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Evaluation of an optimal slip wall model for
large-eddy simulation

By M. P. Whitmore, S. T. Bosej AND P. Moin

1. Motivation and objectives

The slip wall model for large-eddy simulation (LES) was first introduced by Bose &
Moin (2014). In contrast to wall-stress models for LES, which typically rely on phe-
nomenological arguments, the slip wall model is based on the slip boundary condition,
which is derived mathematically from the application of a specific choice of low-pass
filter to the Navier—Stokes equations. One benefit of this approach is that the slip wall
boundary condition makes no assumption about the underlying state of the unresolved
part of the boundary layer that it is modeling. Typical wall-stress models rely on a wall-
stress boundary condition that embeds the assumption of a quasi-steady, thin, attached
boundary layer. Because of this property, the slip wall model has higher potential for
capturing complex flow phenomena such as turbulent flow separation, where common
assumptions wall-stress modeling assumptions are invalid.

Despite the enhanced predictive potential of slip wall models for wall-modeled LES
(WMLES), relatively little attention has been paid to understanding the proper scaling
behaviors of slip lengths even in simple canonical flows. Much of the focus around the
slip wall model since its conception has been on the development of models that dynami-
cally adjust the slip length based on satisfaction of certain mathematical identities (e.g.,
invariance of the total Reynolds stress to test filtration), while invoking very few physical
assumptions (Bose & Moin 2014; Bae et al. 2019). The results from these studies have
shown sensitivity to closure of the slip length, and the proposed dynamic models are not
robust across all tested flow configurations. In light of this, fundamental insight into the
scaling behavior of an ideal slip wall model would be beneficial to help address present
shortcomings. Yang et al. (2016) studied the slip boundary condition with the intention
of providing a physical basis and, in the process, gave an expected scaling derived from
comparison to the equilibrium wall-stress model. Similarly, Pradhan & Duraisamy (2022)
investigated the slip length behavior through the use of an optimal Galerkin projection
of channel direct numerical simulation (DNS) and other reference data onto a coarse-
grained finite element basis. However, the form of the slip boundary condition used in
these works differs from Bose & Moin (2014) in that a no-penetration condition is applied
at the wall, and the wall stress is not primarily generated from a resolved Reynolds shear
stress, as would be the case for a WMLES with a finite-width filter at the wall.

Recently, the slip wall model has been applied to a canonical case of smooth-body
separation, where it has been shown to have potential for higher-fidelity predictions of
turbulent smooth body separation (Whitmore et al. 2021, 2022). Despite this, the slip wall
model based on a Prandtl mixing length used in these previous works, which performs
adequately for regions with flow separation, gives poor predictions of skin friction in
attached, approximately zero-pressure-gradient flows. This is especially true for flows
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that are at high Reynolds number and are coarsely resolved. These results have sparked
a renewed interest in understanding the scaling behavior of the slip length in an ideal
slip wall model, first for simple canonical flows, and also, eventually, for more complex
non-equilibrium flows.

The purpose of this work is to develop a method to study the scaling behavior of an
optimal slip wall model for WMLES. In order to do this, the model is framed as an
optimization problem, for which some averaged skin friction data are supplied, and the
slip lengths are solved in order to minimize the error with respect to the averaged skin
friction data. Importantly, the focus of this method is on using a posteriori simulations
for optimization, as this is the actual problem of interest when developing a wall model;
therefore, the problem is framed such that all of the LES modeling choices are included as
part of the system that needs to be optimized. In Section 2, the mathematical framework
for this study is outlined, and the data sets used are listed. Section 3 gives results for
the optimization method applied to a canonical case of turbulent channel flow. Section
4 focuses on the effect of the subgrid-scale model and proposes a novel model boundary
condition for consistency between the subgrid-scale model and the slip wall model. Section
5 investigates some of the properties that arise in the limit of very high Reynolds numbers.
Finally, some conclusions are offered in Section 6.

2. Mathematical framework

The LES equations are derived by applying a low-pass filter to the Navier—Stokes
equations. The filtered velocity field is expressed as

ui (2, t) = / G2, x)u;(x,t)dx, (2.1)
Q

where u; is the velocity field, G is the filter kernel, and U represents the filtering op-
eration. Assuming commutation between the filtering operation and differentiation, the

LES equations for incompressible flow are written as
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where p is the pressure, p is the density, and v is the molecular viscosity. The subgrid-
scale (SGS) stress tensor, 7;;, is defined as 7,; = Wu; — U;u;, which requires closure
modeling. An eddy viscosity assumption is introduced to model the deviatoric part of
the SGS term, such that 7;; — (1/3)7rd;; = —21/t§ij7 where v; is the eddy viscosity and
Eij is the resolved strain rate tensor. The isotropic part of the SGS stress is included
in the pressure. Except where noted, the eddy viscosity model used in this work is the
dynamic Smagorinsky model (DSM) (Germano et al. 1991). These equations are now
closed everywhere except the domain boundaries. In particular, wall boundary conditions
for the LES equations must be chosen.
In the context of wall-stress modeled LES, the typical boundary conditions are

s .
v =Ty ;
w

on |,

Tplw =0, (2.3)

where n is the wall-normal direction, s is the local streamwise direction, and (-)|,, denotes
evaluation at the wall. The quantity 7, represents the stress prescribed by the wall model;
for an equilibrium wall model, the stress is typically computed by matching the outer
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LES solution to a prescribed inner solution of the velocity profile, or is alternatively found
by assuming a Reynolds-averaged Navier—Stokes eddy viscosity profile and integrating a
one-dimensional ordinary differential equation approximation of the thin boundary layer
equations (Cabot & Moin 2000; Bose & Park 2018).

The slip boundary condition, assuming an isotropic slip length, has the form

Jtu;
on
The slip length, Cgip A, for a finite-width filter is expected to be related to the com-
putational grid size and, therefore, is expressed as the product of A, the half-height

of the first grid cell, and Cgjip, a non-dimensional slip length coefficient. When the slip
boundary condition is used, the wall shear stress vector, 7, ;, is expressed as

Uil, = CslipAw ; ie{1,2,3}. (2.4)

w

<Tw,i> = V% . — <ﬂiﬂj>|w — <Tij>|w (2.5)
= I/%ﬁ;> - (CslipAw)2 <?’)/L::?’)/_l::;>’w — <TZ]>|w s (26)

where the first term on the right-hand side is the viscous stress, the second term is
the resolved Reynolds stress, and the third term is the SGS stress tensor. The primary
effect of the slip boundary condition is to impose a resolved Reynolds stress, with an
approximately quadratic dependence on the slip length; however, the dependence cannot
be fully parameterized by this quadratic relationship, as there are additional nonlinear
effects through each term. Except where explicitly noted, the SGS stress is assumed to
be zero at the wall for the calculations herein.

2.1. Optimization method

We now estimate the necessary slip length at the wall to reproduce a known wall stress
stress distribution via an optimization procedure. We consider a boundary surface that
has been discretized into a set of elements, and the skin friction distribution of the true
solution, C’]Tff , is known. Then, an objective function is defined as

(e =32 [ wiw{or (o) -crwhal] 4 @0

k

where £ is the index of the boundary element that is used to discretize the slip lengths in
space over the boundary surface. The local error values are computed as weighted area
averages of the skin-friction error over the element, with w; being the test function and
A; defined as the weighted area of the element. Note that this cost function is designed
to allow for spatially varying slip lengths and skin friction values.
Given this cost function, we then seek slip length coefficients such that
iy = argminJ (cth)- (2.8)

slip slip
slip
Because this cost function is defined globally, and because it is not clear how to exactly
parameterize changes in C'y with respect to changes in the slip length coefficients, the
cost function is treated as a black box for which function evaluations can be performed.
In order to solve this minimization problem, an initial grid search is performed, and then
the value found in the grid search is further refined by gradient descent that is done using
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finite difference estimations of the cost function gradient. In order to do the evaluations of
the cost function, it is also necessary to solve the flow for some amount of physical time;
however, it is typically easy to define some outer flow scale over which to average—e.g.,
for a turbulent channel, this is done over some fixed number of eddy turnover times.

2.2. Reference data

The benefit of the proposed optimization method is that the required reference data are
low dimensional. For example, a turbulent channel can be uniquely specified by a friction
Reynolds number and a centerline velocity. Thus, the reference data can come from DNS
statistics, experiments, or data fits.

The turbulent channel reference data are taken from DNS statistics at a range of
friction Reynolds numbers: from Re, = 180 to 10000 (Moser et al. 1999; del Alamo
& Jiménez 2003; Hoyas & Jiménez 2006, 2008; Lozano-Duran & Jiménez 2014; Lee &
Moser 2015; Hoyas et al. 2022; Oberlack et al. 2022). Additionally, the data fit proposed
by Monkewitz (2017) is used to extrapolate to higher Reynolds numbers and is written
as

1
UgL,ch = m In 5+ + 588~ (29)
where Ucp, cp, is the channel centerline velocity and ¢ is the channel half-height. Note
that ()™ denotes nondimensionalization in inner units. While this formula is speculative
in the limit of Re; — oo, it is considered adequate for the purpose of the investigations
below.

3. Turbulent channel results

The optimal slip length method is applied to turbulent channel flow for a Reynolds
number range of Re, = 180 to 10000. In addition to varying the Reynolds number,
the simulations also vary the grid resolution, with isotropic resolution having nominal
numbers of control volumes per channel half-height N/é € {12,20,32,40}. The purpose
for varying both quantities is to observe whether there is any scaling behavior that is
changing as a function of outer units, y/d, or inner units, y™. The optimal slip length
coefficients that resulted from the simulations are plotted in Figure 1 against the isotropic
grid length scale, scaled in inner units.

The results of the optimal slip length coefficients appear to closely follow a smooth
function behavior when plotted in inner units. Additionally, there appears to be min-
imal scaling behavior in outer units, as much of the data are nearly collapsed on this
plot despite differences in resolution. The orderly collapse of the data is conducive to a
parameterization with a smooth function. The parameterization introduced here is given

by the form
A+ A+N\?
m(AT) = - —w — 2w
m (AT <0.19 0.021n =% ) {1 expl (13> H (3.1)

where A is the isotropic grid length scale scaled in inner units. The coefficients in this
expression were fitted with the optimal slip length coefficient data via least squares. The
first part of this functional form is similar to the scaling of the Reynolds stress from
Townsend’s attached eddy hypothesis (Marusic & Monty 2019). This suggests that while
the derivation of the slip wall model is agnostic to the state of the local boundary layer,
the ideal slip length may encode known physical scaling laws.
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FIGURE 1. Optimal slip length coefficients computed for a turbulent channel flow at a range of
Reynolds numbers and grid resolutions. A smooth function parameterization is plotted on top.
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FIGURE 2. Results of the optimal slip length coeflicients in the turbulent channel when using
the dynamic Smagorinsky and Vreman subgrid-scale models.

4. Effect of subgrid-scale model

Up to this point, the simulations have been conducted using DSM. It is then natural
to ask the question: how are the optimal slip length coefficients modulated by a change
in the subgrid-scale model? To investigate this effect, we conduct an additional set of
turbulent channel flow simulations using the Vreman subgrid-scale model (Vreman 2004).
The comparison of the results when using the DSM and Vreman SGS models is shown
in Figure 2. Unsurprisingly, when the SGS model is changed to the Vreman model, the
optimal value of the slip coefficient increases across a range of Reynolds numbers. This
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can be explained by the behavior of each SGS model near walls. Typically, the Vreman
model tends to produce more dissipation to subgrid scales in the region near the wall than
DSM does. As a result, because the LES has a reduced contribution from the resolved
Reynolds stress, but the friction Reynolds number has not changed, the optimal slip
length should increase to counteract this effect. This is seen in the figure, as the value
of the ideal slip coefficient near its peak has increased from ~0.17 to ~0.26, which is a
~50% increase in the peak value for this change of SGS models. An interesting property
to note is that, despite this shift in the amplitude of the slip coeflicient, the functional
form that the optimal coefficients follow with respect to the grid length scale in inner
units appears approximately the same. Nevertheless, the relatively large change in the
size of the optimal slip coefficients indicates that methods to estimate slip lengths must
be coupled to the interior SGS modeling.

In an effort to address this undesirable dependence of the optimal slip coefficient behav-
ior on the SGS model, an SGS model boundary condition is introduced. In the previous
results, the calculations were run assuming SGS stresses vanished at the wall (i.e., the
eddy viscosity satisfied a homogeneous Dirichlet boundary condition), and all of the wall
stress was produced from the slip velocities and viscous terms. This treatment could be
viewed as inconsistent because, by including a resolved Reynolds stress term on the wall
via the slip velocities, an SGS Reynolds stress term is implied to exist. Given this moti-
vation to include an SGS stress contribution on the wall that is consistent with the slip
boundary condition, we can then appeal to the derivation of the slip boundary condition
to prescribe the behavior of the SGS stress.

4.1. Subgrid-scale stress boundary condition

The subgrid-scale stress tensor, 7;;, includes the grid-filtered quantity w;u;; therefore,
the definition of the differential filter of Germano (1986) can be applied to construct the
form of the SGS stress tensor. Given the definition of the differential filter, the following
expressions can be written

0 0
UiUy — 8_% (fpa—mkuluj> = U;Uj, (41)
) o\
v oxy, (fp Oy, uz> - 42

where (, is a filter parameter. After multiplying Eq. (4.2) by itself for @; and @; and
subtracting from Eq. (4.1), the unfiltered terms drop out, leaving a closed equation for
7;;. Assuming the singularity constraint on the filter parameter (£, — 0 at the wall) from
Bose & Moin (2014), the SGS stress tensor for a differentially filtered field is found to
satisfy the boundary condition

Tij |w - (CslipAw)

= ;|
w

(4.3)

w ?

where Cgip Ay, is the same slip length that is used for the velocity field, under the assump-
tion that the same filter is applied to all velocity components. This boundary condition
gives equations for the six components of the SGS stress tensor. Introducing an eddy
viscosity model assumption for the form of the SGS stress tensor, the only free variable
is the value of the eddy viscosity on the wall; thus, the system is overdetermined. By
finding the least-squares solution of that system, a boundary condition is found for the
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FIGURE 3. Results of the optimal slip length coefficients in the turbulent channel when using the
dynamic Smagorinsky and Vreman subgrid-scale models, and with and without the inclusion of
the derived subgrid-scale stress boundary condition.

eddy viscosity with the form

31/,5 .
woo| = A (4.4)

w

th

w — O A
where (', represents a modified slip length coeflicient for the eddy viscosity, and f,, is
a right-hand-side term. These quantities are defined in terms of the tensor contractions

BijSij . WPy
iy 2420 — Wil
* BB’ . 201180

where 3;; = Ej —CaipAy (Ggij / (9n)7 with all quantities evaluated at the wall. The result
is an inhomogeneous Robin boundary condition for the eddy viscosity that is defined in
terms of contractions of grid-filtered quantities and the velocity slip length.

The eddy viscosity boundary condition in Eq. (4.4) is employed in the turbulent chan-
nel, and the results of the optimal slip length coefficients are shown in Figure 3. The
results show that with the SGS boundary condition, the optimal coefficient values when
using the Vreman model decrease over the entire range of Reynolds numbers studied.
Notably, the peak of the slip coefficients with the Vreman model, which showed a ~50%
discrepancy with the peak for DSM, shows only a ~20% discrepancy with DSM at the
peak values when the SGS boundary condition is included. It is also interesting to note
that when the SGS boundary condition is applied, optimal slip length coefficients for
DSM change only slightly. It can be interpreted from the results that by imposing a cou-
pling between the velocity slip boundary condition and the SGS model, the WMLES is
able to settle into a more consistent solution despite the change in SGS model. Addition-
ally, the agreement of the results when using DSM with and without the SGS boundary
condition implies some level of consistency between the dynamic model and the low-pass
filter that is implied through the slip boundary condition for the velocity. The improved
agreement of the results when this boundary condition is applied is promising because it

C,, = Cy (4.5)
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suggests that under the appropriate assumptions with the proper coupling, it is possible
for LES results to achieve relative consistency even when model choices are varied.

5. Investigation of the Re, — oo limit

For WMLES, it is interesting to ask the question of what the wall model behavior is in
the limit of the friction Reynolds number approaching infinity. Physically, this limit would
be characterized by a viscous length scale becoming vanishingly small with respect to the
boundary layer thickness, 1/Re, = 40,/ — 0. Assuming the flow is attached everywhere,
the wall would act as an infinitesimally thin vortex sheet (Pullin et al. 2013), while the
outer flow would strongly resemble an inviscid flow. However, for any flow that exhibits
flow separation, even the outer flow is significantly perturbed from its inviscid limit due
to the finite displacement arising from the separation bubble itself. Traditional wall-
stress models for WMLES rely in some form on the law of the wall to fit a solution and
find a wall stress. This method, when taken to the limit of Re, — oo, would produce
a boundary condition that is essentially an inviscid or stress-free boundary condition.
Therefore, a typical wall-stress model would become inconsistent when applied to this
limiting case.

The slip wall model is worth investigating in this limit because it would not necessarily
suffer from the same issue as a wall-stress model. In principle, the mathematical argu-
ments that lead to the slip boundary condition would still be valid in this limit. Therefore,
we proceed with the previous method to investigate the asymptotic behavior of the opti-
mal slip length by simulating channels with asymptotically large Reynolds numbers. In
order to perform these simulations, we need to have an estimate for the channel centerline
velocity, Ué? 1., for Reynolds numbers far beyond those simulated in channel DNS. To do
this, we use the data fit proposed by Monkewitz (2017), which is written in Eq. (2.9). A
number of channels are simulated for the range log,, Re, € [5,10], which goes beyond
the available DNS data by six orders of magnitude in Reynolds number. The results of
these simulations are shown in Figure 4.

Figure 4 shows that at the highest Reynolds numbers, the optimal slip coefficient
continues to decay, but does so increasingly slowly. The results appear such that the
optimal slip coefficient may asymptote to a finite value in the limit. This differs from
the behavior of a wall-stress model, which becomes a stress-free boundary condition in
the same limit. The case under which a slip wall boundary condition would collapse
to a stress-free boundary condition would be the case where the slip length becomes
infinitely large as the Reynolds number is increased, i.e., u,, = CqipA(Ju/0n),, becomes
(Ou/0On),, =~ 0. It is clear from the plot that this case is not approached. Additionally,
while it is difficult to say from the current data what the value of the asymptote might
be, it seems unlikely that the optimal slip coefficient is approaching zero; this would
be a statement that the no-slip boundary condition is the ideal boundary condition in
the Re,; — oo limit. Therefore, it appears most plausible that the slip coefficient is
approaching a finite value in the limit.

Next, the behavior of this slip length with respect to the dynamic Smagorinsky coef-
ficient of the simulations is explored. Figure 5 shows the comparison of the optimal slip
cocefficients to the dynamically computed Smagorinsky coefficient in the first grid cell
from the wall. From this result, it appears clear that the Smagorinsky constant, Cy, com-
puted from DSM is plateauing in the limit of high Reynolds number. Additionally, the
slip length coefficient and Smagorinsky constant are similar in magnitude. Due to their
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FIGURE 4. Results of the optimal slip length for turbulent channel flows including the very large
Reynolds number cases extracted from the fit in Eq. (2.9). Note that the color scale is capped at
the highest DNS Reynolds number and the extrapolated Reynolds number results are saturated.

similar orders of magnitude, and potentially similar plateau behavior at high Reynolds
number, we can then try to relate these coefficients in the limit Re, — oco.

First, we assume an equivalence of total shear stress at the height of the first grid cell
and the wall
O(u)

)
on |,

/i au 8 /!
o)y +v B a2y ), = ),
1

- (5.1)

where a ~ O(1) assuming O(p)/Jn is small in the boundary layer and assuming that the
SGS stress vanishes at the wall. Then, if we further assume the discrete velocity gradient
to be the same at the first cell and the wall and the streamwise pressure gradient to be
small, then we are left with

—(WV)]; + (Ten)ly & = (W), - (5.2)
Next, assuming in the limit of Re; — oo that the resolved Reynolds shear stress is much

smaller than the SGS component, —(u'v') < (7g,), we can approximately balance the
terms

(Tsn) |y = —(u'v)], . (5.3)
Let —(u/v')],, & cuw(u?)(v"?)] , where ¢,y is a correlation coefficient that is assumed to

be constant in the high Re, limit. Further, assume that (v’2)|w ~ A (u’2>‘w, where A is
a constant describing the anisotropy. This leads to

<Tsn>|1 ~ K <U/2>‘ (5.4)

w )

where K is some unspecified coefficient. If we then scale the velocity fluctuation on the
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FIGURE 5. Optimal slip length coefficients from turbulent channel flow plotted alongside the
dynamic Smagorinsky coefficient in the first grid cell.

wall with the definition of the slip length, and scale the subgrid stress with its definition,

2 2 8’&/2 2 8’&’2
(u >‘w ~ K3 (CslipAW) n ; <Tsn>|1 ~ (OsA) an (5.5)

where K5 is another unspecified coefficient, we arrive at, in the limit of Re, — oo,
= Cslip ~ K3C87 (56)

where K3 is some coefficient, which is conjecturally less than unity. This analysis suggests
that, if the Smagorinsky constant is plateauing in this limit, then the slip length coefficient
should plateau at some constant factor times that value. Figure 5 does not contradict this
conjecture; however, the present data are not sufficient to demonstrate such a plateau of
the slip length coefficient in this limit.

6. Conclusions

An optimization framework is introduced in order to understand the scaling behavior
of an ideal slip wall model for LES. This optimization framework is applied to a turbulent
channel flow for a wide range of Reynolds numbers covered by reference data. The ideal
slip length coefficients in the channel result in a smooth function profile that is conducive
to parameterization by the grid length scale in inner units and is similar to the scaling of
turbulent fluctuations from the attached eddy hypothesis. The effect of changing the SGS
model is studied, and an SGS boundary condition is developed and used to address some
of the discrepancy when changing SGS model. Lastly, the behavior of the optimal slip
length coefficient is investigated in the limit that Reynolds number approaches infinity.
The simulation results suggest that the ideal slip length coefficient may be plateauing to
a finite value in the infinite Reynolds number limit.



An optimal slip wall model for LES 291

Acknowledgments

This work is supported by NASA Transformational Tools and Technologies grant
#80NSSC20M0201.

REFERENCES

BAE, H. J., LozaANO-DURAN, A., Bosg, S. T. & MoiN, P. 2019 Dynamic slip wall
model for large-eddy simulation. J. Fluid Mech. 859, 400-432.

Bosg, S. T. & Moin, P. 2014 A dynamic slip boundary condition for wall-modeled
large-eddy simulation. Phys. Fluids 26, 015104.

Bosge, S. T. & Park, G. I. 2018 Wall-modeled large-eddy simulation for complex
turbulent flows. Annu. Rev. Fluid Mech. 50, 535-561.

CaBot, W. H. & MoiIN, P. 2000 Approximate wall boundary conditions in the large-
eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63, 269—291.

DEL AraMo, J. C. & JIMENEZ, J. 2003 Spectra of the very large anisotropic scales in
turbulent channels. Phys. Fluids 15, L41-144.

GERMANO, M. 1986 Differential filters for the large eddy numerical simulation of turbu-
lent flows. Phys. Fluids 29, 1755-1757.

GERMANO, M., PromELLI, U., MoIN, P. & CaBoT, W. H. 1991 A dynamic subgrid-
scale eddy viscosity model. Phys. Fluids A 3, 1760-1765.

Hovas, S. & JIMENEZ, J. 2006 Scaling of the velocity fluctuations in turbulent channels
up to Re, = 2000. Phys. Fluids 18, 011702.

Hovas, S. & JIMENEZ, J. 2008 Reynolds number effects on the Reynolds-stress budgets
in turbulent channels. Phys. Fluids 20, 101511.

Hovas, S., OBERLACK, M., KRAHEBERGER, S., ALCANTARA-AVILA, F. & LAUX, J.
2022 Wall turbulence at high friction Reynolds numbers. Phys. Rev. Fluids 7, 014602.

LEE, M. & MOSER, R. D. 2015 Direct numerical simulation of turbulent channel flow
up to Re,; = 5200. J. Fluid Mech. 774, 395-415.

LozANO-DURAN, A. & JIMENEZ, J. 2014 Effect of the computational domain on direct
simulations of turbulent channels up to Re, = 4200. Phys. Fluids 26, 011702.
Marusic, 1. & MonTy, J. P. 2019 Attached eddy model of wall turbulence. Annu.

Rev. Fluid Mech. 51, 49-74.

MoNkEWITZ, P. A. 2017 Revisiting the quest for a universal log-law and the role of
pressure gradient in “canonical” wall-bounded turbulent flows. Phys. Rev. Fluids 2,
094602.

Moser, R. D., KiMm, J. & MANSOUR, N. N. 1999 Direct numerical simulation of
turbulent channel flow up to Re, = 590. Phys. Fluids 11, 943-945.

OBERLACK, M., Hovas, S., KRAHEBERGER, S., ALCANTARA-AVILA, F. & LAUX,
J. 2022 Turbulence statistics of arbitrary moments of wall-bounded shear flows: a
symmetry approach. Phys. Rev. Lett. 128, 024502.

PrADHAN, A. & DURAIsSAMY, K. 2022 A unified understanding of scale-resolving simu-
lations and near-wall modelling of turbulent flows using optimal finite-element pro-
jections. J. Fluid Mech. 955, A6.

PurLLin, D. I., INOUE, M. & SAI1TO, N. 2013 On the asymptotic state of high Reynolds
number, smooth-wall turbulent flows. Phys. Fluids 25, 015116.

Uzun, A. & MALIK, M. 2022 High-fidelity simulation of turbulent flow past Gaussian
bump. AIAA J. 60, 2130-2149.



292 Whitmore, Bose € Moin

VREMAN, A. W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow:
algebraic theory and applications. Phys. Fluids 16, 3670-3681.

WHITE, F. M. 2011 Viscous Fluid Flow, 3rd Ed. McGraw-Hill Education.

WHITMORE, M. P., Bosg, S. T. & MoOIN, P. 2022 Progress on slip wall modeled LES for
predicting smooth body separation. Annual Research Briefs, Center for Turbulence
Research, Stanford University, pp. 59-70.

WHITMORE, M. P., GrIFFIN, K. P., Bosg, S. T. & Moin, P. 2021 Large-eddy sim-
ulation of a Gaussian bump with slip-wall boundary conditions. Annual Research
Briefs, Center for Turbulence Research, Stanford University, pp. 45-58.

YANG, X. I. A., Bosg, S. & MoIN, P. 2016 A physical basis of the slip-wall model for
wall-modeled large-eddy simulations. Annual Research Briefs, Center for Turbulence
Research, Stanford University, pp. 65—74.



