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Hemodynamic changes induced by stenting in
elastic arteries

By F. Nicoud †

1. Motivation and objectives

Angioplasty, with or without endovascular stenting, is a promising, minimally-invasive
technique that can be used as treatment of occlusive disease in medium to large arteries.
It has been applied extensively in the coronary, renal, and peripheral vascular systems.
The use of intravascular stents tends to lower the complication rate. Although re-stenosis
rates as high as 15-30 % after six months for human coronary arteries have been observed;
see e.g. Rau et al. (1998). One possible explanation for this observation relies on the
hemodynamic modifications induced by the prosthesis. Changes in wall shear stress are
believed to induce endothelial dysfunction, ultimately leading to intimal hyperplasia and
re-stenosis. Davies et al. (2001) suggest that magnitude of the shear stress is of secondary
importance to the spatial and temporal fluctuations of this quantity.
In vivo testing performed by Vernhet et al. (2001), Vernhet et al. (2000), Rolland,

Charifi & Verrier (1999) show that endovascular stenting induces a large modification of
the arterial compliance and thus may drastically modify the propagation of arterial waves
by introducing artificial reflexions. The first objective of this study is therefore to assess
the amount of pressure-wave reflexion related to the endovascular stenting of an elastic
artery. For this purpose, the stented section of the vessel is modeled as an elastic duct,
whose compliance is less than the non-stented artery. We intent to clarify the extent of
reflexion that can be expected, depending on the characteristics of both the stent and the
host vessel. Another expected effect of the compliance mismatch induced by stenting is
to modify the details of the blood motion in the stented area. Specifically, the wall shear
stress (averaged over the cardiac cycle) might be changed, as well as the level of its systo-
diastolic variations. For high enough Reynolds numbers, one also expects recirculation
zones to appear with larger residence times. The second objective of this paper is thus to
clarify the changes in the blood motion that can be expected in relation to endovascular
stenting. Note that this study deals with the global effect of the compliance mismatch,
neglecting the details of the prosthesis structure (struts). Consistently, the prosthesis is
modeled as a uniform (elastic) tube with its own compliance.

2. The pressure-wave point of view

2.1. Basic equations

The general one-dimensional (1D) equations describing the pulsatile blood flow (mass
and momentum conservation) in compliant arteries are well known since the work of
Hughes & Lubliner (1973):
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where u and P are the averages (over the cross section of the artery) of the velocity along
the x-direction and the pressure (relative to that outside the duct) pressure respectively,
A is the area of the cross section, ρ is the blood density and fv u/ρ stands for the viscous
drag. Assuming that the velocity and pressure fluctuations are small enough to neglect
non-linear terms and introducing the state equation of the artery A = A(P ), we obtain
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+
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+
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ρ
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+

fv u

ρ
= 0 (2.2)

where A′ stands for the derivative of the cross-sectional area with respect to the pressure
(A′ ≡ dA/dP ), that is, the compliance. The non-linear formulation (2.1), although more
general than (2.2), suffers from several drawbacks. Indeed, since it has to be solved in
the time domain, the viscous-drag term must be assessed by using the Poiseuille assump-
tion for the velocity profile instead of the more accurate frequency-dependent Womersley
(1955) solution. Moreover, any viscoelastic wall behavior is difficult to account for since
A′ may depend on the frequency of the perturbation in this case. In contrast, the linear
formulation (2.2) can be solved in Fourier space, and the abovementioned physical be-
havior (frequency-dependent velocity profile and viscoelasticity) can be included without
difficulty. Consistently, Reuderink et al. (1989) have shown that better overall accuracy
is obtained by using the linear formulation. In the course of the present study, u and P
will be taken as the solution of (2.2).

Considering a sector whose diameter and compliance do not depend on the space
variable x and letting P = P̂ exp(−jωt) and u = û exp(−jωt), where j2 = −1 and ω is
the angular frequency of the wave, the classical wave equation d2P̂ /dx2 + k2P̂ = 0 can
be easily derived, the complex wave number being k =

√

ω(ρω + jfv)A′/A and the wave
speed being c = ω/k. The general solution within a homogeneous segment is then

P̂ = P+ ejk(x−x0) + P− e−jk(x−x0), û =
k

ρω + jfv

(

P+ ejk(x−x0) − P− e−jk(x−x0)
)

(2.3)
where x0 is the abscissa of the left boundary of the sector and P

+ and P− correspond to
the amplitude of the forward and backward pressure waves. Their values are determined
to satisfy the boundary conditions at x = x0 and x = x0 + L, where L is the length of
the sector.

2.2. Modeling the endovascular stenting

To model the wave reflexion induced by an endovascular stent placed in an elastic artery,
three successive homogeneous segments are considered, each having its own set of con-
stant area and compliance (see figure 1). Each physical quantity in sector number i
(i = 1, 2, 3) is denoted by index i. Conservation of the total flow rate and energy at the
interfaces 1− 2 and 2− 3 requires, for j = 1, 2:

Aj ûj(x0j
+ Lj) = Aj+1ûj+1(x0j+1

), P̂j(x0j
+ Lj) = P̂j+1(x0j+1

). (2.4)

Two boundary conditions, at x = x01
= 0 and x = x03

+ L3, are needed to close the
problem. To assess the stent response without spurious wave reflexion, non-reflecting
boundary conditions are prescribed at both sides, leading to P+

1 = 1 and P−3 = 0. The
four remaining wave amplitudes, viz. P+

2 , P+
3 , P−1 , P−2 , are determined by solving (2.4)

for j = 1, 2. The complex coefficient of wave reflexion due to the stent is then defined as
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Figure 1. Schematic of the three homogeneous sectors used to model an artery stenting in
terms of waves.

Rstent = exp(−2jk1L1)P
−
1 /P+

1 . After some algebra we find

Rstent =
A2K2(A1K1 −A3K3) cos(k2L2)− j(A1K1A3K3 − (A2K2)

2) sin(k2L2)

A2K2(A1K1 +A3K3) cos(k2L2)− j(A1K1A3K3 + (A2K2)2) sin(k2L2)
(2.5)

where Ki = ki/(ρω + jfvi
). A typical value of the speed of propagation of waves in

(human) arteries being a few meters per second, the wavelength is usually a few meters.
On the other hand, the length scale of the stent is most likely equal to a few centimeters,
meaning that the numerical value of the dimensionless parameter k2L2 is small compared
to unity. Moreover, since the goal of this study is to assess the wave reflexion related to
the endovascular prosthesis, one can assume that there is no reflexion in the absence
of a stent, i.e. when A1K1 = A3K3 (in other words, we assume that the host artery is
perfectly homogeneous). Finally, we obtain the following first-order expression for the
reflexion coefficient:

Rstent =
j(1− Λ2)

2Λ
k2L2 +O((k2L2)

2), Λ =
A1K1

A2K2
(2.6)

This relation shows that the theoretical reflexion induced by an endovascular prosthesis
decreases with the length of the stent and increases with the frequency of the wave.
Moreover the reflexion coefficient is zero when Λ = 1, i.e. A1K1 = A2K2. Assuming that
viscous effects can be neglected in the reflexion process makes Λ and k2 real numbers with
Λ =

√

A1A′1/A2A′2 and k2L2 = ω
√

ρA′2/A2L2. Equation (2.6) then leads to a convenient
formula to assess the amount of wave reflexion:

Rstent ' jω
√
ρ
A2A

′
2 −A1A

′
1

2
√

A1A′1

L2

A2
. (2.7)

From this relation, the amount of wave reflexion is related to the geometrical/mechanical
mismatch induced by the stenting and to a stent shape factor L2/A2, as well as to the
flow conditions. Moreover, it shows that a stent satisfying the relation A2 = A1A

′
1/A

′
2

produces no wave reflexion. The compliance A′2 of the stent being always smaller than
the compliance A′1 of the host artery, it follows that overdilation (A2 > A1) tends to
reduce the amount of reflected waves. For physiological and mechanical data obtained
from animal experimentation (see section 3.3), we find out that the modulus of Rstent is
not larger than a few percent.
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3. Numerical approach

The simple 1D analysis provided in section 2 cannot be used to gain insights about
the details of the fluid motion modifications related to the artery stenting. Of significant
interest are the perturbations in wall shear stress induced by the compliance mismatch.
In the 1D description of the blood flow, the shear stress is modeled by assuming that the
shape of the velocity profile is known. Such knowledge is attainable only when the flow
is varying weakly along the streamwise direction. However, in the case of stenting, no
reasonable assumption regarding the shape of the velocity profile within the transition
area can be formulated a priori and the multi-dimensional flow equations must be solved.
The incompressible unsteady Navier-Stokes equations are solved by the NSIKE code

developed at University of Montpellier and INRIA by Medic & Mohammadi (1999). The
solver is based on the projection method of Chorin (1967) with finite element discretiza-
tion. A third order low storage Runge-Kutta approach is used for the time-stepping. At
each sub steps, the computation of the intermediate velocity is done explicitly and the
stabilization of the convection terms is based on the Positive Streamwise Invariant (PSI)
residual distribution scheme proposed proposed by Deconinck et al. (1993) and Paillere,
Carette & Deconinck (1994). Specifically, a mixed Galerkin/PSI formulation has been
used in order to minimize the numerical dissipation while ensuring the stability of the
solution. Moving boundaries are accounted for by the Arbitrary Lagrangian Eulerian for-
mulation. This code has been extensively validated by Medic & Mohammadi (1999), who
computed classical test cases such as the flow over a 2D flat plate, within a closed cavity,
and over a backward-facing step. Specific unsteady test cases have been performed in the
course of this study, two of which are presented in sections 3.1 and 3.2. The numerical
setup used to study the effects of the endovascular stenting is then described in section
3.3.

3.1. Pulsed pipe flow

We consider the pulsatile flow of an incompressible Newtonian fluid (kinematic viscosity
ν) within a rigid, straight circular pipe of radius R0 and length L. For a pulsed flow rate
of the form Q(t) = Q0 + Q1 exp(jωt), where ω is the pulsation and Q0 and Q1 stand
for the steady and pulsed parts of the flow rate, the (complex) velocity profile may be
written following Womersley (1955) as

u(r, t) =
2Q0

A0

(

1− r2

R2
0

)

+
Q1

A0

1− J0(αr/R0)
J0(α)

1− 2J1(αr/R0)
αJ0(α)

(3.1)

where A0 = πR2
0 is the cross section area and α = j3/2W0, where W0 = R0

√

ω/ν is
the Womersley parameter. Due to the incompressibility constraint, the solution does not
depend on the abscissa x along the pipe. The present test case consists in imposing the
velocity profile (3.1) at the inlet of the computational domain (x = 0) together with
a zero-pressure boundary condition at the outlet (x = L), and checking the ability of
the code to preserve the analytical solution throughout the pipe. Starting with a zero-
velocity, constant-pressure field, four cycles were computed in order to reach a proper
periodic state. The results shown correspond to L/R0 ' 53 and W0 ' 10.63. The mean
bulk Reynolds number based on R0 and Q0/A0 is Rb = 320 while the flow-rate ratio is
Q1/Q0 = 0.5. Under these conditions, the flow reverses. The numerical solution obtained
by solving the Navier-Stokes equations in cylindrical form with a mesh of 169×21 grid
points (169 nodes in x, 21 along the radial direction r) is virtually 1D (no dependence



Hemodynamic changes after stenting 339

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-50 0 50 100 150 200 250 300

r
 
(
m
m
)

U (mm/s)

Figure 2. Analytical (lines) and numerical (symbols) velocity profiles at ×:systole and
+:diastole.
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Figure 3. Analytical (lines) and numerical (symbols) wall shear stress as a function of time.
, finite differences applied to (3.1); , analytical differentiation of (3.1).

along the longitudinal coordinate x, not shown). The overall comparison between ana-
lytical and numerical velocity profiles is good, as shown in figure 2. Eventually, the wall
shear stress obtained numerically is in good agreement with that expected over the pe-
riod of time. Figure 3 shows that the agreement between the wall shear stress given by
the numerical solution and that obtained by formally differentiating (3.1) is fairly good
(less than 10 % error). The agreement becomes virtually perfect when the gradient of the
analytical profile (3.1) is evaluated using second-order finite differences with the same
resolution as that used in the simulation.

3.2. Wall-induced channel flow

The computational domain now extends from x = 0 to x = 25 streamwise and from
y = 0 to y = h cross stream. A symmetry condition is imposed at both boundaries x = 0
and y = 0 while zero pressure is prescribed at the section x = 25. The boundary at y = h
is a moving straight
wall which remains parallel to the x-axis and whose (complex) position as a function

of time t is given by h(t) = h0(1 + εe−jωt). In this expression, h0 is the mean distance
between the wall and the symmetry plane y = 0 and ε fixes the amplitude of the wall
oscillation. Seeking a stream function of the form Ψ = xF (η)e−jωt, where η is the reduced
coordinate η = y/h(t), one may derive the following equation for the function F:

F ′′′′ +
h′h

ν
(ηF ′′′ + 2F ′′) +

jω

ν
h2F ′′ = 0. (3.2)
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Figure 4. Analytical (symbols) and numerical (lines) streamwise (left) and normal wise
(right) velocity profiles at times +, t = 0; ×, t = T/4; ∗, t = T/2 and , t = 3T/4.

Recall that the velocity components are given by u = ∂Ψ/∂y and v = −∂Ψ/∂x so that
the boundary conditions v(x, 0) = ∂u/∂y(x, 0) = 0, u(x, h) = 0 and v(x, h) = h′ =
−jωεh0e

−jωt lead to F (0) = F ′′(0) = 0, F ′(1) = 0 and F (1) = jωεh0 respectively.
Expanding F as power series of the (small) parameter ε, viz. F/ε = F0 + εF1 + O(ε2)
leads to the following first order solution

F0 = jωh0
η − sinh(αη)/α coshα
1− tanh(α)/α (3.3)

where α = j3/2W0 is proportional to the Womersley parameter W0 = h0

√

ω/ν. Figure
4 shows the comparison between the first-order analytical solution and the numerical
profiles for x = 11.875, ε = 0.05 and W0 = 2.8. The agreement is good for the four
phases considered which correspond to the uppermost position (t = 0), the most negative
wall speed (t = T/4), the wall bottom position (t = T/2) and the maximum wall speed
(t = 3T/4) respectively. Note that for the values of the parameters selected, the first-
order correction εF1 is negligible compared to F0 so that the approximate solution, (3.3)
is relevant to the test case.

3.3. Computational domain

Since our objective is to investigate the global effect of the compliance mismatch induced
by stenting, the endovascular prosthesis is modeled as a uniform duct (the details of the
struts are not represented) whose wall is not compliant. Such a “prosthesis” is inserted
within an elastic artery with compliant wall, as shown in figure 5. We suppose that the
computational domain is sufficiently short to neglect any variation of the host artery
characteristics. Moreover, the flow rate entering the domain is taken similarly to section
3.1, viz. Q(xinlet, t) = Q0 + Q1 exp(jω(t − xinlet/c)), where ω is the pulsation, xinlet

is the abscissa of the inlet section, and Q0 and Q1 stand for the steady and pulsed
parts of the flow rate. The mechanical and geometrical data were obtained from animal
experimentation performed by Vernhet et al. (2001): the angular frequency is ω = 8π
(only the first harmonic of the temporal evolution of the flow rate is kept as a first
approximation), the mean artery radius is R0 = 1.5 mm, the distensibility coefficient of
the non-stented artery is A′/A = 20.7 × 10−6 Pa−1 and the length of the stent is set
to Lstent = 13 mm. At the stent level, the compliance measured is small enough (six
times smaller than in the host vessel) to be neglected in this exploratory study (rigid
prosthesis).
In the real world, the motion of the vessel boundary results from the coupling between
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Figure 5. Schematic of the computational domain.

the fluid and wall mechanics and the local radius is related mainly to the pressure field.
Such a coupling is difficult to handle, because the density of blood and tissue are of
the same order and the rheology of the vessels is far from well understood. Besides, we
are mostly interested in the response of the fluid mechanics to wall-motion perturbations
induced by the compliance mismatch. In this framework, the fluid/wall coupling problem
can be avoided by prescribing the wall motion a priori. Since the flow rate is harmonic
with angular frequency ω, the wall displacement for an elastic uniform artery without
reflexion may be written as

R(x, t) = R0

(

1 + εej(ωt−kx)
)

, k =
ω

c
, (3.4)

where the wave number k is related to the speed of the (forward) pressure wave c.
The animal experimentation of Vernhet et al. (2001) suggests ε = 0.05, meaning that the
amplitude of the wall displacement is close to 2εR0 = 0.15 mm. The speed of propagation
is chosen real (no viscous-damping effect accounted for). Moreover, its real part is fixed
by stating that, the non-stented artery being uniform along the streamwise direction, the
mass-flow rate at any section x = L should be the time-lagged version of the mass flow
rate at x = xinlet. The conservation of mass applied to the artery sector 0 < x < L then
implies that:

Q1e
jω(t−(xinlet+L)/c) = Q1e

jω(t−xinlet/c) + 2π

∫ xinlet+L

xinlet

R
dR

dt
dx (3.5)

Making use of (3.4) and keeping only first-order terms in ε to assess the integral in (3.5),
we obtain the following expression for the speed of propagation of the pressure wave:

c =
Q1

2A0ε
+O(1) , A0 = πR2

0 (3.6)

From the physiological data obtained by Vernhet et al. (2001), the following values were
used for the flow rate: Q0 ' 2413 mm3/s and Q1 ' 1761 mm3/s. Equation (3.6) then
leads to c ' 2492 mm/s. With ω = 8π, the corresponding wavelength is λ ' 623 mm. In
the case where the vessel is stented between abscissae x1 and x2 (see figure 5), the wall
displacement is zeroe (fully rigid stent) for x1 < x < x2 :

R(x, t) = R0

(

1 + ε f(x) ej(ωt−kx)
)

(3.7)

where the damping function is f(x) = [1 − tanh(x − x1)]/2 for x < (x1 + x2)/2 and
f(x) = [1 + tanh(x − x2)] exp(jk(x2 − x1))/2 for x > (x1 + x2)/2. Equation (3.7) gives
the wall displacement for an elastic stented artery, assuming that the speed of propaga-
tion within the prosthesis is infinite (since the wall is not compliant). Note that Lstent/λ
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being very small, (2.7) can be used to estimate the reflexion coefficient under the me-
chanical conditions considered. This latter relation leads to |Rstent| ' 2 %. As a result,
the pressure field is related mostly to the forward pressure wave, which justifies the fact
that no backward-propagating wave is accounted for in (3.7). Besides, the length of the
transition zone between the elastic artery and the stent is of order 3 mm (this is a direct
consequence of the damping function f(x) used in 3.7). This value is in agreement with
the observations made during the animal experimentations of Vernhet et al. (2001) and
showing that the buffer region is close to one diameter long. Finally, the radius of the
non-compliant prosthesis is set to the medium artery radius R0 (no overdilation). An
over dilated prosthesis can be represented by the following wall displacement:

R(x, t) = R0

(

1 + ε f(x) ej(ωt−kx)
)

+ (1− f(x))δRstent (3.8)

where the damping function is defined as in (3.7) and δRstent is the amount of overdila-
tion.

4. Numerical results

Several 2D axisymmetric simulations have been performed, based on the computational
domain and wall motion described in section 3.3. In all cases, the bulk Reynolds number
based on the steady part of the flow rate Q0 and the mean radius R0 is close to Rb = 102.
The Womersley number is W0 = 3.36. The velocity profile is imposed at the inlet section
x = xinlet following the (complex) Womersley solution in elastic tubes:

uinlet =
2Q0

πR(xinlet, t)2

(

1− r2

R(xinlet, t)2

)

+
Q1

πR(xinlet, t)2
1− J0(αy)/J0(α)

1− 2J1(α)/αJ0(α)
ejω(t−xinlet/c)

(4.1)

vinlet = jωεR0
y − 2J1(αy)/αJ0(α)

1− 2J1(α)/αJ0(α)
ejω(t−xinlet/c)

where y = r/R(x, t) is the reduced radial coordinate (0 ≤ y ≤ 1). A zero-constraint
condition is used at the outlet section x = xoutlet. In order to assess the effect of the in-
let/outlet boundary conditions on the results, computational domains with two different
lengths have been considered. Two different spatial resolutions were also used, to assess
the spatial discretization errors. The main characteristics of the calculations performed
are given in table 1 where ∆x is the grid spacing in the streamwise direction in the area
x1 < x < x2 and ∆r refers to the grid spacing in the radial direction. Runs R1 and R2
correspond to reference calculations without endovascular prosthesis, the artery being
fully rigid (no wall displacement) for R1 and elastic for R2. Labels R3 and R4 corre-
spond to runs with stenting, the overdilation being non-zero only for the latter where
δRstent = εR0 (the stent radius is equal to the artery radius at systole). When present,
the stent is between x1 = 34 mm and x2 = 47 mm. Runs whose label contains ‘a’ have
been performed with a longer computational domain than others. Labels containing letter
‘b’ correspond to runs with finer mesh in the radial direction. In all cases, four cardiac
cycles were computed first, in order to reach a periodic state. A fifth cycle was then
computed in order to analyze the results and compare the different physical/numerical
configurations.
Time evolutions of the flow rate at inlet and outlet sections are shown in figure 6 for case

R2. The constraint that was introduced in section 3.3 in order to set the speed of prop-
agation of the pressure wave is fulfilled satisfactorily. Indeed, the flow rate at x = xoutlet
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Run Wall motion η δRstent xinlet xoutlet ∆x ∆r # of grid points

R1 R(x, t) = R0 0.0 N/A 0 80 0.075 0.286 3528

R2 (3.4) 0.05 N/A 0 80 0.075 0.286 3528

R3 (3.7) 0.05 0.0 0 80 0.075 0.286 3528

R4 (3.8) 0.05 0.075 0 80 0.075 0.286 3528

R2a (3.4) 0.05 N/A −30 110 0.075 0.286 4368

R3a (3.7) 0.05 0.0 −30 110 0.075 0.286 4368

R3b (3.7) 0.05 0.0 0 80 0.050 0.286 5208

Table 1. List of the axisymmetric calculations performed, with their main numerical
characteristics and the equations governing the wall motion. Lengths and abscissae are in mm.

is the signal at x = xinlet with a time lag close to (xoutlet− xinlet)/c ' 80/2492 ' 0.032s.
In absence of an endovascular prosthesis, all the physical quantities are self-similar, with
a constant speed of propagation c along the computational domain. Due to the wall
displacement (3.4), the wall shear stress is not constant in the streamwise direction, as
shown in figure 7 at four different instants. Instead it alternately increases and decreases
along the domain, depending on the phase considered. Note that the harmonic displace-
ment (3.4) is never apparent, because the length of the computational domain (80 mm)
is small compared to the wavelength (see also figure 9, top row). In spite of this, the
numerical solution depends only weakly on the length of the whole domain, as shown
in figure 8, which compares the wall shear stress from runs R2 and R2a. Only small
disagreement is visible, close to the upsstream end of the R2 domain (the smallest one).
There is virtually no difference between the two runs in the central region. The same
conclusion can be drawn in the case of a stented artery by comparing runs R3 and R3a
(not shown). Thus, regarding the effects of the vessel stenting, the numerical results do
not depend on the details of the implementation of the boundary conditions. In the case
where the vessel is not compliant, there should be no time lag between shear-stress sig-
nals at different locations, because the exact Womersley profile is imposed at x = xinlet.
Accordingly, the wall shear stress is mainly uniform over the streamwise distance in case
R1 (see figure 7).
The shape of the computational domain for cases R2, R3 and R4 is shown in figure 9 for

times t = nT (corresponding to systole at the inlet section) and t = (n+1/2)T (diastole).
The non-compliant region which represents the endovascular prosthesis is clearly visible
(cases R3 and R4) in the central region. However, the over-dilated stent (R4) is hardly
visible at systole since δRstent = εR0 in this case. The contours of streamwise velocity
show that the flow accelerates when the cross-sectional area decreases. The effect of the
wall-motion mismatch on the wall shear stress is shown in figure 10. At systole, this
quantity is larger in the medium part of the stented region (x ' 40 mm) than in the
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Figure 6. Time evolutions of the flow rate at sections : x = xinlet and :
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Figure 8. Wall shear stress for runs R2 (symbols) and R2a ( ) at times: • : t = nT ,
¦ :t = (n+ 1/4)T , ×:t = (n+ 1/2)T and ∗:t = (n+ 3/4)T .

non-stented artery. This is consistent with the fact that the cross-sectional area in R3 and
at systole is smaller in the prosthesis zone (see figure 9). At diastole, the cross-sectional
area within the stent is larger and the wall shear stress is smaller. In the transition zones
between the endovascular prosthesis and the elastic artery, the stress experiences larger
fluctuations, especially at systole. Extra stress is generated in the upstream transition
zone, which acts as a convergence (x ' 35 mm). Conversely, the downstream buffer
region acts as a divergence at systole and tends to decrease the stress. Accordingly, the
wall shear stress turns out to be locally smaller than its value in the non-stented artery
(x ' 47 mm). The transition zones have less effect at diastole, when the flow rate is
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Figure 9. Shape of the computational domain at systole (left column) and diastole (right
column) for the runs R2 (top row), R3 (medium row) and R4 (bottom row). The isolines of
the streamwise velocity are plotted. The streamwise and radial coordinates are expressed in
millimeters. The aspect ratio R0/L has been multiplied by 35 for convenience.

smaller. Note finally that using a finer mesh produces only small changes in wall shear
stress (compare runs R3 and R3b). Thus the numerical errors are much smaller than the
physical effects related to the stent. Figure 11 shows the time dependence of the stress
near x = (x1 + x2)/2 ' 40 mm. The amplitude of this quantity over the cardiac cycle is
larger for the stented vessel than for the elastic artery. It is worth noting that although
the length of the stent is very small compared to the wavelength, the amplitude of the
wall shear stress in case R3 behaves more like case R1 (fully rigid tube) and less like case
R2 (elastic tube). The over-dilated prosthesis, by avoiding the increase in shear stress
at systole (there is no geometry discontinuity at systole for the case R4; see figure 9),
drastically limits the increase in stress amplitude.

5. Conclusions

This theoretical/numerical study suggests that over-dilated stents produce less hemo-
dynamic perturbations. From the pressure-wave point of view, the optimal overdilation
is proportional to the compliance ratio. Moreover, because the reflexion coefficient is
proportional to the stent-to-wavelength ratio, it is most likely that the amount of wave
reflexion remains rather small. An easy-to-use formula is provided to estimate the re-
flexion coefficient from knowledge of the compliance before and after stenting. From the
local hemodynamic point of view, the amplitude of the wall shear stress is drastically
increased (by 45-50 % at the stent level, possibly more in the transition regions) by



346 F. Nicoud

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

w
al

l s
he

ar
 s

tr
es

s 
(P

a)

abscissa (mm)

Figure 10. Wall shear stress for runs R2 (symbols), R3 ( ) and R3b ( ) at times
∗:t = nT and ×:t = (n+ 1/2)T
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Figure 11. Wall shear stress versus time for runs : R1, : R2, ∗:R3 and • :R4 at
x ' 40 mm.

stenting. This result supports the idea that stenting can induce endothelial dysfunction
via hemodynamic perturbations. The amplitude of the fluctuations in wall shear stress
over the cardiac cycle are not as large when a (slight) over-dilatation is used.
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