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Grid-point and time-step estimates for
wall-modeled large-eddy simulation of
nonequilibrium flows

By R. Agrawal, S. T. Bosej AND P. Moin

1. Motivation and objectives

One of the ways to assess the feasibility of performing computational fluid dynamics
(CFD) analyses is determined by the simulation cost and its a-priori estimates. A sig-
nificant contributor to this cost is the total number of degrees of freedom in the discrete
system. This is equivalent to the number of grid points in the computational domain
that are required to perform the simulation with reasonable accuracy for the quantities
of interest.

Three simulation paradigms are commonly used to study wall-bounded turbulent flows,
namely, direct numerical simulation (DNS), wall-resolved large-eddy simulation (WR-
LES), and wall-modeled large-eddy simulation (WMLES). DNS is an approach in which
all the scales of the flow up to the Kolmogorov scales are locally resolved on the computa-
tional grid. In the WRLES approach, the important, energy-producing turbulent eddies
near the wall are resolved, but the grid is coarsened in the outer flow, and a subgrid-scale
model is used to capture the effect of the unresolved scales. As the Reynolds number
increases, both these methods, which rely on resolving the near-wall flow, become pro-
hibitively expensive because the dominant turbulent structures become smaller in outer
units. Instead, WMLES has become an emerging paradigm in which the entire effect of
the near-wall, subgrid flow is modeled as a boundary flux onto the outer flow, typically
using a wall model.

Chapman (1979) provided early grid-point estimates for the WMLES paradigm; the
cost scaling is reported to be Ny ~ Re%* (where Npys is the total number of grid points
in the domain, and Re, is the Reynolds number of the flow based on freestream velocity
and a characteristic streamwise length scale). The estimates were based on the power-
law assumption, ¢/x ~ Re;1/5 and O ~ Re;1/5, for flat-plate flows for Re, < 109.
The scaling Njy" ~ Re%* for WMLES is based on the average boundary layer thickness
over a specified streamwise distance. The first set of revisions to Chapman’s estimates
was provided by Choi & Moin (2012). The authors used the following correlations based
on the experimental results from Nagib et al. (2007) and the asymptotic analysis in
Monkewitz et al. (2007),

J. 0. _
229 0.16Re; YT and  —EL ~ 0.016Re; Y. (1.1)
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Choi & Moin (2012) postulated that instead of distributing the domain as a cube
of side length determined by the average boundary layer thickness, the grid should be
conformed to the local thickness of the boundary layer to maintain a fixed resolution
in outer units (0/A = constant, where J is the boundary layer thickness and A is the

1 Cadence Design Systems & ICME, Stanford



274 Agrawal, Bose, € Moin

grid size). They reported that for WMLES, the grid points should scale linearly with the
Reynolds number, N7 ~ Re],. Thereafter, Yang & Griffin (2021) further revised the
estimates for WRLES by utilizing outer-scale resolution scaling beyond the log-layer of
an equilibrium turbulent boundary layer. Their grid-point estimates for WMLES were
unchanged, however, with respect to Choi & Moin (2012). They also provided a cost-
scaling estimate for using an explicit time-stepping scheme with the Reynolds number,
or the number of time steps, N;, which scale as Ny ~ Regl/7.

While these previous studies have provided estimates for simulating equilibrium tur-
bulent boundary layers, they have not considered the nonequilibrium effects imposed
due to the effect of the pressure gradients. This problem is made more difficult since the
effect of the pressure-gradient is nonlocal (Bobke et al. 2017), and the response of the
boundary layer at a given Reynolds number and the nondimensional pressure-gradient
(Clauser parameter, ) is dependent on the upstream history of the flow.

In this work, we follow the recent developments of Agrawal et al. (2023) to derive
an approximate growth rate of the thickness of a turbulent boundary layer under the
action of mild pressure gradients. The rest of this article is outlined as follows: Section 2
discusses a mathematical relationship between the boundary layer thickness, the pressure-
gradient (dP/dx) and the momentum-thickness-based Reynolds number (Rey). Section 3
provides two examples of nonequilibrium flows for which the total number of grid points
for performing WMLES are estimated. Section 4 offers some concluding remarks.

2. Grid-point and time-step estimates for WMLES of incompressible boundary
layers experiencing pressure gradients

Fundamentally, a favorable or adverse pressure-gradient leads to a boundary layer
that is thinner or thicker, respectively, than a corresponding (in Re;) zero-pressure-
gradient boundary layer. One major factor that contributes to this is the response of the
outer scales to a pressure-gradient (Bobke et al. 2017; Pozuelo et al. 2022). The previous
efforts aimed at providing grid-point estimates for WMLES assumed grid resolutions
that scale in outer flow units. The mean local shear is known to determine the dynamics
of turbulence at different wall-normal locations in both equilibrium and nonequilibrium
flows (Flores et al. 2007; Lozano-Durdn & Bae 2019). As long as the pressure-gradient
is not too strong, this shear rate is also nearly constant (across the outer region of the
boundary layer) for nonequilibrium flows. Hence, a similar assumption about requiring a
fixed outer resolution (§/A) of the boundary layer may be motivated for nonequilibrium
flows.

Agrawal et al. (2023) postulated an extension of Thwaites method (Thwaites 1949)
to provide an ordinary differential equation for the growth of the momentum thickness
(6). The proposed relationships are provided below for completeness. Consider an x,y
coordinate system where x is the streamwise direction and y is the wall-normal direction
with y = 0 corresponding to the wall. For a turbulent boundary layer with freestream
velocity distribution, U, (x), the authors proposed that

do 5 8 U. d9?> dbézpg,corr

L O 2.1

dr 200 T200" 2000 de T de 21)
where 0.9 corr/T = 0.16Re;1/7 = 0.16(U6x/l/)_1/7. m is the Holstein-Bohlen parameter

given as m = 62 /vdU, /dz. The expression for the growth of the momentum thickness is
another ordinary differential equation given as
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where C, = 1.45, C,,, = 7.2 and Cge,oc = 0.0024. Consider a turbulent boundary layer

experiencing mild pressure gradients, such that it grows according to Egs. (2.1) and (2.2).

Let n = %‘;—5 be the parameter that governs the streamwise distance over which the

pressure-gradient grows slowly (or remains locally constant). Bernoulli’s principle implies

that over the region (0 — z*),

x* dP
Ue(x) :UQ,/1—2WE ~U2(1—n). (2.3)

Using this relation and the equations above, it can be shown that to the leading order

(in 7),
do C.v ChRe,00 C.v C,,0
dr ™ [2U§6 T } + [" (2Uge T ﬂ ‘ (24)

Due to the proposed linear expansion in (m, Reg) space for the growth of the mo-
mentum thickness, the effect of the Reynolds number and the pressure-gradient on the
growth of the boundary layer are explicitly separable. The terms in the first parentheses
represent the growth rate of a zero-pressure-gradient (ZPG) boundary layer. Thus

do _do [ Cov | Cf o)
de = dx K 2000 2z )|’ ’

If the inviscid pressure-gradient distribution, n = n(x), was known, then Eq. (2.5)
could be integrated to give estimates for the growth of the boundary layer. If we further
assume that the pressure gradients are sufficiently mild such that 6 ~ P9 + n%’

zpg’
then the leading order expansion in 1 would yield

% ~ (0.016 + 0.6n) Re; /7. (2.6)

Using Egs. (2.1) and (2.6), an approximate relationship between the boundary layer
thickness, ¢ [evaluated using the method of Griffin et al. (2021)] in (7, Re,) space can be
derived as

r dP

6(z) = 0°P9 + 10 nzRel®/* =~ 0.16xRe; 5/ + 10_5x[U2 5 E]Ref’/l‘l. (2.7)
In the asymptotic limit of a large Reynolds number, the model predicts that the boundary
layer growth is determined linearly by the pressure-gradient, and slightly sublinearly by
the Reynolds number. Following Choi & Moin (2012) and Yang & Griffin (2021), an
integral relationship between ¢ and the total number of points required for performing

WMLES is written as

Ly /L.
NypNyN
NYT = N(x < z) —|—/ / 163 “dxdz, (2.8)
o 0
where n, and n, are the number of points inside the boundary layer in the streamwise
and spanwise directions, respectively. o and L, are the limits of the streamwise integral,
and L, is the domain size in the spanwise direction. Thus, for a given inviscid flow
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distribution, the grid-point requirements for a boundary layer experiencing mild pressure
gradients can be evaluated using Egs. (2.7) and (2.8).

Finally, the time-step requirements for WMLES of nonequilibrium flows can also be
determined. In practice, in WMLES, the time step is restricted due to the convective
scales. Consider a time-stepping scheme that requires the Courant Friedrichs Lewy (CFL)
number, CFL < O(1), for stability. This implies that

UAt

CFL = A

<0(1) (2.9)

or
At < ﬁ < M S M
U n,U = n,Uc(x)
The final inequality assumes that the streamwise velocity profile is at a maximum value
at the edge of the boundary layer (ignoring any significant inviscid acceleration). Further,

Eq. (2.10) needs to be satisfied globally in the boundary layer, forcing

(2.10)

—ming| 9(z) | = imm [0.163:Re;6/7 + 10—5ane;3/14
me ) e oo —7)

dt < ming|

].

(2.11)
For a flow with a prolonged favorable pressure-gradient, the downstream region of the
flow controls the time-step requirements as the boundary layer thins and the outer scales
become smaller. On the contrary, for a purely adverse pressure-gradient, the time step is
constrained by the upstream flow.
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3. Application to nonequilibrium flows

In this section, we consider two highly nonequilibrium flows to illustrate the use of the
aforementioned estimates. Since a lower Reynolds number flow is more susceptible to a
pressure-gradient, we first consider a low—Reynolds number NACA 4412 airfoil. Second,
for flows experiencing a favorable pressure-gradient region followed by an adverse region,
the boundary layer growth behaves differently compared to a ZPG estimate in different
regions of the flow.

3.1. Low—Reynolds number NACA 4412 airfoil

The flow over the low—Reynolds number NACA 4412 airfoil (schematic presented in Fig-
ure 1) at a chord Reynolds number Re, = 0.1 x 105 simulated by Tanarro et al. (2020) is
subject to an adverse pressure-gradient with the Clauser parameter, § = /j{,g{; ~ 15, at
the trailing edge. A significant difference between the ZPG flow estimate of the bound-
ary layer thickness and that from the proposed model is apparent in Figure 2(a). The
total number of grid points, N;{", as a function of the streamwise distance is illustrated
in Figure 2(b). The proposed model predicts that approximately 10% fewer grid points
are needed within the boundary layer, while the boundary layer is also thicker, thereby
reducing the number of points required in the inviscid flow, assuming a constant resolu-
tion in outer units (6/A) is maintained globally. The reason for this minor reduction is
primarily because the outer-units-based resolution is assumed to be suflicient to capture
the flow phenomena accurately. Since the number of grid points scales locally with 1/§2
(see Eq. (2.8)), the grid-point requirements are set by the region for which § is smaller,
or the upstream region of the flow. Generally, since the effect of the pressure-gradient
acts over some large streamwise distance, the upstream boundary layer thickness may
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FIGURE 1. A schematic of the surface geometry of the NACA 4412 airfoil simulated in Tanarro
et al. (2020). ¢ is the chord length of the airfoil.
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FIGURE 2. (a) The streamwise growth of the boundary layer thickness of NACA 4412 airfoil
at Re. =~ 100,000 and an angle of attack @ = 5° and (b) the streamwise Reynolds number
dependence of the grid points required for WMLES. The ZPG estimate is derived from the
freestream velocity at the first station. L. and c are the spanwise extent and the chord length
of the airfoil respectively; n,, ny, and n. are the number of points in the boundary layer in the
streamwise, wall-normal and spanwise directions, respectively. The dotted lines in the subplots
denote the geometry of the airfoil suction side surface.

remain relatively unaffected. Although not shown, the time-step requirement for WM-
LES of this flow is driven by the inlet 6 and U,, as the ratio /U, increases thereafter
(by approximately a factor of seven).

3.2.  Pre-separation region of the flow over the Boeing speed bump

For flows that experience both a favorable and an adverse pressure-gradient, the growth
of the boundary layer is at times smaller than a ZPG estimate, and then larger in other
regions. An example of this is the flow over the Boeing speed bump (Williams et al. 2020;
Gray et al. 2021) in which the flow accelerates and decelerates over a Gaussian-shaped
bump before eventually separating off the surface. A schematic of the flow is provided
in Figure 3. The pressure-gradient data (or equivalently, the C), curve in the upstream
region) from the quasi-DNS of Uzun & Malik (2022) is used in this work. Figure 4(a)
shows the boundary layer growth predicted by the proposed model compared to a ZPG
flow estimate. In Figure 4(b), the grid-point estimates are compared corresponding to
these two boundary layer profiles. The total number of points from the new predictions
is only 7% higher in the pre-separation region. However, the slope of the curve in Figure
4(b) is suggestive of a different distribution of the points in the domain; in the favorable
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FIGURE 3. A schematic of the surface geometry over which the turbulent flow separates in the
subsonic Boeing speed bump case of Uzun & Malik (2022). L is the characteristic length of the
bump and U, is the freestream flow velocity along the positive streamwise direction.
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FIGURE 4. (a) The streamwise growth of the boundary layer thickness over the Boeing speed
bump at Rer =~ 2 x 10° and (b) the streamwise Reynolds number dependence of the grid
points required for WMLES. The ZPG estimate is derived from the freestream velocity at the
first station. L. and c are the spanwise extent and the chord length of the airfoil respectively;
Nz, Ny and n. are the number of points in the boundary layer in the streamwise, wall-normal
and spanwise directions, respectively. Note that for this flow, the estimates are only plotted till
the point of separation. The dotted lines in the subplots denote the geometry of the speed bump
surface.

pressure-gradient region (9 x 10° < Re?P9 < 13 x 10°), the boundary layer thins and
more points are required locally, compared to a ZPG estimate. Conversely, in the adverse
pressure-gradient regions (5 x 10° < Re?P9 < 9 x 10°, 13 x 10° < Re?P9 < 15 x 10° ),
the boundary layer thickens and fewer number of points are needed. Figure 5 shows the
local advective time step, At = §(x)/U.(z) from the proposed model for this flow with
the maximum (in space) time-step is still imposed at the inflow. However, for a stronger
pressure-gradient flow, the time step will likely be governed by the point of the minimum
boundary layer thickness (within the favorable pressure-gradient region).

4. Concluding Remarks

In this article, the grid and time-step requirements for wall-modeled large-eddy simu-
lation of nonequilibrium flows are explored using the recently developed extension of the
Thwaites method in Agrawal et al. (2023). The analysis suggests a linear dependence of
the boundary layer thickness on the applied pressure-gradient, and a slightly sublinear
dependence on the Reynolds number, at least locally, for flows with strong nonequilib-
rium effects. The time-step estimates are also evaluated, and the results suggest that the
convective time-step requirements may be set by the region of the strongest favorable
pressure-gradient. For a flow with a unidirectional pressure-gradient, the time step is
determined by the upstream region (for adverse pressure-gradients) and downstream re-
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FI1GURE 5. The streamwise growth of the advective time-step requirement for an explicit scheme
with a stability criterion CFL < 1 for the flow over the Boeing speed bump at Rey, ~ 2 x 10°.
Note that the § in this plot corresponds to the prediction from the model in Eq. (2.7). This plot
terminates at the point of flow separation, z/L ~ 0.1.

gion (for favorable pressure-gradients). Finally, for a low—Reynolds number NACA 4412
flow, and the flow over the Boeing speed bump (pre-separation), a minor difference of
up to 10% in the total number of grid points is reported between the proposed estimates
and the existing equilibrium flow-based estimates. Overall, only small differences were
observed in the total number of grid points in comparison to a zero-pressure-gradient
flow estimate.
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