Thermal diffusivity in the SGS modeling for solar convection simulations using the ASH code

By Y.-N. Young‡, M. Miesch‡ and N. N. Mansour

1. Motivation and objectives

The turbulent solar convection zone has remained one of the most challenging and important subjects in physics. Understanding the complex dynamics in the solar convection zone is crucial for gaining insight into the solar dynamo problem. Many solar observatories have generated revealing data with great details of large scale motions in the solar convection zone. For example, a strong differential rotation is observed; the angular rotation is observed to be faster at the equator than near the poles not only near the solar surface, but also deep in the convection zone. On the other hand, due to the wide range of dynamical scales of turbulence in the solar convection zone, both theory and simulation have limited success. Thus, cutting edge solar models and numerical simulations of the solar convection zone have focused more narrowly on a few key features of the solar convection zone, such as the time-averaged differential rotation. For example, Brun & Toomre (2002) report computational finding of differential rotation in an anelastic model for solar convection. A critical shortcoming in this model is that the viscous dissipation is based on application of mixing length theory to stellar dynamics with some ad hoc parameter tuning.

We have implemented the Smagorinsky-Lilly subgrid scale model into the ASH (anelastic spherical harmonic) code. In this report we illustrate how this subgrid scale model works in terms of recovering differential rotation in the solar convection zone. In particular we elucidate the role of thermal diffusivity in solar convection, where the molecular thermal diffusivity is much larger than the molecular viscosity. Readers are referred to (Clune et al. 1999) and (Miesch 1998) for a detailed description of the ASH code. This paper is organized as follows. In §2 we briefly formulate the anelastic system that describes the solar convection. We also formulate the Smagorinsky-Lilly SGS model for unstably stratified solar convection. In §3 we present some data diagnosis, such as the energy balance and angular momentum balance in the simulations. Also in §3 we illustrate by example how the thermal diffusivity can play an important role in terms of the differential rotation in the solar convection zone, and we will also provide some conclusions and future directions.

2. The anelastic equations of motions and the Smagorinsky-Lilly SGS model

2.1. Anelastic equations

In the solar convection zone, the depth extends over many density scale heights and thus the effects of stratification need to be captured despite the fact that acoustic timescales are much shorter than the large-scale convection timescales. An appropriate approach is

† Dept. of Mathematical Sciences, NJIT, Newark, NJ, 07102
‡ High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado, 80301
to filter out sound waves while maintaining the density stratification, namely the anelastic approximation first proposed by Gough (1969) and later adapted to the solar convection zone by Gilman & Glatzmaier (1981). In stellar models, a fluid layer is unstable if the layer is superadiabatic. The degree of superadiabaticity is quantified as (Gilman & Glatzmaier 1981)

$$\epsilon \equiv -\frac{d}{C_p} \left(\frac{\partial s}{\partial r} \right)_0, \quad (2.1)$$

where d is the depth of the convection zone, C_p the specific heat capacity at constant pressure, s the entropy, and r the radial coordinate. The entropy gradient is calculated at some fiducial level in the convection zone. In the sun, the departure from adiabaticity in the convection zone is extremely small (Christensen-Dalsgaard et al. 1993),

$$\epsilon \leq 10^{-4}. \quad (2.2)$$

If we assume that the velocity in the horizontal (transverse to gravity) directions is mostly driven by pressure gradients, the coupling between vertical and horizontal velocities leads to the following relationship between the convection velocity v and sound speed c_s

$$\mathcal{M} \equiv \frac{v}{c_s} \sim \sqrt{\epsilon} \ll 1, \quad (2.3)$$

where \mathcal{M} is the Mach number of the flow. The basic idea in the anelastic approximation is to expand the variables in terms of the small parameter ϵ, and collect terms of the zeroth and first orders. As is usually found in perturbation theory, the zeroth order equations describe the basic state, which remain stationary over timescales at which the first order variables vary. The fundamental equations are the compressible, stratified Navier-Stokes equations in a rotating reference frame

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla P + \rho \mathbf{g} + 2\mathbf{v} \times \Omega_0 + \nabla \cdot \mathcal{D}, \quad (2.4)$$

$$\rho \Theta \frac{\partial s}{\partial t} + \rho \Theta \mathbf{v} \cdot \nabla s = -\nabla \cdot q + 2\nu \left(e_{ij} e_{ij} - \frac{1}{3} (\nabla \cdot \mathbf{v})^2 \right) - \rho \mathcal{E}, \quad (2.5)$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \quad (2.6)$$

where s is the entropy, Θ is the temperature, and \mathcal{E} is the nuclear energy generation rate. The viscous stress \mathcal{D} is defined as

$$\mathcal{D} \equiv 2\nu \left(e_{ij} - \frac{1}{3} (\nabla \cdot \mathbf{v}) \delta_{ij} \right), \quad (2.7)$$

and q is the composite non-convective heat flux, defined as

$$q \equiv -\kappa \rho \Theta \nabla s - \kappa_r \rho C_p \nabla \Theta. \quad (2.8)$$

and the various transport coefficient such as the viscosity ν, thermal diffusion κ, and radiative thermal diffusion κ_r are assumed to be functions of the radial coordinate only.

Upon substituting the variables expanded in terms of the small parameter ϵ, at zeroth order we obtain the hydrostatic equation. Denoting the zeroth order terms with a subscript 0, the equations at the leading order are
Subgrid scale modeling in ASH

\[
\frac{\partial P_0}{\partial r} + \Lambda = -\rho_0 g,
\]
\[
P_0 = R \rho_0 \Theta_0,
\]
where \(\Lambda \) is the radial gradient of a mean turbulent pressure
\[
\Lambda \equiv \langle [\rho_0 (\mathbf{v} \cdot \nabla) \mathbf{v} - \nabla \cdot \mathbf{D} - 2 \rho_0 (\mathbf{v} \times \Omega_0)]_r \rangle.
\]
The angular brackets in Equation (2.11) denote horizontal averages, and the square brackets denote the radial component of the enclosed vector. We evaluate \(\Lambda \) only as we update the reference state (denoted with a subscript 0).

At the next order, we obtain the anelastic equations for compressible, stratified fluids

\[
\frac{\partial \rho_0 \mathbf{v}}{\partial t} + \rho_0 (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla P + \nabla \cdot \mathbf{D} + \rho \mathbf{g} + 2 \rho_0 (\mathbf{v} \times \Omega_0) + \Lambda \hat{r},
\]
\[
\rho_0 \Theta_0 \frac{\partial s}{\partial t} + \rho_0 \Theta_0 \mathbf{v} \cdot \nabla (s_0 + s) = \nabla \cdot (\kappa \rho_0 \Theta_0 \nabla (s_0 + s) + \kappa_r \rho_0 C_p \nabla (\Theta_0 + \Theta))
\]
\[
+ 2 \nu \rho_0 \left(\varepsilon_{ij} \varepsilon_{ij} - \frac{1}{3} (\nabla \cdot \mathbf{v})^2 \right) - \rho_0 \mathbf{E},
\]
\[
\nabla \cdot (\rho_0 \mathbf{v}) = 0,
\]
and
\[
\frac{\rho}{\rho_0} = \frac{P}{P_0} - \frac{\Theta}{\Theta_0} = \frac{P}{\gamma P_0} - \frac{s}{C_p}.
\]

We note that both the reference state and perturbation terms have been retained in Equation (2.13) because the gradient of the reference state entropy \(s_0 \) varies in amplitude from \(\mathcal{O}(\epsilon) \) in the convection zone to \(\mathcal{O}(1) \) in the convectively stable region. This scaling is also true for the term involving thermal diffusion of the reference temperature \(\kappa_r \partial \Theta_0 / \partial r \). We retain the term \(\kappa_r \partial \Theta / \partial r \) because we wish to allow for small deviations of the radiative heat flux from spherical symmetry.

The viscosity coefficient \(\nu \) is assumed to be a function of the reference density \(\rho_0 \). The functional dependence is obtained from mixing length theory, and the specific value is chosen in an ad hoc fashion for a given numerical resolution and combination of parameters. Our main goal in this work is to replace these “mixing length” viscosity and thermal diffusivity with those based on Smagorinsky subgrid scale model. More details will be presented in §2.2.

The reference state is crucial in the simulation of the anelastic system. In the ASH code, the reference state is updated only every few hundred steps of advancing the anelastic equations. During the update process, the following equations are solved simultaneously for the reference pressure \(P_0 \) and density \(\rho_0 \):

\[
\frac{1}{C_p} \frac{ds_0}{dr} = \frac{1}{\gamma} \frac{d \ln P_0}{dr} - \frac{d \ln \rho_0}{dr},
\]
\[
\frac{d P_0}{dr} = -\rho_0 g.
\]

Using the reference entropy gradient \(\langle ds_0 / dr \rangle \) and gravity \((g(r)) \) profiles from the previous time step, Equations (2.16) and (2.17) are solved for the reference pressure and density. Figure 1 is an example from one of the ASH simulations. With similar
reference states and viscosity profiles to those illustrated in figure 1, simulations of the ASH code have successfully generated differential rotation profiles that are similar to the solar observations. An example from ASH simulations is illustrated in figure 2. The numerical resolution for figure 2 is $65 \times 128 \times 256$ in the radial, latitudinal, and azimuthal directions. The left panel is a filled contour plot of the averaged angular velocity as a function of latitude and radius, while the right panel shows the angular velocity at five latitudes as a function of radius from the bottom to the top of the convection zone. For this particular case, the viscosity is a prescribed function of radius as shown in figure 1(c), and the Prandtl number is fixed at 1/4. This corresponds to the AB case in Brun & Toomre (2002), in which the differential rotation inside the convection zone is most prominent among all the simulation data presented in Brun & Toomre (2002). Figure 2 is from simulations conducted on the NASA/Ames SGI cluster with different initial conditions. A typical differential rotation from solar helioseismic observations is shown in figure 2(c) (same as figure 1(b) in Brun & Toomre (2002)). The close similarity between observational solar differential rotation and the simulation data shows great promise that better results may be obtainable if the convection model is refined by building in more
physics. For example, the viscosity and thermal diffusivity may be replaced by better dynamical models. Addition of a mechanism to couple the convection zone with the tachocline below may result in better agreement between simulation and observational data. As a preliminary initiative we have undertaken is to first improve the model for viscosity using Smagorinsky-Lilly’s model. Finally in figure 3 we show several energy fluxes and momentum fluxes as functions of \(r \) for the AB case:

\[
\begin{align*}
Fe &= \text{radial enthalpy flux} = C_p \rho v_r (T - T), \\
Fk &= \text{radial kinetic energy flux} = v_r K. E., \\
Fr &= \text{radiative flux} = -\kappa_{\text{rad}} \rho \frac{d}{dr} \left[\sqrt{4 \pi T} + \left(\frac{\partial T}{\partial S} S + \frac{\partial T}{\partial \rho} \rho \right) \right], \\
Fu &= \text{unresolved eddy flux} = \kappa_{\text{b}} \text{Solar luminosity} \frac{4 \pi r^2}{4 \pi r^2}, \\
R &= \tilde{\rho} r \sin \theta \langle v' v'_r \rangle, \\
M &= \tilde{\rho} r \sin \theta \langle v'_r (v'_r) + \Omega_0 r \sin \theta \rangle \\
V &= \tilde{\rho} r \sin \theta \left[-\nu \frac{\sin \theta}{r} \frac{\partial}{\partial r} \left(\frac{\langle v'_r \rangle}{r} \right) \right] \text{ for panel (b), or} \\
V &= \tilde{\rho} r \sin \theta \left[-\nu \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{\langle v'_r \rangle}{\sin \theta} \right) \right] \text{ for panel (c).}
\end{align*}
\]

The index \(i \) in equations 2.22 and 2.23 corresponds to the \(r \) component for panel b in figure 3, while for panel c the index \(i \) corresponds to the \(\theta \) component.

2.2. Smagorinsky-Lilly SGS model

The principle underlying the Smagorinsky subgrid scale model is the balance of production of subgrid-scale turbulent kinetic energy and dissipation of isotropic turbulence energy at the characteristic eddy size. Let the subgrid turbulent production rate be denoted by \(\mathcal{P} \), then for a given turbulent viscosity \(\nu_T \), the subgrid turbulent production rate is

\[
\mathcal{P} = 2 \nu_T e_{ij} e_{ij}.
\]

The dissipation at scale \(l \) is \(\sim q^3/\nu_T \), where \(q \) is a characteristic turbulent velocity. Finally, to find an expression for \(\nu_T \) in terms of the resolved quantities, we utilize the Prandtl’s assumption: \(\nu_T = C_1 q l \), and upon substituting \(q \) into the dissipation rate and equating
dissipation and production rates, we obtain the Smagorinsky subgrid scale model
\[
\nu_T = (C_s l)^2 \sqrt{2\epsilon_{ij} \epsilon_{ij}},
\]
where \(C_s \) is a constant in the range of \(0.1 \leq C_s \leq 0.3 \). Lilly (1962) later extended the Smagorinsky model to turbulence in unstably stratified convection. Due to the stratification an additional parameter, the Richardson number, appears in the expression for the eddy viscosity. The idea that led to Lilly’s eddy viscosity is very similar to the above argument underlying the Smagorinsky model: buoyancy production or consumption must also be accounted for in the subgrid energy balance. Thus in the stratified case, the dissipation consists of contribution from both eddy dissipation and thermal diffusion. The Smagorinsky-Lilly eddy viscosity is simply the modified Smagorinsky model with the inclusion of stratification effect
\[
\nu_T = (C_s l)^2 \sqrt{2\epsilon_{ij} \epsilon_{ij}} \left[1 - \frac{\kappa_T}{\nu_T} \right]^{\frac{1}{2}}.
\]
Here \(\kappa_T \) is the eddy thermal diffusivity, and the flux Richardson number is defined as
\[
R_i f = \frac{g}{2\epsilon_{ij} \epsilon_{ij}} \frac{\partial \ln \theta}{\partial r}.
\]
Alternatively, the flux Richardson number can also be defined through entropy as
\[
R_i f = \left[\frac{g}{2\epsilon_{ij} \epsilon_{ij}} \frac{\partial s_0}{\partial r} \right] C_p,
\]
where \(\partial s_0/\partial r \) is the reference entropy gradient. In spherical geometry, we choose the length scale \(l \) as
\[
l = \left(\frac{\Delta(r)r^2}{L_{\text{max}}(L_{\text{max}} + 1)} \right)^{1/3},
\]
where \(\Delta(r) \) is the radial grid spacing at location \(r \), \(L_{\text{max}} \) is the maximum (latitudinal) angular mode index.

In the simulations we start from a stationary configuration with a negative reference entropy gradient throughout the convection zone. The boundary conditions for the velocity are stress free, which are not necessarily realistic but numerically convenient. As we are mostly interested in the differential rotation profile in the convection zone, the parameters and initial reference state are chosen to be the same as the AB case in Brun & Toomre (2002). We first obtain a turbulent convection zone using the mixing length viscosity and thermal diffusivity. As the simulation progresses, the differential rotation profile reaches a statistically stationary state. We then replace the mixing length viscosity and thermal diffusivity with the Smagorinsky-Lilly model with a prescribed constant coefficient \(C_s \). For the following results, we present ASH simulations using the Smagorinsky-Lilly eddy viscosity to see how the differential rotation may differ from that obtained with the “mixing length” viscosity and thermal diffusivity.

3. Thermal diffusivity and differential rotation

Using the Smagoranski-Lilly SGS model with a fixed \(C_s = 0.3 \), an eddy Prandtl number of 0.7 and restarting from the AB case (with a differential rotation in figure 2), we find that the differential rotation to deteriorate and the spread in the angular velocity decreases to a smaller value (\(\sim 60 \) nHz) as shown in figure 4. Similar results are found
as we vary C_s and the eddy Prandtl number. In figure 5 we show the fluxes for this simulation when the “statistically” steady state is reached.

We notice that the energy balance is worsened due to the decrease in the radial enthalpy flux (Fe) and the unresolved eddy flux (Fu). Based on the fact that the molecular thermal diffusivity is much larger than the molecular viscosity in the solar convection, and also the anelastic assumption that the base state evolves on the much slower time scale than the convection, we separate the thermal diffusivity from the eddy viscosity as follows: we adopt the thermal diffusivity from Brun & Toomre (2002) and use the Smagorinsky-Lilly SGS model only for the eddy viscosity. This hybrid approach may be reasonable for very small molecular Prandtl number convections. We then restart from the AB case again, and in this case the differential rotation (figure 6) does not deteriorate as much as in previous simulations where we fixed the eddy Prandtl number. Furthermore, we notice that the momentum fluxes are closer to those from the AB simulations in Brun & Toomre (2002). We further notice that the differential rotation profile from our hybrid modeling is actually quite close to the observational differential profile (panel (c) in figure 2). Thus we conclude that the thermal diffusion is a key ingredient in the anelastic modeling of solar convection, especially in terms of the differential rotation and the balances in energy and momentum fluxes.

This is encouraging for adopting the SGS modeling to extra-terrestrial turbulent convection, where the molecular Prandtl number is always much smaller than unity. Thus
Figure 6. Differential rotation with the AB case as the initial conditions. The Smagorinsky-Lilly SGS is used only for the eddy viscosity, and the thermal diffusivity in Brun & Toomre (2002) is adopted here.

Figure 7. Panel (a): Radial components of the momentum fluxes. Panel (b): Latitudinal components of the momentum fluxes.

the energy balance on the micro scales may not be described by Lilly's argument where the eddy Prandtl number is assumed constant. In particular, the stratification in the solar convection may be such that the compressibility and the large thermal diffusivity conspire to give an eddy Prandtl number which depends on the radius. Thus it is possible that the dynamic procedure can give some insight to how the eddy Prandtl number adjusts itself due to stratification and large molecular thermal diffusivity.

REFERENCES

