Reynolds number scaling may be incorrect in the presence of pressure gradients. Second,
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and perhaps more importantly, the existing grid point estimates do not provide estimates
on the a-posteriori errors in quantities of interest given a specified outer layer resolution.
For instance, Lozano-Durdn et al. (2022) show that errors in the prediction of mean
velocity profiles greatly increase in regions of adverse pressure gradients compared to
zero pressure gradient regions even if the outer layer resolution is fixed. This is especially
true in separating boundary layers, where significantly higher outer layer resolution has
been required for accurate simulations (Whitmore et al. 2022).

This brief aims to address the aforementioned shortcomings in the context of sepa-
rating flows. A characteristic length scale that governs the near-wall flow equilibrium (a
quasi-balance between the viscous and the pressure gradient terms) is used to determine
the resolution required for accurately predicting quantities of interest for flows (such as
the surface pressure) that exhibit a smooth body separation across a range of Reynolds
numbers. For these purposes, we utilize the charLES flow solver (Bres et al. 2018) to
perform WMLES. The rest of the brief is organized as follows. Section 2 provides some
details of the charLES flow solver. Section 3 discusses the physical length scale that gov-
erns the prediction of smooth body separation. Section 4 discusses a-posteriori WMLES
results across multiple flows. Finally, some conclusions are drawn in Section 5.

2. Solver and wall modeling details

The simulations presented in this work are performed using charLES, an explicit,
unstructured, finite-volume solver for the compressible Navier-Stokes equations. This
code is formally second-order accurate in space and third-order accurate in time, and
utilizes grids based on Voronoi diagrams. The dynamic tensor coefficient Smagorsinky
model developed in Agrawal et al. (2022) has been used in this study. More details of
the solver and validation cases can be found in Agrawal et al. (2023b); Bres et al. (2018);
Goc et al. (2021); Fu et al. (2021). Formally skew-symmetric operators are employed to
conserve kinetic energy in the and the discrete operators also approximately preserve
entropy in the inviscid, adiabatic limit.

In typical WMLES, a shear stress and a heat flux boundary value is supplied to the
LES solver to close the discrete system of governing equations. In this work, an algebraic
form of the equilibrium wall-stress model (EQWM) is used, in which the assumed mean
velocity profile is a C'! continuous piecewise fit of the viscous sublayer and the logarithmic
layer. Details of the compressible formulation of the EQWM can be found in Lehmkuhl
et al. (2018). A first-point matching approach is used, since this solver has not shown
any evidence of a log-layer mismatch in the simulation of turbulent channel flows in the
range, 1000 < Re, < 4200 with typical LES resolutions.

3. A characteristic length scale for separated flows

Fundamentally, even the viscously driven near-wall scales in flows experiencing pressure
gradients can go out of equilibrium (for example, not have a linear velocity scaling in
viscous units) if the timescale governed by the pressure gradient (¢, ~ pu./dP/dx)
is faster than the viscous timescale (t, ~ v/u2), where u, is the local skin-friction
velocity. The timescale for eddies within a logarithmic region is governed by the local
shear (t;, ~ h/u,). Thus the inner scales thus go out of equilibrium if

dP
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Similarly, both the inner and outer scales respond at the same timescale if

h
tp <K ty ~ tiy OT Ip > 1 and LAy 1. (3.2)
Ur v
Near the onset of flow separation, these conditions can be met simultaneously. For a
spatially developing boundary layer, these relations also suggest that the flow at a given
wall-normal location h is bound to be in nonequilibrium if
h h
S T | where [, z (3.3)
lp up

Thus, the only scales that remain in equilibrium for a boundary layer before the onset
of a separation bubble are scaled such that ;= ~ 1. This suggests that an equilibrium
wall model approximation would only remain vahd for matching locations at h < ol
(for some constant, ).

This can be further reasoned from analysis of a time-steady Poisson equation near the
separation point, written as

0 0u; 0
8:1:] o0x;

where ~ and (-) denote the filtered LES fields and a time average operator, respectively,
and homogeneous Neumann boundary conditions are applied on the pressure field at
the solid wall (see 2). Consider, in Figure 2, a two-dimensional boundary layer that
undergoes a separation over a surface such that §/R < 1 where R is the local radius
of curvature. (This assumption is not strictly true near the separation point, but is
convenient for analysis.) Let (zsp,0) be the coordinates of the separation point. In a
semi-infinite domain such as in Figure 2, the Green’s function that satisfies Eq. (3.4) and
its boundary conditions is given as

) =-V*(p), (3-4)

G(z,y,70,90) = il”(i(l‘ —20)* + (y — v0)*I[(x — 20)* + (y + v0)?])- (3.5)

for y > 0.
Using Green’s identities and the symmetric property of Green’s function, the pressure
in the upper-half domain is given as

* 2 au] * *
psep:p xS@P? / / _ln sep) +( ) )833 8.13 d d (36)

where (...)" denotes a nondimensional variable, and the (---) has been dropped for sim-
plicity. Let the relevant scales for nondimensionalization be l,,;,, = min(l,(z)) and the
viscous velocity scale that corresponds to Lyin, equal t0 Umar & V/lmin. Under this nor-
malization, let Lg/f * be the scale of the region that dominantly influences the pressure
at the separation point. For this region to be of a finite length scale, the integrand must
decrease eventually, or

ou* ou’
2 7 J < A2
(L) dx’ Oz~ ’

(3.7)

where some finite A. For an LES, one of the aims is to find the minimum LZ]‘)/I * that needs
to be resolved on the computational grid to accurately predict separation. The minimum
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FIGURE 1. A two-dimensional (spanwise and time-averaged) contour of du;/dx;du;/dx; in the
vicinity of the separation point (z/L = 0.1) for the flow over the Boeing speed bump.

LII)” that would always satisfy the above inequality is one that also satisfies
A2

sz* ox;

(Lgl*)2 S
maz{

(3.8)

Stratford (1959) suggests that at the points where the skin friction crosses a zero, the
near-wall velocity profile (up to y* = *=% =5 — 10) is given as

UEZAJFB\@:AJFB,/%. (3.9)

P
Further assuming that near the separation point, the scales of motion in the streamwise
and the wall-normal direction scales similarly

*
duj duj

* *
d.rj dx}

max{ O(1), (3.10)

near the wall, as the flow nears separation. This implies that
LIJ)W ~ X lmin Where x ~ A. (3.11)

or that a reasonable length scale that may affect a flow nearing separation is the one
that is viscously scaled by the strongest adverse pressure gradient in the vicinity of the
separation. As a numerical example of the analysis above, we consider the flow over the
Boeing speed bump (Uzun & Malik 2022). A highly resolved WMLES (with the matching
location as low as AzT = Ay™ = Azt =5 at the wall with an equilibrium wall model)
was performed in-house. Whitmore et al. (2022) showed that the skin-friction and the

surface-pressure coefficients are accurately predicted on this grid at Rey, = 2 x 10°. The

resulting distribution of the product, %? %-Lv is plotted in Figure 1. The maximal value
5 d;

is ~ 0.4, implying Lé” ~ O(1).

The value of y may vary depending on the flow; however, this will not affect the scaling
Lé” ~ lmin. Some reasonable estimates of A are explored through a-priori analysis in
the next subsection. A further implication of this fact can be that the response of the
near-wall flow in the vicinity of a separation bubble can also be governed by a stronger
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FIGURE 2. Schematic of a simplified, two-dimensional boundary layer flow where (2s¢p,0) is the
separation point. The hemisphere of radius L," denotes the region that significantly influences
the pressure at the separation point (assumed to be quasi-steady in time).

adverse pressure gradient upstream (locally close to the point of separation, however) of
this region.

3.1. A-priori analysis

In this section, a-priori analysis is performed to explore an estimate of the expected
values of A in nonequilibrium boundary layers. The objective is to find reasonable A
values that provide monotonically converging and fairly accurate (for example, < 10%
error) estimates of the wall shear stress for nonequilibrium flows. The equilibrium wall
model is used for providing the estimates of the modeled wall stress. For these purposes,
a high-fidelity database consisting of the adverse pressure-gradient boundary layers of
Bobke et al. (2017) and the flow over NACA 0012 and 4412 airfoils (Vinuesa et al. 2018;
Tanarro et al. 2020) is examined. A momentum-thickness-based Reynolds number (Rey)
up to approximately 4000 and a Clauser parameter value (8 = §*/pu? dP/dz) of up to
6 is observed on these flows.

In Figures 3 and 4, the value of y decreased from 25 to 6. For both these figures, subplot
(a) denotes the location of the matching point (y,) in friction units with the ordinate
and the abcissa denoting the local Clauser parameter and the momentum-thickness-based
Reynolds number. Similarly, subplot(b) for both the aforementioned figures presents the
percentage error in the prediction of the shear stress. In Figure 3, the error in the predic-
tion of the shear stress, 7, reaches up to approximately 20%, with the error generally
increasing for a higher vy, except when the Reynolds number is low. Generally, at a
given Rey, the error in the shear-stress predictions increases with increasing §. This is
expected, as for a larger /3, a large range of the flow scales within the boundary layer are
under nonequilibrium. A turbulent channel flow analog of this argument can be found in
Lozano-Duran et al. (2020). At a given 3, the increase in Rey generally leads to a lower
error as the scale separation between the equilibrium and nonequilibrium regions of the
boundary layer increases. Upon refinement in Figure 4, by reducing x to 6 (equivalent
to quadrupling the resolution), the errors are generally lower than those at x = 25. The
errors for all the streamwise stations in the considered flows are less than 10% in this
limit. Given the relatively modest Reg of these flows, the corresponding v values are
also small. However, based on these a-priori results, it is hypothesized that a value of
X € [5,10] may be necessary to accurately predict quantities of interest in a-posteriori
WMLES of nonequilibrium flows.
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FI1GURE 3. The distribution of the (a) location of the matching point in wall units (y;;) and (b)
the corresponding percentage error in the prediction of the wall shear stress from the equilibrium
wall model for x = 25 as a function of the Clauser parameter and the momentum thickness
Reynolds numbers. The Roman numerals denote the data points from different flows: Data series
I to V correspond to different streamwise stations in the flat-plate boundary layers simulated in
Bobke et al. (2017). Data series VI and VII correspond to different streamwise stations in NACA
0012 and 4412 airfoils studied by Tanarro et al. (2020) and Vinuesa et al. (2018) respectively.
The starred point, A, is a sample point chosen to aid the interpretability of this plot. This data
point corresponds to a flat-plate boundary layer flow at Regy ~ 3200 and = 4.2. The matching
location for this point is roughly, ¥ ~ 40 [in subfigure (a)] and the percentage error in the
shear-stress prediction is approximately 20% [and hence the contour is saturated in subfigure
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FIGURE 4. The distribution of the (a) location of the matching point in wall units (y;;) and (b)
the corresponding percentage error in the prediction of the wall shear stress from the equilibrium
wall model for x = 25 as a function of the Clauser parameter and the momentum thickness
Reynolds numbers. The Roman numerals denote the data points from different flows: Data series
I to V correspond to different streamwise stations in the flat-plate boundary layers simulated in
Bobke et al. (2017). Data series VI and VII correspond to different streamwise stations in NACA
0012 and 4412 airfoils studied by Tanarro et al. (2020) and Vinuesa et al. (2018) respectively.
The starred point, A, is a sample point chosen to aid the interpretability of this plot. This data
point corresponds to a flat-plate boundary layer flow at Reg ~ 3200 and 8 = 4.2. The matching
location for this point is roughly, ¥ ~ 10 [in subfigure (a)] and the percentage error in the
shear-stress prediction is approximately 6% [in subfigure (b)].
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FIGURE 5. A schematic of the flow over the simplified, spanwise periodic Boeing speed bump
geometry. The flow develops over a Gaussian-shaped bump experiencing a favorable and an
adverse pressure gradient before eventually separating at z/L ~ 0.1.

3.2. Reynolds number scaling

The currently accepted zero-pressure-gradient flow-based estimates (Choi & Moin 2012;
Yang & Griffin 2021) suggest that the number of grid points (N,,) required to perform
WMLES of a boundary layer scale as N, ~ Re'. Instead, in this work, we propose
an alternate grid-point scaling for nonequilibrium flows, specifically those that exhibit
a turbulent separation. These estimates will be verified in a-posteriori calculations in
subsequent sections. The assumption in this work is that a nearly constant value of y,
or a viscously driven length scale, can be chosen to predict the quantities of interest as
the Reynolds number is increased. The value of LZI)” scales as

—-1/3
Léw ~ Xlmin ~ XRe_2/3 max (%%) , (3.12)
or as the Reynolds number is increased, Léw decreases as Re 2/3. Thus, for a nested
grid where the number of points in the wall-normal direction with respect to LZI)” is
fixed, the number of grid points required to sufficiently resolve the nonequilibrium effects
scales as N, ~ Re*/3. This prediction is more stringent than the equilibrium flat-plate
boundary layer WMLES estimates but grows slower than N, ~ Re'3/7 scaling of wall-
resolved LES. The assumption of requiring a fixed y across a range of Reynolds numbers
may be negated once improved wall models consistently and accurately account for the
nonequilibrium and the flow history effects at coarse resolutions. (In Appendix I, the
performance of some existing nonequilibrium wall models is reported, which suggests that
present nonequilibrium models do not affect the resolution requirements significantly).

4. A-posteriori analysis
4.1. WMLES of the Boeing speed bump

In this section, a-posteriori results from WMLES of the flow over the Boeing speed
bump (Williams et al. 2020; Gray et al. 2021, 2022) are presented. This geometry was
proposed by the Boeing Company and Williams et al. (2020) to challenge the ability of
computational fluid dynamics practices to accurately predict turbulent flow separation.
Zhou et al. (2023) recently showed a large sensitivity in the prediction of the separation
bubble to the choice of the subgrid-scale and wall models. The simplified, spanwise-
periodic bump surface is defined by an analytical expression, h(x), written as

v(7) =00ssean |- (757 (a.1)

where x is the streamwise coordinate. The Reynolds number, Rej,, for this flow, is defined
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Mesh Ney (in millions) Max. A/L Min. A/L
Coarse 3 0.01 1.3x 1072
Medium 12 0.01 6.3 x 1074
Fine 52 0.01 3.1x107*

TABLE 1. Mesh parameters for the Rer, = 2 x 10° case of the flow over the spanwise-periodic
Boeing speed bump. For subsequently higher Reynolds numbers, the grid is refined by modifying
the background resolution (equal to max. A/L) by a factor of Re?/3.

in terms of the freestream velocity U, and the bump width L. It has been previously
shown that the surface pressure (Cy,) and the skin friction (C/) for the simplified geometry
approximately match those at the midspan of the experimental configuration (Gray et al.
2021). A Reynolds number, Rey, = 2x 106, is studied to match the prior quasi-DNS (Uzun
& Malik 2022) and experimental results (Williams et al. 2020; Gray et al. 2021). The
flow over the speed bump experiences a strong favorable pressure gradient followed by a
strong adverse pressure gradient on the fore and aft sections of the bump, respectively. For
Re;, > 1.8 x 105, these pressure gradients lead to the formation of a turbulent separation
bubble.

Figure 5 represents a schematic of the simulation setup. The inlet is located at x/L =
—1.0 as a plug-flow profile, and the flow then undergoes a numerically induced transition
to turbulence over the region (—1.0 < 2/L < —0.6). This simple choice stems from the
observations of Agrawal et al. (2023a), who showed that the separation tendency of this
flow is approximately independent of the inlet boundary condition as long as the inlet is
sufficiently far away. This has also been reported in a-posteriori simulations by Whitmore
et al. (2022). Freestream velocities with a nonreflective boundary condition are set at the
top boundary. A characteristic boundary condition (NSCBC) with constant pressure is
applied at the outlet (/L = 2.5). The computational meshing approach is the same as
in Agrawal et al. (2022); some details of the mesh parameters are provided in Table 1.

The experiments of Williams et al. (2020) and Gray et al. (2021) have suggested an
approximate Reynolds number independence in the surface pressure distribution over the
bump surface for Rey > 2 x 10°. In light of this, in this work, we perform numerical
experiments up to Rer, = 10 x 10, assuming the invariance of the pressure coefficient
profile with respect to the Reynolds number. Only comparisons of the surface pressure
distribution are made as it is expected that the skin-friction distribution in the upstream
region (nearly a zero-pressure-gradient flat-plate flow) is expected to be a function of
the Reynolds number. In a prior work (Agrawal et al. 2022), the authors showed that
for the Reynolds number Rey = 2 x 10° case, the skin friction compares well with the
experiments. For completeness, the surface pressure coefficient (C),) is mathematically
defined as

% _ D Dref

2 paUZ

where U, p, and pyor are the mean freestream velocity, wall pressure and the upstream
reference pressure in the zero-pressure region of the flow, respectively.

Figure 6 (a—) provides the predictions of the surface pressure at a given nominal grid
for different values of Rej,, where at each level (e.g., coarse, medium, fine), grids are

(4.2)

refined based on the proposed Reynolds number scaling (Re2L/ 3). When the resolution
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FIGURE 6. The streamwise distribution of the surface pressure coefficient, Cp, for the (a) coarse
grid, (b) medium grid and (c) fine grid across 2x 10° < Re;, < 10x 10°. Note that across different
Reynolds numbers, the nominal coarse, medium and fine grids are scaled in their resolution by a

factor of Rei/ s, Subfigure (d) shows the Lo norm of the error in C), for all the Reynolds number
flows.

of the calculation with respect to L, is held constant, it is apparent that predictions
of WMLES at different Reynolds numbers are similar. For all the considered cases, the
finest grid is required to accurately predict Cp, specifically, the flow separation (0.1 <
z/L < 0.4). To quantify these errors, Figure 6(d) presents the L., norm of the error
in Cp. This norm specifically highlights the largest differences in WMLES and reference
values, which occur primarily due to incorrect prediction of the extent of the separation
bubble. The error values are expected to reach an asymptotic value on very coarse grids
when the prediction of C), reaches the inviscid limit (the flow remains attached and the
boundary layers are sufficiently thin). The error convergence on the fine grid corresponds
to a A/min(l,) ~ 12, which is similar to the values from the a-priori analysis in the
preceding sections. Although not shown, limited sensitivity in the convergence behavior
of WMLES upon the choice of the subgrid-scale model was observed between the dynamic
Smagorinksy model (Moin et al. 1991) and the dynamic tensor coefficient Smagorinsky
model (Agrawal et al. 2022). The minimum y* values before the separation point are
approximately y, ~ 15— 20 at the lowest, implying the simulations are not wall-resolved.
Finally, an additional simulation on a very fine grid (twice as refined in each direction

than the fine grid shown) for the Rer, = 5 x 10° case confirmed that the results are
grid-converged.

4.2. WMLES of Song-Eaton diffuser
Song & Eaton (2004) performed detailed experiments on the Reynolds number sensitiv-
ities of flow separation over a circular arc-shaped diffuser. The experiments recorded a
small separation bubble with nearly Reynolds number invariant C,, distribution across
a range of 1100 < Regef < 20, 100 where Regef denotes the momentum-thickness-based
Reynolds number at a reference station (s/L = —2) in the flat-plate region of the dif-
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FIGURE 7. A schematic of the flow over the spanwise periodic circular arc-shaped diffuser stud-
ied by Song & Eaton (2004). The flow develops over a flat plate upstream of the arc before
experiencing a favorable and then an adverse pressure gradient. The flow eventually separates
at s/L =~ 0.75.

Mesh Ney (in millions) Max. A/L Min. A/L
Coarse 0.6 0.03 7.6 x 1073
Medium 2.2 0.03 3.8x 1073
Fine 9.3 0.03 1.9 x 1073

TABLE 2. Mesh parameters for the inlet momentum thickness, Regef = 3400 case of the flow
over the circular arc-shaped diffuser studied by Song & Eaton (2004). For subsequently higher
Reynolds numbers, the grid is refined by modifying the background resolution (equal to max.

A/L) by a factor of Re?/3.

fuser. Figure 7 presents a schematic of the experimental setup. In this flow, the unsteady
separation process occurs over a large portion of the arc surface, leading to the formation
of intermittently attached and separated boundary layers. Radhakrishnan et al. (2006)
performed a hybrid RANS-LES of this flow with a stochastic forcing (Keating & Piomelli
2006) to reasonably capture the separation bubble for the Regef = 13,200 flow, however,
they employed stretched grids in the streamwise direction, with a wall-normal refinement
down to yT = 1.

Table 2 presents details of the computational grids in this work. The simulation setup
for this flow is very similar to the Boeing speed bump. A plug-flow is fed at the in-
let (x/L = —23), which transitions into an equilibrium turbulent boundary layer as it
develops over a long flat-plate region. The upstream length has been chosen such that
simulations match the velocity profile and the Reynolds number at the reference upstream
experimental station (z/L = —2). The outlet boundary in the simulations was extended
up to /L = 10 to let the flow fully recover post-reattachment. The top boundary is
placed at y/L = 2.1 and treated with a free-slip boundary condition. The bottom wall is
treated using the equilibrium wall model, and the outlet is treated with the characteristic
boundary condition (NSCBC). Unlike Radhakrishnan et al. (2006), the grid resolution is
agnostic to the separation location along the streamwise directions. Periodic boundary
conditions are used along the spanwise direction with a period of 20 5§§f , where 5g§f is
the boundary layer thickness at the reference upstream station (x/L = —2).

In this work, we perform WMLES of all three Reynolds numbers, Regef = 3400, 13,200
and 20,100 considered in the experiments. Figure 8 (a—c) corresponds to the C), distri-
bution for three Reynolds numbers, respectively. The C), distribution is nearly identical
for all Reynolds numbers, with the flow experiencing an acceleration slightly upstream of
the arc (as x/L — 0). Then, as the boundary layer experiences an adverse pressure gra-
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FIGURE 8. The prediction of surface pressure coefficient C), for the flow over the Song-Eaton
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FIGURE 9. A schematic of the flow over the smooth ramp studied by Simmons (2020). The
flow develops over a flat plate upstream of the ramp before separating at /L ~ 0.6.

dient over the arc, a small separation occurs at x/L = 0.79. For all Reynolds numbers,
the fine grid accurately captures the separation bubble and the flow recovery regions.
Figure 8 also shows that at Rey = 20,100, a fine grid simulation with no-slip boundary
conditions on the bottom walls produces the inviscid C), solution and does not predict
any flow separation, which confirms the necessity of a wall model to simulate this flow
at the finest grid resolution. For this flow, the performance of WMLES for coarse and
medium grids varies between the lowest and the other two different Reynolds numbers,
similar to the Boeing speed bump. Figure 8(d) presents the L., norm of the error in the
Cp, with the errors becoming small only for the finest grid. Selected sensitivity tests to
the choice of the subgrid-scale model suggested no differences in the grid-point scaling
with the Reynolds number.

4.3. WMLES of Notre-Dame ramp

Simmons (2020) performed a series of experiments on a smooth ramp over which a
high-Reynolds number boundary layer (upstream reference Rey = 11,000) exhibits a
smooth-body separation; this flow is a candidate for the upcoming High-Fidelity CFD
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Mesh Neo (in millions) Max. A/L Min. A/L
Coarse 16 Mil. 0.02 2.5 %1073
Medium 64 Mil. 0.02 1.3x 1073
Fine 252 Mil. 0.02 6.25 x 1074

TABLE 3. Mesh parameters for the inlet momentum thickness, Re(:ef = 11,000 case of the flow
over the smooth ramp studied by Simmons (2020). The predictions on the very fine grid confirm
the grid convergence of LES.

Verification Workshop at AIAA Scitech, 2024. The top wall of the experimental setup
was slightly tapered to create a pressure gradient, with the tapering angle having a
significant impact on the extent of the separation (Simmons 2020). Figure 9 provides a
schematic of the simulation setup that nearly reproduces the experimental wind tunnel
configuration. The ramp geometry (0 < 2/L < 1) is made from a fifth-order polynomial
that smoothly joins the upstream and downstream flat plates. Three tapering angles,
a = 3.2°, 5.6° and 7.7°, were studied experimentally, with the smallest angle producing
the largest separation bubble and the largest angle producing a fully attached flow. In
this study, we consider the o = 5.6° flow, expecting that this angle will be the most
challenging condition in regard to the prediction of the separation bubble.

In our computations, the inlet is fed as a plug-flow located at s/L = —2. The inlet is
adjusted to match the experimental Reynolds number (Rej* = 11,000) at the reference
plane (s/L = —0.75). The top wall is located at n/L = 0.9, the same as the experimental
domain and an equilibrium wall model is used at this boundary, since the flow is not
inviscid near the tunnel wall. The bottom wall flat-plate regions and the ramp are also
treated with the equilibrium wall model. The outlet boundary condition is a nonreflective
characteristic boundary condition. The domain is 2565 wide in the spanwise direction.
Details of the grid distribution and resolutions are provided in Table 3.

Figure 10(a) shows the C), distribution across the grid refinement sweep. As the flow
encounters the ramp, a favorable pressure gradient is experienced initially due to the
tapering of the top wall that creates an inviscid flow acceleration. However, at s/L ~
0.2, the adverse pressure gradient due to the ramp surface dominates and leads to the
formation of a separation bubble at s/L = 0.5. In the current WMLES results, on the
coarsest grid, the flow does not separate. As the grid is refined, the flow starts separating
with the fine and the very fine grids providing nearly identical solutions, indicating grid
convergence for these quantities. Table 3 and Figure 10(b) suggest that for the fine grid,
the resolution in terms of the pressure-scaled units is of the same order as that required
on the Boeing speed bump and the Song-Eaton diffuser flow.

5. Concluding Remarks

In this study, the Reynolds number scaling of the required grid points to perform wall-
modeled large-eddy simulation (WMLES) of flow encountering separation is examined.
A theoretical justification based on the various timescales in a nonequilibrium flow is
advanced to suggest that the near-wall flow structures for an otherwise nonequilibrium
flow scale as [, ~ Re~2/3. The same scaling is deduced based on a simplified Green’s
function type solution of the pressure equation around the separation point. A-priori
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FIGURE 10. (a) The surface pressure distribution and (b) the error convergence upon grid-re-
finement plots for the flow over the smooth ramp designed and studied by Simmons (2020). The
flow develops over a flat plate upstream of the ramp before separating at s/L =~ 0.5 and later
reattaching with the bottom wall at s/L ~ 0.90.

analysis suggests that the minimum resolution required to reasonably predict (errors
lower than approximately 10% in the entire domain) upon leveraging an equilibrium
wall model for the shear stress is ~ 10 [, independent of the Reynolds number and the
Clauser parameter for several nonequilibrium flat plate boundary layers and airfoil flows.
Several a-posteriori calculations are then performed to determine the accuracy of this
scaling. Numerical simulations are performed and compared with experimental data for
the flow over the Boeing speed bump, Song-Eaton diffuser, and the Notre Dame ramp.
The results suggest that for these flows, scaling the grids (A) to maintain a fixed A/,
results in accurate predictions of flow separation at the same “nominal” grid resolution
across different Reynolds numbers. Thus, it is suggested that in more complex, three-
dimensional flows, at least, locally, the grid point requirements to predict flow separation
may scale as Re?/3, which is more restrictive than the previously proposed zero pressure
gradient estimates of WMLES.

Appendix I: Performance of existing nonequilibrium wall models

The results herein show that WMLES calculation with an equilibrium wall model
achieves acceptable accuracy when the viscous pressure gradient length scales are re-
solved. As the equilibrium formulations do not include pressure gradient effects, it is
possible that nonequilibrium wall models would not necessarily follow this scaling. Sev-
eral nonequilibrium wall models have been proposed (Kawai & Larsson 2013; Park 2017;
Zhou et al. 2023; Kamogawa et al. 2023) to account for the flow nonequilibrium by model-
ing the pressure gradient and convective terms either using governing equations or data-
driven methods. These studies have all suggested some improvements in the a-posteriori
WMLES predictions upon employing their respective nonequilibrium wall models over
a range of mildly separated flows. Table 4 summarizes the near-wall, wall-normal grid
resolution (non-dimensionalized by the viscous scale imposed by the strongest pressure
gradient) required to predict the quantities of interest accurately. It is clear that for all
considered flows, the resolution requirements are not too dissimilar to those required
by WMLES employing the equilibrium wall model in this study. Further research may
provide the Reynolds number scaling of these models, and present improvements in the
N, ~ Re*/3 cost scaling, if any.
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Model Description Flow min (A/l)
PDE, nonequilibrium NASA Hump ~ 16
wall-model (Park 2017)

PDE, nonequilibrium Airfoil ~ 14
wall-model (Kawai & Asada 2013)

Reinforcement learning Periodic Hill ~ 14
wall-model (Zhou et al. 2023)

ODE, nonequilibrium Suction, blowing ~ 15
wall-model (Kamogawa et al. 2023) boundary layer

TABLE 4. The minimum wall normal resolutions reported for accurate prediction of quantities
of interest while leveraging existing nonequilibrium wall models for a range of mildly separated
flows.
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