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Simulating an H-type transitional boundary layer
in a coupled NLPSE and WMLES framework with
a Falkner-Skan wall model

By C. A. Gonzalez, S. R. Harris} AND P. Moin

1. Motivation and objectives

Modeling the transition from laminar to turbulent flow remains a significant challenge
in the numerical simulation of boundary layers, especially at coarse grid resolutions.
Accurately predicting this transition is crucial for the computation of the drag force, as
well as for identifying the state of the boundary layer in areas where flow separation
may occur due to the pressure gradient. For example, while increasing the extent of the
boundary layer that remains laminar can be advantageous for reducing skin friction,
there are situations in which forcing a transition to turbulence is preferable to prevent
laminar separation. For high-speed vehicles, boundary-layer transition is associated with
large heat transfer from the heated gas to the vehicle surface, which is relevant to the
design of thermal protection systems.

Direct numerical simulation (DNS) of the Navier-Stokes (NS) equations is the highest
fidelity computational approach for investigating transitional flows. However, its compu-
tational cost is unaffordable for practical applications. Sayadi & Moin (2012) found that
wall-resolved large-eddy simulations (WRLESs) of H- and K-type transitional bound-
ary layers were able to produce the skin friction overshoot observed in DNS when using
dynamic subgrid-scale models. However, these calculations still require a large number
of grid points to capture the growth of instabilities. The computational cost of scale-
resolving simulations can be further reduced by adopting wall-modeled large-eddy sim-
ulations (WMLESs) in which the wall stress is imposed, typically with an equilibrium
wall model (EQWM) instead of the classical no-slip boundary condition (Bose & Park
2018). However, most wall models are derived by assuming a fully developed, equilibrium
turbulent state. These assumptions result in an incorrect estimation of the momentum
loss at the wall in both the laminar and transitional flow regions, leading to inaccura-
cies in predicting transition behavior. To address this issue, Bodart & Larsson (2012)
developed a sensor-based wall model based on the resolved turbulent kinetic energy to
switch off the wall model and revert to the no-slip condition when the near-wall flow
is detected as laminar. However, a non-universal threshold value for the sensor must be
prescribed and DNS-like resolution is required in the laminar and transitional regions
of flow to accurately predict the pre-transitional flow. This resolution penalty is severe:
Slotnick et al. (2014) showed that for external aerodynamic flows, WMLES can require
10-100 times more grid points in the thin laminar region than in the turbulent regime
to capture the amplification of disturbances preceding the breakdown to turbulence.

In contrast, linear stability theory (LST) offers a simplified framework to elucidate the
evolution of disturbances in the laminar region at significantly reduced computational
cost. It can identify dominant instabilities and mechanisms that can lead to nonlinear
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interactions downstream as the instabilities amplify. While LST is a potent and com-
monly employed tool for investigating transitional flows, its scope is restricted to parallel
boundary layers and the linear growth of disturbances. The parabolized stability equa-
tions (PSEs) introduced by Herbert (1991) and Bertolotti et al. (1992) offer a method for
studying the evolution of small disturbances in spatially evolving flows. This approach
captures the nonparallel effect, enabling more detailed analyses of the spatial growth of
disturbances in slowly varying shear flows such as boundary layers, jets and wakes. While
both linear and nonlinear forms of the PSE exist, this study focuses on the nonlinear
formulation. The nonlinear PSE (NLPSE) accounts for the interactions between modes
and their impact on the underlying mean baseflow, with the combined effect of these in-
teractions eventually leading to the breakdown to turbulence. Lozano-Duran et al. (2018)
demonstrated that coupling an NLPSE solver with an LES code provides a cost-effective
and accurate means of computing transitional boundary-layer flows. This work builds
upon their findings by employing the Falkner-Skan wall model (FSWM) from Gonzalez
et al. (2020, 2021) to generate high-resolution laminar baseflow profiles from an initial
LES solve of the laminar region of the flow.

2. Governing equations in incompressible flow

We begin by decomposing the primitive variables of velocity and pressure into an
averaged baseflow and a perturbation component

o(x,y,2,t) = ¢z, y) + &' (x,y. 2, ), (2.1)

where

¢ = (u,v,w,p)". (2.2)
We spatially advance two separate systems of equations to capture the evolution of the
baseflow ¢ as well as the perturbations ¢'.

2.1. Boundary layer equations

Averaging the incompressible NS equations in time and assuming the mean flow is ho-
mogenous in the spanwise direction yields
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We further assume that the steady-state, two-dimensional baseflow is slowly varying
in the wall-parallel direction. Using the standard boundary-layer scaling analysis (White

1974) yields

(2.4)
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and

9y (2.5¢)
In both the streamwise and wall-normal momentum equations, we retain the the spanwise
and time-averaged nonlinear contribution from the perturbations, which are computed
from the mean-flow distortion in the NLPSE.

op ( o’ o' 81}’)
—=—u v .

2.2. Nonlinear parabolized stability equations

The equations governing the perturbations ¢’ are derived by taking the difference between
the full NS equations and the averaged equations. The resulting system is given by

o,

L= 2.
oz, 0 (2.6a)
and
o o, ,0u;  op' 1 0%l , Oul
_t T —L — —_ . — L. 2.6b
ot 0z M dx; Oz; Redx;0z, i 0z (2:69)

The main assumption in the PSE is that in the pre-transitional region of flow, the dis-
turbances can be written as the product of a slowly varying amplitude function and a
fast exponential, as in Eq. (2.7),

M

N T
¢ (x,y,2,1) = Z Z G (z,y) exp(i/ am,n(x’)dx’—f—inﬂz—imwt). (2.7)

m=—M n=—N 0

In this decomposition, we have assumed that the disturbances are periodic in span and
time such that § and w are the spanwise wave number and the perturbation frequency,
respectively. Additionally, oy, ., is the streamwise wave number and ém)n is the amplitude
function for the mode described by (mw, ng).

This decomposition is not uniquely defined, and an extra constraint must be imposed
to remove the ambiguity. A commonly used auxiliary condition is

oo BQZ)
H
—dy =20 2.8
| oo, 29)
which enforces the variation of the amplitude functions to remain small enough to justify

the Re™" scaling of %ﬁ (Schmid & Henningson 2001). Substituting Eq. (2.7) into Egs.
(2.6a) and (2.60) yields

~ 94 ~ ~ 94
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A+ B
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= Fpm, (2.9)

where the operators are defined in Appendix A. The iterative solution procedure imple-
mented is described in Appendix B.

3. NLPSE solver verification

As part of this work, a new NLPSE solver has been developed. We verify our solver by
applying it to Blasius boundary-layer flows for which there are existing DNS and PSE
results in the literature. A Chebyshev differentiation scheme has been implemented for
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computing derivatives in the wall-normal direction. The backward Euler method is used
for marching the NLPSE in the streamwise direction, and a second-order semi-implicit
Crank-Nicholson scheme is used to march the boundary-layer equations. In this section,
where we consider the nonlinear evolution of various modes within boundary layers, we
adopt the notation (m,n) to denote the harmonic multiple of the modes being plotted.
To be exact, m and n are integer multiples of nondimensional temporal and spanwise
frequencies, defined as F = wv/U2 - 10° and b = Bv/U, - 103. For example, (1,0)
corresponds to the mode with temporal frequency F' and spanwise frequency zero, (2, 1)
corresponds to the mode with temporal frequency 2F and spanwise frequency b, and
(0,0) corresponds to the mean-flow distortion.

3.1. 2D Blasius boundary layer

The first test case we examine is the nonlinear evolution of a Tollmien-Schlichting (TS)
wave in a Blasius boundary-layer flow using the initialization from Bertolotti et al. (1992).
The disturbance parameters for the TS wave are a nondimensional temporal frequency
F = 86 and an initial root-mean-squared (rms) amplitude of 0.25% of the freestream
velocity. The inlet is specified at v/Re, = 400. In Figure 1, we plot the maximum rms
amplitude of the w-velocity perturbation as a function of the streamwise coordinate.
Because Bertolotti et al. (1992) only report the growth of the first and second harmonics,
we include data from Sleeman et al. (2023), which also reports the growth of the mean
flow distortion. We observe excellent agreement with both the PSE from Bertolotti and
the nonlinear, one-way NS result from Sleeman.

3.2. 3D oblique-wave breakdown

Here we consider the oblique-wave breakdown studied by Joslin et al. (1993). This flow is
initialized at \/Re, = 523 with a pair of symmetric oblique waves at temporal frequency
F = 86 and spanwise wave numbers b = :l:%. The initial rms amplitude of the waves is
Ay = V2 -1073. In Figure 2, we plot the maximum rms amplitude of the u velocity
perturbation for various harmonics excited in the flow. Good agreement with the data
from Joslin et al. (1993) is observed.

3.3. 3D subharmonic-wave breakdown

Last, we compare our solver to the data from Joslin et al. (1993) in the case of subharmonic-
wave breakdown. This flow is initialized at v/Re, = 426 with a fundamental T'S wave at
frequency F> o = 124 and a pair of subharmonic oblique waves with frequency F +; = 62
and spanwise wave numbers b = £0.3303. The initial rms amplitudes of of the distur-
bances are Ay = 4.8 - 1073 and A4 =145 107°. Figure 3 demonstrates that our
solver has good agreement with the data from Joslin et al. (1993) except near the trailing
edge of the flat plate where nonlinear effects quickly increase in magnitude. We attribute
these discrepancies to differences in numerics and the initialization procedure.

4. H-type transitional boundary-layer simulations

The setup investigated in this report is a zero-pressure-gradient flat-plate boundary
layer from laminar to turbulent flow through an H-type natural transition (Herbert 1991).
Unless otherwise stated, velocities are nondimensionalized by the freestream velocity
Us. LES calculations are carried out using the flow solver charLES, a compressible,
unstructured, second-order finite-volume solver with low-dissipation numerics (Bres et al.
2018). The dynamic Smagorinski subgrid eddy-viscosity model is used for all charLES



FSWM, NLPSE and WMLES for boundary-layer transition 311

10°

w== (OF, Ob)
e (1F, Ob)
= (2F, Ob)
{ Bertolotti et al.

10—2_ © Sleeman et al.

/
u max

400 500 600 700 800 900

vV Rey

FIGURE 1. Maximum rms amplitude of u' plotted against the streamwise coordinate for the
nonlinear evolution of a TS wave at frequency F' = 86 and initial amplitude of ), (z0) = 0.25%.
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FIGURE 2. Maximum rms amplitude of u' plotted against the streamwise coordinate for
oblique-wave breakdown at frequency I = 86 and spanwise wave number b = %, with ini-

tial amplitude u,q, (o) = V2 x 1072,

simulations (Germano et al. 1991). The length, height and width of the computational
domain are L, = 3056y, L, = 300p and L, = 200¢, where &y is the 99% boundary-layer
thickness at the inlet. For all LES simulations, hyperbolic tangent stretching is utilized
in the wall-normal direction, and uniform spacing is used in the streamwise and spanwise
directions. Mesh resolutions for all simulations are given in Table 1. We report the grid
spacing with respect to both inner and outer length scales. For the outer length scales,
we define the wavelengths
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FIGURE 3. Maximum rms amplitude of u’ plotted against the streamwise coordinate for sub-
harmonic-wave breakdown. The frequency of the TS wave is set to Frg = 124. The frequency
of the subharmonic waves is F' = 62, and the spanwise wave numbers are b = +0.3303. The
primary wave has an inflow amplitude of Az ¢ = 0.0048 and the subharmonic mode has an inflow
amplitude of Ay +1 = 0.145 - 1074,

Case Azt Ayt Azt %T; S0 %g N, Ny N. Ng

WRLES 30.48 1.06 10.94 32 41 91 1100 300 200 6.6E7
WMLES 61.88 17.39 27.37 15 4 36 650 60 80 3.12E6
CLES 61.88 17.39 2737 15 4 36 650 60 80 3.12E6
NLPSE/WMLES | 54.45 0.33 13 20 250 100 1 2.5E4
NLPSE/WMLES | 61.88 17.39 27.37 15 4 36 380 60 40 9.12E5

TABLE 1. Mesh resolution in inner and outer scalings for the various cases simulated in
this report. Inner units are scaled by the maximum wu, in the domain. For cases demarked
NLPSE/WMLES, the bold text indicates for which side of the simulation mesh data is being
presented. 6 temporal modes and 3 spanwise modes are carried in the NLPSE simulation.

2w

Ao = Real(cz20) (41)
and
27
A= —. 4.2
5 (4.2)

Transition is triggered by imposing an inflow condition consisting of the Blasius solu-
tion superposed with disturbances obtained from the linear Orr-Sommerfeld equations.
In particular, the disturbances prescribed are a fundamental T'S wave and a pair of sub-
harmonic oblique waves at Re, = 1.8 x 10°. The nondimensional temporal frequency
of the TS wave is Frs = 124. The subharmonic frequency is set to Fsy = Frs/2,
and the nondimensional spanwise frequency of the subharmonic disturbances is given by
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b = £0.3303. Following Joslin et al. (1993), the rms amplitudes of the fundamental and
subharmonic disturbances are Arg = 0.0048 and Agy = 0.145 x 10~%, respectively.

In the work of Lozano-Durdn et al. (2018), the authors introduce the potential cou-
pling of the NLPSE with WMLES as a method to model transition at an affordable
computational cost. In this work, we take one step further by using the FSWM to gen-
erate the baseflows used in the NLPSE solver. The motivation behind this is to extend
the work further by utilizing the FSWM to generate arbitrarily high-resolution baseflow
profiles from the LES, thus further reducing the computational cost of the approach as
well as opening the approach to be applied to more complex geometries. As a proof of
concept, we generate the initial baseflow used in the NLPSE from an FSWM profile
at Re, = 1.9 -10°. For WMLESs of aircraft configurations at practical resolutions, it
is typical to have fewer than 10 points per boundary layer thickness near the leading
edge of surfaces (Bornhoft et al. 2022; Goc et al. 2022). This level of coarseness in the
boundary layer profile cannot support accurate mean baseflows for transition analysis.
For example, with 4 points per boundary-layer thickness at the inlet, the coarse large-
eddy simulation (CLES) under-predicts the skin friction by almost 10% (Figure 4). An
accurate skin friction and decay rate is recovered by Re, = 4.5eb, at which point the
resolution is approximately 6 points per boundary-layer thickness. However, mean base-
flow profiles typically require ~ 30 points per boundary-layer thickness (Choi & Moin
2012) for the accurate computation of stability modes. In constrast, the FSWM is able
to accurately predict the skin friction and provide velocity profiles of arbitrary resolution
inferred from the inviscid outer flow and an estimation of the boundary-layer thickness
from the coarse simulation.

5. Results

Figures 4 and 5 plot the time-averaged skin friction over the whole computational
domain, with the DNS data from Lozano-Durédn et al. (2018) as the reference solution.
Also included in these figures are the Blasius laminar boundary-layer skin friction and
Prandtl’s turbulent stress correlation (White 1974). The WRLES case is refined suffi-
ciently to show reasonable agreement with the skin friction data from the DNS and acts
as a benchmark simulation for the performance of charLES for H-type transition. Figure
6 plots instantaneous contours of the u, v and w velocity fields at y™ ~ 50. We see that
at this simulation fidelity, the formation of staggered lambda vortices can be observed,
which is typical for H-type transition.

The CLES and WMLES are carried out on the same grid, as reported in Table 1. In the
case of the WMLES result, the equilibrium wall model is applied along the entire wall.
We observe in Figure 7 that the flow transitions near the inlet of the domain, which is also
reflected in the skin friction data. Moreover, the velocity contours show that at this mesh
resolution, none of the flow structures typical of H-type transition were observed and fine-
scale features appear to exist right from the inlet. Qualitatively and quantitatively, this
magnitude of misprediction suggests that using WMLES resolution with the EQWM is
not a suitable simulation paradigm for transitional flows. In contrast, the CLES case,
which applied a no-slip boundary condition on the wall, never transitions; the grid is too
coarse to support the disturbances supplied at the inlet of the computational domain. In
effect, the flow only sees the mean flow from the imposed Blasius profile.

The setup for the NLPSE/WMLES case begins with an initial run of the boundary-
layer flow using the FSWM as the wall boundary condition. Though this case does
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FIGURE 4. Skin friction predictions from coarse LES with a no-slip boundary condition and an
FSWM boundary condition.
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FIGURE 5. Skin friction coefficient as a function of the Reynolds number for a WMLES with
the EQWM boundary condition, a WRLES and the proposed NLPSE/WMLES approach.

not transition, the FSWM is able to generate a high-resolution, subgrid boundary-layer
profile. The FSWM-generated profile near the inlet is superposed with the disturbances
specified above, and the combined profile is used as an inlet condition for our NLPSE
solver. The NLPSE solver marches the mean flow and disturbances downstream up to the
point of transition. In practice, the NLPSE solver evolves the disturbance equations until
it blows up due to the increasingly active non-linear terms; this location is denoted as
the point of transition. For this case, the location at which the NLPSE solver is matched
to the WMLES is Re, = 5 - 10°, slightly upstream of the blow-up point of the code.
We see that our proposed method of generating a baseflow profile from the FSWM to
be marched with the NLPSE and then coupled to a separate WMLES can accurately
reproduce the DNS skin friction result (Figure 5). Examining the velocity contours in
Figure 8, we see that although there is clear evidence of the lack of resolution in the
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C Computational Cost
ase (32 CPUs per node)
WRLES 8000 node hours
WMLES 160 node hours
NLPSE/WMLES 30 node hours

TABLE 2. This table shows the computational cost with respect to node hours for the WRLES,
WMLES and NLPSE/WMLES calculations.
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FIGURE 6. u, v and w velocity contours at y+ ~ 50 from the WRLES simulation.

WMLES grid in the downstream portion of the domain, both spanwise and streamwise
structures from the NLPSE are retained in the flow. The downstream propagation of
these coherent structures is a driving reason why this approach can reproduce the skin
friction result from the DNS. The major advantage of this approach, however, is that it
comes at a significantly reduced computational cost compared to either the WRLES or
DNS, as seen in Table 2.

6. Conclusions

In the present study, we have developed a new nonlinear parabolized stability equation
solver to be used as a transition model coupled with WMLESs. This solver has been ver-
ified for three canonical transitional flow cases over a flat plate (Herbert 1991; Bertolotti
et al. 1992; Joslin et al. 1993).

We have investigated the capabilities of state-of-the-art LES technology in predicting
the zero-pressure-gradient, H-type natural transition scenario. The results of four numer-
ical simulations are reported in this brief using varying modeling assumptions. The DNS
data of Lozano-Duran et al. (2018) is used for comparison. We showed that WMLES and
CLES using the equilibrium wall model and no-slip boundary conditions, respectively,
cannot accurately predict the transition behavior of the flow. A WRLES calculation is
able to accurately reproduce the DNS skin friction profile, but the resolution and com-
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FIGURE 7. u, v and w velocity contours at y* ~ 50 from the WMLES simulation.
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FIGURE 8. u, v and w velocity contours at y ~ 50 from the NLPSE/WMLES simulation. The
vertical dashed line at Re, = 5 - 10° represents the interface between NLPSE and WMLES.

putational cost requirements are too high for practical engineering flows of interest. We
demonstrated that using the FSWM on a coarse LES grid is suitable for generating the
mean baseflow profiles for the NLPSE solver for this flat plate geometry. Furthermore,
the coupled NLPSE/WMLES computation was able to accurately reproduce DNS skin
friction profile while attaining a computational cost savings on the order of 250 times as
compared with the WRLES.

This work also demonstrates that the NLPSE can be used to generate realistic tur-
bulence inflow conditions. If researchers know the upstream disturbance conditions for
a flow of interest, the NLPSE can be used to quickly and cheaply generate conditions
sufficient to trigger realistic transition LES calculations.
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7. Appendix A

The operators for the Cartesian formulation of the nonlinear parabolized stability

equations from Eq. (2.9) are given by

2

A = —imw + i, T + Smn 7.1
i + i+ (7.1)
o o ;

A+ B 8_y37 0 iomn
0 0 A 0
1Qmn, 0 0 0
vV 0 0 0
0o vV 0 1
B = 0o o v ol (7.3)
0 1 0 0
-1
AR
- Re
C= 0o 0 = o| (7.4)
0 0 0 O
U 0 0 1
0 U 0 0
D= 0o o U ol (7.5)
1 0 0 O
0 0 0 O
0 0 0 O
FE = 00 0 1l° (7.6)
0 0 1 0
and
-1
T 2o o
- Re
G 0 0 = o (7.7)
0 0 0 0

Solved for in wave space, the nonlinear forcing term can be expressed in convolutional

form as

Fanlll= 3, > -

pu=—M v=—N

aum—pfn—u

oy

+ Um—p,n—v

|:up,,1/ (iam—um—uum—u,n—u +

aum—um—u

5 (7.8a)

)

+ wm—u,n—ulifﬂn—uum—p,n—v} eXp(iel,L.v + igm—p,,n—u - Lgmn)v
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and

Fonal3] =0, (7.8)
For convenience, we have defined

dOpm n

W = Q. (7). (7.8¢)

By evaluating the nonlinear terms in wave space, we can avoid dealising procedures.
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8. Appendix B

The NLPSE must be solved iteratively to converge the nonlinear forcing terms as
well as the shape function (5 and growth-rate . In our solution procedure, we elect
to first converge the shape functions and growth rates to a user-specified tolerance e.
Once these are converged, the nonlinear forcing terms are recomputed. This procedure
is repeated until the forcing terms are within a separately specified tolerance €. At the
zeroth station for the NLPSE solver, the initial guesses for gz§ and a are generated from an
Orr-Sommerfeld solver. At downstream locations, the initial guesses for the given station
1 comes from the converged solution at station ¢ — 1. This procedure is schematically
illustrated in Figure 9.
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