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Solar convection simulations
using a B-spline method

By T. Hartlep AND N. N. Mansour

1. Motivation and objectives

Convection plays a key role in energy transport and global circulation in the outer layers
of the Sun, in generation of solar magnetic fields and in many phenomena associated with
solar activity and variability. Observations of the solar surface reveal structures that have
been classified as granules, mesogranules, and supergranules. The nomenclature reflects
organization at three spatial scales ranging from about 1 Mm to 30 Mm.

Numerical simulations of the near surface region of the Sun (Stein & Nordlund 2000)
capture structures on the granular scale, but have not been able to detect organization
at large scales. The physical mechanism of supergranulation is presently unknown. It
has been suggested that supergranulation corresponds to a large convective cells which
develop due to enhanced convective instability in the Hell ionization layer. This layer
lies deeper than Stein & Nordlund have investigated so far.

We know that as we go deeper from the surface of the sun, the turbulence structures
become large, and the Mach number decreases. It is then advantageous to be able to
change the spatial resolution in all three coordinates as a function of depth. In addition,
it is numerically advantageous to use the anelastic approximation (Ogura & Phillips 1962;
Gough 1969; Gilman & Glatzmaier 1981) to the compressible Navier-Stokes equations
for deep domains. Using B-splines in one coordinate direction and Fourier methods in
the other two coordinate directions, Kravchenko et al. (1996) and Loulou et al. (1997)
have developed B-spline—spectral numerical schemes that enable changing the resolution
as a function of height. Kravchenko et al. (1996) applied the scheme to simulate the
fully developed turbulent channel flow by resolving the near-wall region and relaxing the
resolution in the core region. Loulou et al. (1997) simulated a fully developed turbulent
pipe flow. They applied the scheme to remove the centerline singularity in cylindrical
coordinates.

2. Numerical method

Under this effort, a new code to simulate a rectilinear section of the solar convection
zone is being implemented. As a first step, the numerical method is implemented for a
simple Boussinesq fluid (Oberbeck 1879; Boussinesq 1903) and is presented in this paper
for this case only. Later, once the new code is fully functional and tested, equations based
on the anelastic approximation will be used.

2.1. Basic equations

Using the temperature difference across the fluid layer, AT, the layer thickness d and the
thermal diffusion time d?/x as units of temperature, length and time, the dimensionless
Boussinesq equations read:

0T+ (¥- V)0 = =Vr + PrV># 4+ RaPrbé,, (2.1)



380 T. Hartlep AND N. N. Mansour
00+ (T-V)=V30+7-¢,, (2.2)
V-5=0. (2.3)
¥, 8 and w denote the velocity of the fluid and the deviations of the temperature and
pressure from their static profiles, i.e. the temperature and pressure profiles that would be
observed in the case of no motion. The equations contain two dimensionless parameters:
the Prandtl number Pr and the Rayleigh number Ra, which are defined as
ATd?
Pr=Y Ra=22""% (2.4)
K KV
with k, v, @ and g being the coefficients of thermal conductivity, kinematic viscosity
and thermal expansion, and the accelleration due to gravity, which points in negative
z direction. The Boussinesq approximation assumes all these properties to be constant
throughout the layer.

2.2. Velocity decomposition

A poloidal/toroidal decomposition is used for the velocity to automatically fulfill the
continuity equation V -@ = 0. Even though the divergence of the velocity does not vanish
in the anelatic approximation, the equations that we are ultimately going to use, such a
representation can still be used. Just not for the velocity itself, but for the quantity po9,
where pg denotes the reference density.

In the Boussinesq case, the representation is in the form of

U@y, 2,t) =V x [P(z,y,2,0)&] + V x V x [p(z,y,2,)&] + U(z,1).  (2.5)

In this way the poloidal and toroidal scalars ¢ and v are periodic in  and y, and U
represents the horizontal average of the velocity, i.e

[j(zat) = <17(x,y,z,t)>

The z component of U must be zero to satisfy the continuity equation. U is thus a
toroidal flow. However, the corresponding toroidal scalar varies linearly in z and y and is
unbounded. Obviously, we require ¢ to be periodic and to remain finite in the numerical
representation. Therefore U needs to be included in the decomposition of @ (Schmitt &
von Wahl 1992).

Equations of motion for ¢, ¥ and U can be derived by evaluating the z component
of the curl of the curl of (2.1), the z component of the curl of (2.1) and the horizontal
average of (2.1), respectively.

(2.6)

zy"

2.3. Spectral method for the horizontal directions

Periodic boundary conditions are used in the horizontal directions to reduce the influence
of the horizontal boundaries on the flow. A natural choice is the use of Fourier modes in
those directions, i.e.

F@,y,2,t) = Y frlz,t)ekathow) (f = ,4,0), (2.7)
E

with k = ky€z + ky€y being the horizontal wave vector. Multiplying the equations of
motion with weight functions eikar+kyy) and integrating over the entire horizontal plane
then yields equations for the z and ¢ dependent Fourier coefficients:

(02 — )[01 — Prio? - K] Gg(z1) = Ry, (2,1, (28)

E
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FI1GURE 1. Second-order B-splines defined on sets of 5 knot point in the case of equally spaced
knot points (top diagram) and non-equally spaced knot points (bottom diagram). In both
cases solid, dotted, dashed, dash-dotted, dash-dot-dotted and long-dashed lines denote splines
Bi,...,BZ, respectively.

(00— Prie? - k]| dz(z,t) = Ry,_(2,0), (2.9)
(60— 102 = K] 05(2,1) = R;._(2,1). (2.10)

All non-linear terms are contained in the right-hand sides R. The equation for Uis very
similar:

[0, — Pro?)U (z,

Ri(z,1). (2.11)

t) =
If fact, we can discuss the equation for vy, 67,; and U together, since they all can be
written in the form

[0¢ + Co — C282]f (2, 1) = Ry (2,1) (f = ¥ 05, 0), (2.12)

with some parameters Cy and Cs.

2.4. B-spline method for the vertical direction

Spatial discretization in the vertical direction z is done by a B-spline method (Kravchenko
& Moin 1998), i.e. the unknowns, ¢k,¢k,0 and U are expanded in terms of m-order
piecewise polynomials called basis splines, or B-splines. With a given set of knot points
{20,...,2n} that divide the z domain into N subintervals, one can construct N + m of
these spline functions using the recursive expression

B™(2) = z_zj——m—lgjm:ll(z) +

Zj1 = Zj-—m-1 Zj = Zj-m

S7% i) (G=1,...,N+m).

(2.13)
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Here, B]" denotes the j-th B-spline of order m. The 0-order splines are given by

0 1 ifz; 1 <z<z;
Bj(2) = { 0 othJerwise - (2.14)
As it turns out, m additional points at each side of the domain (z_p,,...,2_1 and
ZN41;---,2N+m) are needed in the construction of B-splines near the boundaries. These
virtual points are chosen to be equal to the boundary points zg and 2y, i€ 2_,, = ... =
z_1 =29 and ZN4m = ... = ZN+1 = ZN-
Second-order B-spline functions for two different sets of knot points are shown in
figure 1 to illustrate how these functions look like. As can be seen from the figure, B-
splines have compact support and are non-negative:

>0 ifzj_mo1 <2<z

Bj (z){ =0 otherwise ’ (2.15)

and can be tuned to the specific needs at hand by the choice of knot points. In areas
where small structures need to be resolve, e.g. in boundary layers, one can choose closely
spaced knot points, while in areas where such high resolution is not required, the grid
can be coarse to save computational costs.

Incorporating a B-spline expansion of the unknowns, i.e.

N+m

f(zat) = Z af,j(t)B;n(z) (f:(;]};:'lzjk‘;ék'aﬁ)a (216)

=1

into the governing equations (2.8) and (2.12), multiplying with weight functions B{* and
integrating over the z domain yields equations for the expansion coefficients ay ; (t):

N+4+m j
i

Z [((% + Co) (Mo): - 02 (Mz) :| Oéf’j = /Bszde (f = ’ng,éE, U), (2.17)
j=1

2 4 i 2 J J _ m

z; [—(k 8 + kA Pr) (Mo)i +(0; + 2k Pr)(Mg)i —PT(M4)i] a; ;= /B,. Ry dz.
j=

(2.18)

Three matrices, My, Ma and My, occur in these equations, which contain integrals of

the product of two B-splines and the product of a B-spline with a derivative of a B-spline:

mheMim_ [ pmang 4
= morBT =0,2,4). 2.1
(M) = [ Brorspa: m=0.2,9 (219)
It follows from the property (2.15) that all of these matrices are of band-diagonal form.
Specifically, they have only m subdiagonals and m superdiagonals which contain non-zero
entries.

2.5. Time advancement

A mixed implicit/explicit method using a Crank-Nicolson scheme for the diffusive terms
and a second-order Adams-Bashforth scheme for the advection and buoyancy terms is
used for the time advancement.

In the end, one has to solve a matrix equation for each Fourier mode of each field
(poloidal, toroidal, mean flow and temperature) in the form

Nfﬁf = gf, (2.20)
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with @y representing the vector of B-spline coefficients at the new time step t,1, i.e.
dy = (af1(tnt1)s- -, @5 Nym(tny1)) (f again stands for either ¢z, 9 ,0; or U), and
the matrix Ny is composed of the previously introduced matrices Mg, My and My. Ny
is therefore band-diagonal and a fast method for solving band-diagonal systems can be
used.

2.6. Imposing boundary conditions

So far, no boundary conditions have been imposed in the vertical direction. Since only
one B-spline, and the derivative of only two B-splines are non-zero at the boundary, it
is rather easy to implement various boundary conditions. If for example one needs to
prescribe the value of f(z,t) at the boundary 2z, e.g. f(z = z0,t) = g(t), one simply has
to set the first B-spline coefficient to that value, i.e. ay1(t) = g(t). The original equation
for ay,; has to be removed from the linear system (2.20), and oy ;’s contribution has to
be deducted from the right hand, i.e. equation (2.20) is modified in the following way:

* ok afi ﬁf,l
* || % afo ﬁfﬂ
*
Qfntk Btk
Qs By, *

. = _af71
* *
* Qf,ntk Bf,n+k

More complicated boundary conditions in which the value of the B-spline coefficients at
the boundary depend on the coefficients in the interior can be implemented by directly
manipulating the matrix elements of Ny.

2.7. Varying numerical resolution with depth

The main advantage of such a B-spline method is the ability to vary the spatial resolution
in all directions as a function of depth. As already mentioned, the choice of knot points
in the construction of the B-spline functions determines the vertical resolution. Near the
surface of the sun, where high spatial resolution is required, closely spaced knot points
will be chosen, while the spacing can be increased in deeper parts of the convection zone.
The spatial resolution in horizontal directions is determined by the number of Fourier
modes that one wants to consider in the discretization:

fz,y,2,t) = Z z af’j(t)e—i(kzm-i-kyy)BJT_n(z)
E

J

(f = o5, Y5, 0%)s (2.21)

and this number can be changed from one spline index j to the next. Since according
to (2.15) B-splines of different j overlap, the change in resolution occurs over several knot
points. A consequence of the variation of horizontal resolution is, that for a given set of
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wavenumbers k, and k, only a subset of B-splines has to be considered, namely those for
which the maximum wavenumbers that we have chosen are larger or equal to k, and k.
The other coefficients are zero and the corresponding rows and columns in the matrix
equations (2.20) can therefor be dropped to reduce the numerical cost.

3. Future work

The implementation of the presented numerical method is nearly complete and will be
tested shortly for some test cases of turbulent Rayleigh-Bénrad convection. Comparisons
will be done with the results obtained by Hartlep (2004) using a Chebyshev method. After
that, the anelastic equations will be implemented in place of the Boussinesq equations.

The final ingredient for the solar simulations is the definition of reasonable boundary
conditions. As a start, we can use rather simple conditions like the ones used by Miesch
(1998) and others: stress-free, impenetrable upper und lower boundaries with constant
heat flux at the bottom and constant entropy at the top of the computational domain. A
refinement to these boundary conditions would be the treatment of the upper surface as
a free surface, which could be realized by additionally tracking a height function h(z, y,t)
above the top end of the discretization (2.21).
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