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Large-eddy simulation of stratocumulus-topped
atmospheric boundary layers with dynamic

subgrid-scale models

By Inanc Senocak

1. Motivation and objectives

Earth’s climate and its geographical variation is strongly influenced by cloud coverage.
It is estimated that about 50% of the earth is covered by clouds at any given time,
providing a shield from solar radiation. Radiative energy transfer and its interaction
with clouds play an important role in the thermal structure and stratification of the
atmosphere. For instance, clouds have high reflectivity in the visible wavelengths, thus
providing relative cooling of the atmosphere. They also absorb strongly in the infrared
wavelengths, resulting in heating of the atmosphere (Salby 1996).

Condensation is the major physical process that is responsible for cloud formation.
Clouds can be classified into four broad categories, namely: cumulus, cirrus, nimbus and
stratus (Rogers & Yau 1989). Many other classifications can be derived from combina-
tions of these four broad categories. A comprehensive description can be found in Scorer
& Wexler (1967). Among various types of clouds, marine stratocumulus clouds have re-
ceived increased attention because of the important role they play in the global radiation
budget. Marine stratocumulus clouds cover about 25% of the Earth’s ocean at any in-
stant. These are low-level clouds that exist below 1.5 km with several hundred meters in
thickness and they rarely produce precipitation. Their horizontal coverage is extensive
and more homogeneous than other type of clouds. Their appearance is grey and a wavy
undersurface is typical (Kantha & Clayson 2000; Heymsfield 1993; Mason 1975).

The structure of the marine stratocumulus cloud-topped atmospheric boundary layer
is driven by both cloud-top radiative cooling and positive buoyancy flux from the surface
that maintains the atmospheric boundary layer in a well-mixed turbulent state. Above
the cloud layer, negative buoyancy flux has a stabilizing effect, suppressing the turbulence
there (Kantha & Clayson 2000). The entrainment of dry air from above the cloud layer
induces evaporative cooling and entrained air parcel can sink further down enhancing the
turbulent mixing within the clouds, known as cloud top entrainment instability (Deardorff
1980a). Clearly, the structure of cloud-topped atmospheric boundary is more complicated
than a cloud-free atmospheric boundary layer due to strong interactions among cloud
microphysics, turbulent motions and the radiative energy transfer.

In large-eddy simulation (LES), three-dimensional, large unsteady flow structures are
resolved and the effects of the unresolved scales are modeled. A filtering operation is
applied to the governing equations to distinguish between the resolved scales that are
computed and smaller scales that are modeled. LES has been widely applied to simulate
atmospheric boundary layers, partly because of the difficulties involved in observational
studies and field experiments (Stevens & Lenschow 2001). An extensively studied topic
is LES of cloud-free convective atmospheric boundary layers. The salient features of
these boundary layers have been compared to observations and well documented (Kantha
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& Clayson 2000). The presence of clouds complicates the problem due to additional
physics and reliable numerical simulations of cloud-topped boundary layer is still an
active research area. In the following, several representative studies are briefly mentioned
to help describe the current state of the knowledge.

An early study on three-dimensional modeling of cloud-topped atmospheric boundary
layer is by Deardorff (1980b). He studied the structure of turbulence and entrainment
within stratocumulus layers with and without cloud-top radiative cooling and suggested
that simulations need high resolution at the inversion. It was also found that a func-
tional dependence on Richardson number helps correlate the entrainment rate. Deardorff
(1980a) has defined a criterion for the cloud top entrainment instability. It was found
that entrainment rate increases decisively when the equivalent potential temperature gra-
dient across the cloud top drops below a critical value. It was also shown that a strong
instability can lead to stratocumulus breakup leading to a scattered cumulus layer. Tag
& Payne (1987) indicated that in addition to Deardorff’s criterion, the vertical motions
should exceed a threshold for the cloud breakup to occur.

Moeng (1986) studied the structure of a stratus-topped boundary layer using LES. It
was found that the vertical component of the turbulent kinetic energy is generated by
buoyancy and a portion of this energy is redistributed in the horizontal directions due
to pressure effects. It was also shown that turbulence is generated more effectively by
surface heating than cloud-top cooling.

Bohnert (1993) tested the dynamic procedure for LES of cloud-topped boundary layer.
Simple parametrization for cloud microphysics and radiation were adopted. The dynamic
model results were compared to the results of SGS model that were optimized in an ad-
hoc fashion. The results were found to be comparable. The importance of SGS modeling
in predicting cloud breakup was also highlighted.

Stevens et al. (2000) investigated the dependence of an LES model on mesh resolution,
numerical schemes and SGS model. They provided simulations of varying resolutions for
the simulation of stratocumulus topped marine boundary layer. Different SGS models
and advection schemes were tested. It was found that thickness of the inversion layer,
depth of entraining eddies and shape of the vertical velocity spectra is influenced by
mesh resolution. Motions at the inversion were found to be underresolved even for the
finest resolution. The entrainment rate was found to depend on both numerical and SGS
dissipation.

Duynkerke, Zhang & Jonker (1995) performed an observational study to describe the
microphysical and turbulent structure of stratocumulus observed during the Atlantic
Stratocumulus Transition Experiment (ASTEX). The turbulence kinetic energy budget,
velocity and temperature variance, and vertical fluxes were calculated. The entrainment
was found to be very efficient, which resulted in reduction of turbulent kinetic energy
production due to buoyancy. It was also shown that water vapor flux, liquid water flux,
and drizzle rate have the same magnitude.

Stevens et al. (1998) presented an LES study of the ASTEX case. They adopted a
drop-size resolving cloud microphysics model that enabled them to perform simulations
with and without drizzle. It was found that inclusion of drizzle in modeling leads to
sharp decrease in entrainment and turbulent kinetic energy generation by buoyancy. The
authors have hypothesized that shallow, well-mixed radiatively driven stratocumulus
cannot persist in the presence of heavy drizzle.

Duynkerke et al. (1999) did a comparison of actual ASTEX observations with com-
putations obtained from LES and one-dimensional single column models. The buoyancy
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flux obtained from LES agrees well with the observations. The authors concluded that
drizzle has small influence on the buoyancy flux, although significant uncertainty exists
in its parametrization.

The objective of the present study is to evaluate the dynamic procedure in LES of
stratocumulus topped atmospheric boundary layer and assess the relative importance of
subgrid-scale modeling, cloud microphysics and radiation modeling on the predictions.
The simulations will also be used to gain insight into the processes leading to cloud top
entrainment instability and cloud breakup. In this report we document the governing
equations, numerical schemes and physical models that are employed in the Goddard
Cumulus Ensemble model (GCEM3D). We also present the subgrid-scale dynamic pro-
cedures that have been implemented in the GCEM3D code for the purpose of the present
study.

2. Numerical formulation

The numerical model used in this study to simulate cloud-topped atmospheric bound-
ary layers is the Goddard Cumulus Ensemble model(GCEM3D). Its main features are
described in Tao & Simpson (1993), Simpson & Tao (1993) and Tao et al. (2003).

2.1. Governing equations

Acoustic waves are part of the solution of the compressible Navier-Stokes equations and
very small time steps are needed to resolve them. On the other hand, acoustic waves do
not impact the dynamics of thermal convection for low Mach number flows. Therefore, the
governing equations of motion are simplified by filtering out the sound waves from them.
The resulting set of equations is known as the anelastic equations (Ogura & Phillips 1962).
In deriving these equations the basic assumption is to decompose the thermodynamic
state variables into a horizontally averaged base quantity, which only depends on altitude,
and a perturbation quantity, which depends on both time and space, as follows

p(x, y, z, t) = po(z) + p′(x, y, z, t),

ρ(x, y, z, t) = ρo(z) + ρ′(x, y, z, t),

T (x, y, z, t) = To(z) + T ′(x, y, z, t), (2.1)

where p is the pressure, ρ is the density of moist air and T is the temperature. The
following moist equation of state is used in deriving the momentum equations

p = ρRT (1 + 0.61qv), (2.2)

where R is the gas constant for dry air and qv is the mixing ratio of water vapor. The
pressure is nondimensionalized according to a reference pressure (po) value

π = (
p

po
)R/Cp , (2.3)

where Cp is the specific heat of dry air at constant pressure. The potential temperature
is defined as

θ =
T

π
. (2.4)

The anelastic form of the filtered continuity equation reads as follows

∂(ρoūi)

∂xi
= 0. (2.5)
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The filtered momentum equations, using the f-plane approximation, are written as

∂ūi
∂t

+
1

ρo

∂(ρoūiūj)

∂xj
= −Cpθo

∂π′

∂xi
+
∂τij
∂xj

+ gi(
θ′

θo
+ 0.61q′v − ql) + Fcoriolis, (2.6)

where gi is the gravitational acceleration. The Coriolis term that appears in the momen-
tum equations is written as

Fcoriolis = [2ωsinφu2,−2ωsinφu1, 0], (2.7)

where ω is the angular velocity of the Earth and φ gives the latitude. τij represents the
subgrid scale stress tensor and its particular form is described in section 2.3. The primed
variables represent deviation from horizontally averaged quantities.

The equations for potential temperature θ and the water vapor mixing ratio qv are
written as follows

∂θ̄

∂t
+

1

ρo

∂(ρoθ̄ūi)

∂xi
= −

∂γθi
∂xi

+
Lv
Cp

(c− ec − er) +
Lf
Cp

(fs + fg −ms −mg)

+
Ls
Cp

(dice − sice) +Qrad, (2.8)

∂q̄v
∂t

+
1

ρo

∂(ρ0q̄vūi)

∂xi
= −

∂γqv

i

∂xi
+ (c− ec − er) + (dice − sice), (2.9)

where Lv, Lf and Ls are the latent heats of condensation, fusion and sublimation, respec-
tively. The quantities c, ec, er, f,m, dice, sice represent the rates of condensation, evapo-
ration of cloud droplets, evaporation of rain drops, freezing of rain drops, melting of snow
and graupel/hail, deposition of ice particles and sublimation of ice particles, respectively.
The particular forms for these phase change rates are not explicitly formulated. Instead,
a saturation adjustment scheme is adopted that calculates the amount of phase change
rate in order to remove any supersaturated vapor and/or subsaturation of cloud water.
The saturation adjustment scheme is described in Soong & Ogura (1973) and Tao, Simp-

son & McCumber (1989). γφi is the subgrid scale flux of the scalar, which is explained in
section 2.3. Qrad is the source due to radiative heat transfer. It is described in section
2.4.

2.2. Cloud microphysics model

The formulation of the cloud microphysical processes is based on solving scalar transport
equations for each hydrometeor species. The transport equations for cloud water (qc),
cloud ice (qice), rain (qr), snow (qs), graupel/hail (qg) are written as

∂q̄c
∂t

+
1

ρo

∂(ρoq̄cūi)

∂xi
= −

∂γqc

i

∂xi
+ (c− ec) + Tqc

, (2.10)

∂q̄ice
∂t

+
1

ρo

∂(ρoq̄iceūi)

∂xi
= −

∂γqice

i

∂xi
+ (dice − sice) + Tqice

, (2.11)

∂q̄r
∂t

+
1

ρo

∂(ρoq̄rūi)

∂xi
−

1

ρo

∂(ρoq̄rUr)

∂x3

= −
∂γqr

i

∂xi
+ (ms +mg − fs − fg − er) + Tqr

, (2.12)

∂q̄s
∂t

+
1

ρo

∂(ρoq̄sūi)

∂xi
−

1

ρo

∂(ρoq̄sUs)

∂x3

= −
∂γqs

i

∂xi
+ (ds − ss −ms + fs) + Tqs

, (2.13)
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∂q̄g
∂t

+
1

ρo

∂(ρoq̄gūi)

∂xi
−

1

ρo

∂(ρoq̄gUg)

∂x3

= −
∂γ

qg

i

∂xi
+ (dg − sg −mg + fg) + Tqg

, (2.14)

where Vr, Vs and Vg are the fall speeds of rain, snow and graupel, respectively. Their

values are obtained from parameterizations. γφi is the subgrid-scale flux of the scalar. Tφ
represents the microphysical transfer rates between the hydrometeor species. A total of 27
different processes are considered and the reader is referred to Lin, Farley & Orville (1983)
for details of their formulation. To illustrate the parameterizations of these processes, only
the microphysical transfer rate of rain Tqr

is described in this report. For instance, if the
temperature is above 0oC, then the production term for rain is given by the following
equation

Tqr
= PRACW +PRAUT +PSACW +PGACW −PGMLT −PSMLT +PREV P (1−δ1). (2.15)

The terms on the right hand side of the above equation are the accretion of cloud water
by rain, autoconversion of cloud water to form rain, accretion of cloud water by snow,
accretion of cloud water by graupel, melting of graupel to form rain, melting of snow to
form rain, evaporation of rain, respectively. The accretion of rain by cloud water PRACW
is written as

PRACW =
πErwn0raqcΓ(3 + b)

4λ3+b
r

, (2.16)

where Erw is the collection efficiency, which is assumed to be 1, n0r is the intercept
parameter of the rain drop size distribution, Γ is the gamma function, λr is the slope
parameter in rain size distribution and a, b are empirical constants. Exponential size
distributions are assumed for rain, snow and graupel/hail. The explicit forms of other
transformation rates are documented in Lin et al. (1983).

2.3. Subgrid-scale turbulence models

Three turbulence closure models will be considered for comparison. These are the subgrid-
scale kinetic energy model of Klemp & Wilhelmson (1978),which is the base turbulence
model in the GCEM3D code, the dynamic Smagorinsky model of Germano et al. (1991)
and the localized dynamic Smagorinsky model of Piomelli & Liu (1995). The imple-
mentation of dynamic turbulence models by Kirkpatrick (2002) has been coupled to the
GCEM3D code. In the following sections these models are briefly explained.

2.3.1. Subgrid-scale kinetic energy model

A transport equation for subgrid-scale turbulent kinetic energy is solved, which is then
used to specify the eddy viscosity. The influence of buoyancy on the turbulent motions
is also modeled. The equation for subgrid-scale turbulent kinetic energy is written as

∂E

∂t
+

1

ρo

∂(ρoEūi)

∂xj
= gw′(

θ′

θo
+ 0.61q′v − q′l)− τij

∂ūi
∂xj

+
∂

∂xj
(Km

∂E

∂xj
)−

Ce
∆
E3/2, (2.17)

∆ = (∆x∆y∆z)1/3,

Km = Cm∆E1/2,

τij =
2

3
Eδij −Km(

∂ūi
∂xj

+
∂ūj
∂xi

), (2.18)

where Km is the turbulent eddy viscosity, ∆ is the filter width. The empirical constants
Ce and Cm have the values of 0.7 and 0.2,respectively. The subgrid-scale scalar fluxes
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are modeled as

γφi = Kh
∂φ

∂xi
, (2.19)

where Kh/Km = 3 is used. The buoyancy flux in a saturated area is computed as

w′(
θ′

θo
+ 0.61q′v − q′l) = −AKh

∂θe
∂z

+Kh
∂qt
∂z

, (2.20)

where

A =
1

θo

1 + 1.61εLqv

RdT

1 + εL2qv

CpRdT 2

, (2.21)

and ε = 0.622.
In an unsaturated area, the buoyancy flux is computed as follows:

w′(
θ′

θ̄
+ 0.61q′v − q′l) = −Kh(

1

θ̄

∂θ

∂z
+ 0.61

∂qv
∂z

). (2.22)

2.3.2. Dynamic Smagorinsky model

Smagorinsky model (Smagorinsky 1963) is commonly used in LES to model the subgrid
scale stresses. It is based on eddy viscosity assumption and can be written as

τij −
1

3
δijτkk = −2C∆2|S̄|S̄ij , (2.23)

where C is a dimensionless parameter and |S̄| =
√

2S̄ij S̄ij . The filtered strain rate is
defined as

S̄ij =
1

2
(
∂ūi
∂xj

+
∂ūj
∂xi

). (2.24)

Germano et al. (1991) have introduced the dynamic procedure that offers advantages
over the original Smagorinsky model. In this model the parameter C is computed at each
time step from the information already available in the resolved velocity field. The basic
formalism behind the dynamic Smagorinsky model is explained in the following.

The dynamic model involves filters of different sizes. In addition to the grid filter, a
test filter is introduced. The subgrid scale stress tensor based on the grid filter and the
test filter are written respectively as

τij = uiuj − ūiūj ,

Tij = ûiuj − ˆ̄ui ˆ̄uj , (2.25)

where the symbols overbar and the hat represent the grid and test filtering operations,
respectively. Applying the test filter to τij and subtracting it from Tij yields the following
identity (Germano, 1992)

Lij = Tij − τ̂ij = ̂̄uiūj − ˆ̄ui ˆ̄uj . (2.26)

The significance of this identity is that it can be computed from the large eddy field.
Germano et al. (1991) have utilized this identity to dynamically compute the coefficient
of the Smagorinsky model as follows.

Lij −
1

3
δijLkk = αijC − β̂ijC, (2.27)
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where

αij = −2∆̂
2 ̂̄S ̂̄Sij ,

βij = −2∆
2S̄S̄ij . (2.28)

For atmospheric boundary layers, where the horizontal directions are assumed to ho-
mogenous, the filtering operation is applied only in the horizontal direction and C is
assumed to be independent of the homogeneous directions and taken out of the filtering
operator. Equation (2.27) is rearranged to the following form

Lij −
1

3
δijLkk = CMij , (2.29)

where

Mij = αij − β̂ij . (2.30)

Following the method described in Lilly (1992), the coefficient C is computed so as to
minimize the sum of the squares of the residuals of equation (2.29).The numerator and
the denominator are averaged over the horizontal (x,y)-plane.

C(z, t) =
〈MijLij〉xy
〈MklMkl〉xy

. (2.31)

Once C is calculated, the subgrid scale stress tensor, given in equation (2.23) is computed.
In a similar approach, the subgrid-scale flux of a scalar φ can be computed dynamically
Moin et al. (1991). If we consider the following eddy diffusivity subgrid-scale model

γi = −
νt
Prt

∂φ̄

∂xi
, (2.32)

where the kinematic eddy viscosity is computed with the dynamic Smagorinsky model
as νt = C∆2|S̄|. The dynamic procedure can also be applied to compute the turbulent
Prandtl number Prt. The subgrid-scale scalar flux based on the test filter scale is written
as

Gi = −
C∆̂2

Prt
| ˆ̄S|

∂ ˆ̄φ

∂xi
(2.33)

The test and grid scale fluxes are related to each other by the following identity

Pi = Gi − γ̂i =
̂̄φūi − ˆ̄φ ˆ̄ui = −C

∆̂2| ˆ̄S|

Prt

∂ ˆ̄φ

∂xi
+ C

̂∆2|S̄|

Prt

∂φ̄

∂xi
. (2.34)

The above equation can be recast into the following form

Pi = −
C

Prt
Ri. (2.35)

Following the suggestion of Lilly (1992), a least squares procedure is applied to compute
the value of Prt. Note that the value of C is determined earlier.

1

Prt
= −

1

C

〈PiRi〉xy
〈RmRm〉xy

(2.36)

After calculating the Prt, equation (2.31) is used to compute the subgrid scale flux of a
scalar.
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2.3.3. Approximate localized dynamic Smagorinsky model

The dynamic Smagorinsky model is not general for flows with no homogeneous di-
rection, because of the need for averaging in the homogeneous directions. Ghosal et al.

(1995) have addressed the mathematical inconsistencies and proposed a new formulation
for the dynamic procedure that makes it applicable to arbitrary inhomogeneous flows.
They have also provided formal justifications for the ad-hoc procedures that have been
adopted in the early versions of the dynamic model.

The mathematical inconsistency in previous versions comes from the fact that space
and time dependent coefficient C is simply taken out of the filtering operation. In the
variational formulation of Ghosal et al. (1995), C is kept inside and an integral equation
needs to be solved at each time step to determine C. This method is referred to as the
dynamic localization model.

The solution of an integral equation is costly. Piomelli & Liu (1995) have followed a
simpler approach and proposed the approximate localized dynamic model. In the follow-
ing this method is briefly described.

Equation (2.27) is recast in the following form.

−Cαij = Laij + Ĉ∗βij , (2.37)

where

Laij = Lij −
1

3
δijLkk. (2.38)

An estimated value C∗ is assumed, which is the value of C from the previous time step.
Along with this approximation, a least squares procedure is applied to compute C as
given below

C = −
(Laij + Ĉ∗βij)αij

αmnαmn
. (2.39)

The same iterative idea applies to equation (2.31) to compute the Prt of the subgrid-
scale flux of a scalar quantity.

2.4. Radiation model

In an effort to describe the physical models in GCEM3D code in a single document, we
briefly summarize the basic formalism of the radiation modeling.

The plane parallel assumption is typically adopted to model the radiative energy trans-
fer. The convenience of the assumption comes from the fact that the properties of the
atmosphere vary sharply with height due to its stratification, hence, the medium is re-
garded as horizontally homogeneous (Salby 1996).

The intensity of a radiation pencil, traversing a distance ds along the direction of its
propagation, changes due to absorbtion, scattering and emission, which can be described
by the following equation (Liou 2002).

dIλ = −KλρIλds+ jλρds, (2.40)

where kλ is the mass extinction cross section due to absorbtion and scattering and jλ
is the source function due to emission and scattering. In plane-parallel assumption, it is
convenient to define an optical thickness as

τ =

∫ ∞

z′

kλdz, dz = µds, µ = cos θ, (2.41)

where z is the vertical direction and θ is the angle between the path of radiation and the
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vertical, which is specifically called the zenith angle. The basic equation, describing the
radiative energy transfer in plane-parallel atmospheres is written as

µ
dI(τ ;µ, φ)

dτ
= I(τ ;µ, φ)− J(τ ;µ, φ). (2.42)

The source function J is defined as

J(τ ;µ, φ) =
ω̃

4π

∫ 2π

0

∫ 1

−1

I(τ ;µ′, φ′)P (µ, φ;µ′, φ′)dµ′dφ′ +

ω̃

4π
FoP (µ, φ;−µ0, φ0)e

−τ/µ0 − (1− ω̃)B[T (τ)], (2.43)

where P (µ, φ;µ′, φ′) is the phase function, which gives the angular distribution of scat-
tered energy as a function of direction, φ is the azimuthal angle, ω̃ is the single scat-
tering albedo, B[T (τ)] is the Planck’s function representing the blackbody emission of
the medium, and Fo is the solar irradiance at the top of atmosphere. Upon solution of
equation (2.43), the flux density Fλ and the total flux density F are computed based on
the following definitions

F ↑↓
λ (τ) = 2π

∫ 1

0

I↑↓λ (τ,±µ)µdµ , F =

∫ ∞

0

Fλdλ. (2.44)

The heating rate due to radiation that appears in the potential temperature equation,
Qrad, is then computed as

Qrad = −
1

ρ0Cp

dF (z)

dz
. (2.45)

Equation (2.43) is an integrodifferential equation and its numerical solution is quite
involved due to sharp variation of the atmospheric properties with height. The compu-
tation of radiation fluxes involves spectral, vertical and directional integrations. Because
the absorbtion coefficient varies sharply with wave number, the spectral integration is the
most CPU intensive part. However, the major difficulty comes from the dependence of
the absorbtion coefficient on pressure and temperature. Hence, effective parametrization
is an important part in the numerical solution of equation (2.42). Different approaches
are adopted depending on the nature of the radiation problem. A detailed account of
atmospheric radiation modeling can be found in Liou (2002).

The radiative transfer model that is incorporated into the GCEM code is documented
in Chou & Suarez (1996a,b).The radiation scheme can model the absorbtion due to water
vapor, CO2, O3, and O2, and scattering by clouds, aerosols and molecules. Fluxes are
integrated almost over the full spectrum, ranging from 0.175 µm to 10µm. The radiation
field is divided into three distinct regions. In the ultraviolet and photosynthetically active
regions, the spectrum is divided into 8 bands, in which single O3 absorption coefficient
and Rayleigh scattering coefficient is used for each band. The infrared region is divided
into three bands and the k-distribution method is applied with ten absorption coefficients
in each band. The δ-Eddington approximation is used to compute the reflection and
transmission of a cloud and aerosol-laden layer. Two-stream adding method is then used
to compute the fluxes.

2.5. Numerical schemes

In GCEM3D code, the governing equations are discretized on a staggered grid. The mo-
mentum equations are solved using the second order central difference scheme for the
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spatial derivatives and the second order accurate leap-frog scheme for temporal deriva-
tives. A time smoother is adopted to avoid the time splitting problem associated with
the leap-frog scheme. Forward time differencing and the multi-dimensional positive def-
inite advection transport algorithm (MPDATA) of Smolarkiewicz & Grabowski (1990)
are used to solve the scalar transport equations. A direct solver (FFT) is utilized for the
solution of the pressure Poisson equation. The GCEM3D code has been parallelized to
run on the SGI Origin clusters using OpenMP (Jin et al. 2003).

Lateral boundary conditions are periodic and free slip boundary conditions are imposed
on the top and bottom boundaries for all the variables except the vertical velocity that
vanishes at the top and bottom boundary.

3. Future work

The sugrid-scale turbulence models described in the previous section will be tested
with progressively refined mesh resolutions, adopting the ASTEX field experiment as
the test case. The relative influence of subgrid-scale modeling, cloud microphysics and
radiation modeling on the predictions will be investigated. The simulations will also be
used to gain insight into the processes leading to the cloud top entrainment instability
and cloud breakup. Additionally, the dynamic modeling subroutine will be parallelized
to speed up the overall computation.

Preliminary computations produced comparable results of wind speeds, soundings of
cloud water and potential temperature among the subgrid-scale models considered. How-
ever, the computations also indicated problems with the top boundary resulting in spuri-
ous cloud formation and unstable stratification. A possible cure to the problem might be
to use a Rayleigh absorbing layer, which is commonly used in atmospheric simulations,
in the proximity of the top boundary to damp the vertically propagating gravity waves.

In this report we have briefly documented the governing equations and physical mod-
els that are employed in the GCEM3D code. We have also described the subgrid-scale
dynamic procedures that have been introduced to the GCEM3D code in this study. We
are in the process of double checking the implementation and the results. The findings
of the present study will be published in the open literature.
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