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Large-eddy simulation of conductive flows at low
magnetic Reynolds number

By B. Knaepen AND P. Moin

1. Introduction

In large-eddy simulations (LES), only the large-scale structures of the flow are simu-
lated directly while the small-scale structures are taken into account through a model,
referred to as the subgrid-scale (SGS) model. This results in significant reduction in com-
putational requirements. The trade-off comes in the extra modelling effort that has to be
produced in order to adequately take into account the discarded small scales structures.
In the computational fluid mechanics community, the most widely used SGS model is
the Smagorinsky eddy viscosity model (Smagorinsky 1963). This model has gained an
even bigger practical interest following the work of Germano et al. (1991) in which the
dynamic procedure was introduced. The dynamic procedure enables optimization “on the
fly” of the arbitrary scaling factor that is inherently present in the original Smagorinsky
model (more details below) and thus allows the model to automatically adapt to the flow
being studied.

In this paper we study the LES method with dynamic procedure in the context of
conductive flows subject to an applied external magnetic field at low magnetic Reynolds
number Rm. These kind of flows are encountered in many industrial applications. For
example, in the steel industry, applied magnetic fields can be used to damp turbulence in
the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as
coolant blankets and interact with the surrounding magnetic field that drives and confines
the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the
flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the
magnetic Reynolds number is low.

Most of the previous works considering LES in the case of MHD flows have been
directed towards flows at high Rm, where the full non-linear MHD equations have to be
used, or towards flows in the absence of an external magnetic field: Yoshizawa (1987);
Zhou & Vahala (1991); Theobald et al. (1994); Agullo et al. (2001); Müller & Carati
(2002). To our knowledge, the only attempt to study MHD turbulence at low magnetic
Reynolds number from the LES point of view is due to Shimomura (1991). In that
work, the author considers the case of magnetohydrodynamic turbulent channel flow and
introduces a new SGS model designed to incorporate the effects of the applied uniform
magnetic field. However, like the original Smagorinsky model, the model of Shimomura
contains constants that have to be adjusted and are thus flow dependent. In the present
paper, we show that it is possible to circumvent this problem by the use of the dynamic
Smagorinsky model.

Our attention is focused here on the case of homogeneous (initially isotropic) de-
caying turbulence. The numerical simulations performed mimic the thought experiment
described in Moffatt (1967) in which an initially homogeneous isotropic conductive flow
is suddenly subjected to an applied magnetic field and freely decays without any forcing.
Note that this flow was first studied numerically by Schumann (1976). It is well known
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that in that case, extra damping of turbulence occurs due to the Joule effect and that
the flow tends to become progressively independent of the coordinate along the direction
of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) pre-
dictions and LES predictions show that the dynamic Smagorinsky model enables one to
capture successfully the flow with LES, and that it automatically incorporates the effect
of the magnetic field on the turbulence.

Our paper is organized as follows. In the next section we summarize the LES approach
in the case of MHD turbulence at low Rm and recall the definition of the dynamic
Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments
performed and the code used. Section 4 is devoted to the comparison of filtered DNS
results and LES results. Conclusions are presented in Sec. 5.

2. LES at low magnetic Reynolds number

For homogeneous flows, the magnetic Reynolds number can be defined through the
following relation:

Rm =
uL

η
, (2.1)

where u =
√

〈uiui〉 /3 is the r.m.s. of the fluctuating velocity ui, L is the integral length
scale of the flow and η is the magnetic diffusivity. Rm represents the relative importance
of the non-linear terms and the diffusion term in the magnetic induction equation. In the
limit of low Rm, the MHD equations can be simplified considerably Roberts (1967). It is
indeed possible to close independently the momentum equation and take into account the
effect of the magnetic field through an extra damping term. This approximation is known
as the quasi-static (QS) approximation and along with the incompressibility condition,
∂iui = 0, reads,

∂tui = −∂i(p/ρ) − uj∂jui −
(Bext

z )
2

η
∆−1∂z∂zui + ν∆ui, (2.2)

where p is the sum of the kinematic and magnetic pressures, ρ is the fluid density, ν the
kinematic viscosity, Bext

z is the applied external magnetic field and ∆−1 is the inverse
of the Laplacian operator. Note that Bext

z has by convention been aligned with the z-
direction and expressed in Alfven units.

LES equations are obtained by filtering (2.2). The filtered velocity ui is defined by,

ui(x) =

∫
G(x,y)ui(y)dy, (2.3)

where G is a smoothing kernel that eliminates the small scale part of ui and satisfies the
relation,

∫
G(x,y)dy = 1. (2.4)

In terms of the filtered velocity, Eq. 2.2 can be written as,

∂tui = −∂i(p/ρ) − uj∂jui −
(Bext

z )
2

η
∆−1∂z∂zui + ν∆ui − ∂jτ ij , (2.5)



LES of MHD at low Rm 299

where,

τ ij = uiuj − uiuj , (2.6)

is the subgrid-scale stress tensor. In order to close (2.5), τ ij has to be expressed only in
terms of the filtered velocity.

Is is interesting to note that τ ij does not depend explicitly on the magnetic field.
Indeed, the magnetic contribution, being a linear term in (2.2), does not require an
explicit SGS counterpart in the LES equation. In the case of non-conductive flows, the
most widely used model for τ ij is the Smagorinsky model:

τ ij = −2Cs∆
2
|S|Sij , Sij =

1

2
(∂iuj + ∂jui), S =

√
2SijSij , (2.7)

where ∆ is the width of the filter G and Cs is the Smagorinsky constant. However, as
was observed by Shimonura in Shimomura (1991), model (2.7) with Cs optimized for a
non-conductive flow, is not adequate in the present context. This is easily understood
when one refers to the fact that the applied external magnetic field has the tendency
to suppress non-linear transfers in the velocity field. Thus, the effect of the SGS stress
tensor needs to be decreased for conductive flows when the external magnetic field is
switched on. This should result in a lower optimal value for the Smagorinsky constant.

Contrary to what was done in Shimomura (1991), we will not explicitly modify the
Smagorinsky model to incorporate the effect of the magnetic field but rather we will
make use of the dynamic procedure (Germano et al. 1991) to optimize the value of Cs.

To define the dynamic procedure one introduces a second, coarser filter called the
test-filter which we denote by ·̃ · ·. Applying this filter in addition to (2.5) yields,

∂tũi = −∂i(p̃/ρ) −
˜

ũj∂j ũi −
(Bext

z )
2

η
∆−1∂z∂zũi + ν∆ũi − ∂j τ̃ ij − ∂jL̃ij , (2.8)

where L̃ij = ũiuj −
˜̃
uiũj is the Leonard tensor which does not require any modeling since

it is expressed in closed form using the filtered velocity ui. The sum τ̃ ij + L̃ij represents

the SGS stress tensor T̃ ij of the combined ·̃ · · filter and we have the well-known Germano
identity,

L̃ij = T̃ ij − τ̃ ij . (2.9)

Assuming that ui and ũi are self-similar, a suitable model for T̃ ij should be,

T̃ ij = −2Cs∆̃
2

|S̃|S̃ij , S̃ij =
1

2
(∂iũj + ∂j ũi), S̃ =

√
2S̃ij S̃ij , (2.10)

where ∆̃ is the width of the ·̃ · · filter. When one models τ ij and T̃ ij using (2.7) and
(2.10), the Germano identity will undoubtedly be violated. However, the constant Cs

can be chosen in such a way as to minimize the difference (in the least square sense)
between both sides of (2.9). Assuming homogeneity in all directions, the optimal choice
is (Lilly 1992):

Cs =

〈
M̃ ijL̃ij

〉

〈
M̃ ijM̃ ij

〉 , M̃ ij = 2

[
∆

2
|S̃|Sij − ∆̃

2

|S̃|S̃ij

]
, (2.11)



300 B. Knaepen & P. Moin

where 〈· · · 〉 denotes spatial averaging. Thus, although model (2.7) does not explicitly
incorporate the magnetic field, the dynamic constant Cs should adjust to an appropriate
value if the scale-similarity hypothesis is at all justified.

3. Numerical experiments

To assess the dynamic Smagorinsky model in the present context, we have built a
set of DNS databases. Since we restrict our attention to a cubic domain with periodic
boundary conditions, a spectral (dealiased) code has been used.

The velocity field can then be initialized in Fourier space. The initial mode amplitudes
are computed to match the spectra of the Comte-Bellot & Corrsin (1971) experiment at
stage 1 (see Rogallo (1981) for more information on the procedure). Phases are initially
random and the flow is left to freely decay until the skewness of the velocity derivative
reaches a quasi constant value of S = −0.4. At this time (hereafter referred to as t0)
the flow is considered “physical” and used as the initial condition for all of our runs. All
the DNS simulations are done in a (2π)3 box using a resolution of 5123 Fourier modes
and the viscosity is set to ν = 0.006. Other relevant quantities measured at t = t0 are
summarized here:

Re =
uL

ν
= 380 (integral Reynolds number), (3.1)

Rλ =

√
15

εν
u2 = 84.1 (microscale Reynolds number), (3.2)

τeddy =
3

2

u2

ε
= 0.238 (eddy turnover time). (3.3)

Three test cases have been considered. The first one corresponds to a decaying flow
without the addition of any applied external magnetic field. The other two numerical
experiments are distinguished by their characteristic interaction numbers at t0. The in-
teraction number N (also known as the Stuart number) is defined as follows:

N =
(Bext

z )
2

η

L

u
. (3.4)

N measures the relative strengths of the magnetic damping term and the non-linear term
in (2.2). Two cases are examined here, N = 1 and N = 10.

To illustrate the effect of the external magnetic field, the time history of the kinetic
energy density E = 1

V

∫
dx 1

2
ui(x)ui(x) of the flow for the three cases is presented in Fig.

1. As in all the following figures, time has been normalized by the initial eddy turnover
time and the non-dimensional time is denoted by t∗.

4. LES results

In order to assess the LES method, some DNS snapshots of the flow field have been
truncated from the 5123 resolution to a 323 resolution (using a sharp Fourier cut-off).
The initial condition for the LES runs has been obtained in the same way by truncating
the DNS field at t = t0. As can be easily seen from (2.11), the only free parameter in the

subgrid-scale model is the ratio ∆̃/∆. As is standard practice in LES of non-conductive
flows, the value of 2 is adopted here.
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Figure 1. Time history of the kinetic energy density E. The solid line represents the flow
decay without applied magnetic field, the dashed curve corresponds to the case N = 1 and the
dash-dot curve corresponds to the case N = 10. The dotted line represents the time t0 at which
the magnetic field is switched on.
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Figure 2. Time history of the resolved kinetic energy density: LES vs. filtered DNS. The solid
lines represent the predictions of the LES. The diamonds represent the filtered kinetic energy
density obtained by truncating the DNS fields to a 323 resolution. The dotted lines represent
the predictions of the unresolved DNS (performed on the 323 mesh) without any subgrid-scale
model.

4.1. Kinetic Energy

Figure 2 represents the time evolution of the resolved kinetic energy density ER =
1

V

∫
dx 1

2
ui(x)ui(x) predicted by the LES and compared to the filtered DNS. On each

plot, a third curve representing a simulation (referred to as ‘unresolved DNS’) on the
323 mesh without SGS modeling is added to stress the action of the subgrid-scale model.
The case Bext = 0 serves as a benchmark to check that in the case of non-conductive
flows, our LES code behaves as expected. In both the cases N = 1 and N = 10, the LES
performs remarkably well. In the case N = 1 the difference between LES and unresolved
DNS is very clear. In the case N = 10 and for this diagnostic, the unresolved DNS does
not depart significantly from the filtered DNS and LES.

4.2. Energy spectra

The energy spectrum constitutes a finer diagnostic than the kinetic energy density since
it retains information about the repartition of energy among the different scales of the
flow. Figures 3 and 4 contain respectively kinetic energy spectra for the cases N = 1
and N = 10 at several instants in the simulation. Agreement between LES and DNS is
again excellent. The unresolved DNS exhibits the usual pile up of energy at high wave
numbers that results from lack of resolution. Thus, although in terms of global energy
the unresolved DNS does perform quite well in the N = 10 case, the spectral properties
of the flow are poorly predicted and the LES does a much better job.
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Figure 3. Three-dimensional kinetic energy spectra for the case N = 1. The solid line represents
the filtered DNS, the dashed line represents the LES and the dotted line corresponds to the
unresolved DNS. The times at which the spectra are calculated are indicated in the plots.
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Figure 4. Three-dimensional kinetic energy spectra for the case N = 10. The solid line repre-
sents the filtered DNS, the dashed line represents the LES and the dotted line corresponds to
the unresolved DNS. The times at which the spectra are calculated are indicated in the plots.

4.3. Dissipation rate budget

The evolution of the resolved kinetic energy density ER is governed by,

dER

dt
= −

1

V

∫
dx(εν + εB + εsgs) (4.1)

where,

εν = 2νSijSij , εB =
(Bext

z )
2

η
ui∆

−1∂z∂zui, εsgs = τ ijSij . (4.2)

From Fig. 2 it is clear that the LES predicts the total dissipation rate very well. It is
however instructive to know how the different contributions (4.2) are reproduced sepa-
rately.

In Fig. 5 we present the time evolution of the resolved viscous dissipation rate εν for the
LES, the filtered DNS and the unresolved DNS. The figures show that the LES reproduces
this diagnostic very well, whereas the unresolved DNS systematically overestimates it.
This results from the pile-up of energy near the LES cut-off where most of the resolved
viscous dissipation occurs.

Figure 6 represents the time evolution of the resolved magnetic dissipation εB . Again
the LES predictions match the filtered DNS results very well. The differences with the
unresolved DNS are less severe than for the viscous dissipation. This is to be expected
since the magnetic dissipation occurs at every scale in the flow and its overall intensity
is thus less contaminated by the pile-up of energy occurring near the LES cut-off for the
unresolved DNS. It is also interesting to note that in the case N = 10, the magnetic
dissipation falls very rapidly with time at the early stages of the decay. This happens
because in that case the flow quickly becomes fairly independent of the z-direction which
is parallel to the magnetic field (this is illustrated further in Section 4.4).

Finally, in Fig. 7 the evolution of the subgrid-scale transfer rate εsgs is presented. For
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Figure 5. Resolved viscous dissipation rate εν for the cases N = 1 (left) and N = 10 (right).
In each plot, the solid line represents the LES, the diamonds represent the filtered DNS and the
dotted line represents the unresolved DNS.
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Figure 6. Resolved magnetic dissipation rate εB for the cases N = 1 (left) and N = 10 (right).
In each plot, the solid line represents the LES, the diamonds represent the filtered DNS and the
dotted line represents the unresolved DNS.

the LES, εsgs is obtained by substituting the dynamic Smagorsinky in place of τ ij in
(4.2). DNS results are obtained by computing the exact τ ij = uiuj −uiuj from the DNS
data fields. Obviously, no (non-zero) results are available for the unresolved DNS. From
the plots we see that the subgrid-scale transfer rate is initially overestimated in the LES.
This is not a surprise since the dynamic procedure usually needs a little time to settle.
Soon after this short transient time, the agreement between LES and DNS predictions
is very good.

4.4. Flow structures

It is well known that the extra damping term present in the quasi-static approximation
(2.2) leads to a progressive suppression of spatial variations in the flow along the direction
of the magnetic field. It is thus important to assess how well the LES is able to reproduce
this feature. To that end, we have plotted in Figures 8 and 9 the contours of the kinetic
energy density at three different times respectively for the filtered DNS and the LES
(only the case N = 10 is shown because the effect is more pronounced for strong applied
magnetic fields). Since the turbulence is decaying with time, the colormap had to be
rescaled for each of the single plots. However, the same colormap for the filtered DNS
and LES has been used in the plots corresponding to the same times. As is obvious from
the plots, the LES reproduces the filtered DNS structures very well. The unresolved DNS
also captures the large-scales structures of the flow (no plots shown) but due to the pile
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Figure 7. Subgrid-scale transfer rate εsgs for the cases N = 1 (left) and N = 10 (right). In each
plot, the solid line represents results obtained from the LES while the diamonds are obtained
from the DNS data.
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Figure 8. Contours of the kinetic energy obtained from the filtered DNS (N = 10 case). The
different times at which the contours are calculated are indicated under the plots and are the
same ones as those used in Fig. 9.
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Figure 9. Contours of the kinetic energy obtained from the LES (N = 10 case). The different
times at which the contours are calculated are indicated under the plots and are the same ones
as those used in Fig. 8.

up of energy it predicts a significant amount of small scales; the corresponding contour
plots contain some excessive ‘noise’ on top of the large-scales structures.

4.5. Dynamic Constant

As recalled in Section 2, the dynamic procedure is designed to optimize the scaling
constant Cs present in the Smagorinsky subgrid-scale model. We also mentioned that
when an external magnetic field is present, the value of Cs should decrease since non-
linear transfers are reduced and the effect of the subgrid-scale model should be damped
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Figure 10. Time history of the dynamic Smagorinsky constant. The solid line represents the
case with no magnetic field, the dashed line corresponds to the case N = 1 and the case N = 10
is represented by the dotted line.

accordingly. In Fig. 10 the evolution of Cs∆
2
is plotted. From the figure, it is clear that

the expected behavior is observed. As the interaction number is increased, the dynamic
procedure automatically adapts the value of the Smagorinsky constant to decrease the
effect of the subgrid-scale model.

5. Conclusions

In this article we have shown that the dynamic Smagorinsky model can be used to
perform large-eddy simulations of flows subject to an applied external magnetic field at
low magnetic Reynolds number, Rm. Although this subgrid-scale model was not designed
for this application, its behavior is excellent owing to its adaptation to the flow and the
applied magnetic field through the dynamic procedure. The model can be considered
robust since it works equally well for interaction (or Stuart) numbers ranging from N = 0
(no magnetic field) to N = 10 (for which the flow becomes nearly two dimensional). In
the future, the same model will be tested in more complex geometries.
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