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On large scale turbomachinery computations

By E. van der Weide, G. Kalitzin, J. Schluter,
G. Medic AND J.J. Alonso

1. Motivation and objectives

The three main components of a modern turbofan gas-turbine aircraft engine are the
compressor (which includes the fan), the combustor, and the turbine (Fig. 1). The com-
pressor and the turbine consist of a number of individual stages, each of which consists of
a rotor that rotates on a shaft, and a stator, which is attached to the outer casing and is
therefore fixed in space. Modern engines typically have two concentric shafts that allow
for a lower rotation speed of the rotors of the low pressure part of the engine and for a
higher speed of the high pressure portion. The functionality of the engine is limited by
the stability of the high pressure compressor, which has a higher load, partly because of
the higher rotation speed. In addition, stability issues can also arise because of the fan.

The present industry standard in the computational modeling of jet engines is driven
by the need for fast simulation techniques. Different levels of simulation fidelity are used.
The mixing plane approximation by Denton & Singh (1979) is used most commonly
for the turbomachinery components. Alternative approaches include the use of phase-
lagged boundary conditions by Chen & Barter (1998) and by Wang & Chen (2004),
which account for first order unsteady effects, and the deterministic stress approach by
Adameczyk (1999). The latter captures the effect of unsteadiness in steady simulations
with moderate success.

The focus of this work is on unsteady simulation of turbomachinery components. A
large variety of problems of interest to the turbomachinery industry have their origin
in the unsteadiness of the flow. This unsteadiness is created either by the relative mo-
tion in the geometry, by instabilities in the flow, or by multi-component interactions.
Although these large scale unsteady simulations currently consume very large amounts
of CPU time, this time will be available in the future at moderate cost. The goal of the
Center for Integrated Turbulence Simulations (CITS) is to identify and solve problems
with modeling of physics, efficiency of numerical algorithms, parallel scalability and data
management present for this type of simulations.

Future fully coupled simulations will, for example, allow the investigation of the effect
of heat loads in the turbine with implications for durability, as well as of the effect of
transient shocks in the turbine transition duct with implications for engine stability.
Both of these are important questions for aircraft engines which cannot be addressed
with single component simulations.

2. SUmb flow solver

The flow in turbomachinery components is computed with the compressible, multi-
block, structured, cell-centered, parallel RANS flow solver SUmb. The code includes a
turbine cooling model, sliding interfaces, moving grids, automatic block splitting and
load balancing during run time. The inviscid fluxes are discretized using either central
differences and a scalar dissipation scheme by Jameson et al. (1981) or an upwind scheme
in combination with the approximate Riemann solver of Roe (1982). In the latter scheme,
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FIGURE 1. Schematic of a Pratt & Whitney aircraft engine.

overshoots in the MUSCL reconstruction are avoided by applying the Van Albeda limiter.
A standard central discretization is used for the viscous fluxes. A second order implicit
time integration scheme is used to approximate the time derivative. The resulting non-
linear system of equations is solved using dual time stepping by Jameson (1998). The
convergence is accelerated using a 3W multigrid cycle in combination with local time
stepping and a 5-stage Runge Kutta time integration scheme. Usually, 25 3W multi-
grid cycles are used per physical time step for the unsteady turbomachinery simulations.
Turbulence is modeled with the two-equation k-w model by Wilcox (1988). The model
by Spalart & Allmaras (1994) and the v2-f model by Durbin (1995) are also available.
Adaptive wall functions by Kalitzin et al. (2005) and Medic et al. (2006) are used for the
turbine simulations, and wall integration is used for the compressor.

The computational requirements for the turbine and compressor simulations are as
follows. The CPU time required for a typical SUmb simulation on QSC is 0.7 processor
hours per one million computational cells per physical time step, assuming 25 multi-grid
cycles per physical time step for adequate convergence. The number of time steps per
rotor revolution is estimated by assuming that one blade passing should be resolved with
approximately 50 time steps. The maximum blade count in the engine is 144 blades per
wheel, which results in approximately 7000 time steps per rotor revolution. Given that
1.55 revolutions are needed for one flow through time, it is estimated that the simulation
will require 11,000 time steps per flow through time. Because of the smaller number of
blades per wheel, the time step for the turbine simulation can be approximately twice as
large as that for the compressor, and only 5,500 time steps are required for that part of
the engine. However, for the following estimates, we will assume the same time step in
compressor and turbine. The expected size of the grids for the compressor and turbine
are 233 million (776 blade passages) and 74 million (246 blade passages) computational
cells, respectively. This yields a total cost of the SUmb simulation of about 2 million total
CPU hours on QSC for the compressor and 651,000 total CPU hours on QSC for the
turbine. This leads to a total number of 2.65 million CPU hours for a computation on a
total of 307 million cells. Experience has shown that SUmb scales almost linearly for at
least 40,000 cells/processor (and at least 5,000 cells/processor on BlueGene). Based on
this experience, the simulation could be expected to use about 7,500 processors efficiently
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(for the worst-case scenario in scalability). The total wall clock time per computed flow
through time is therefore approximately two weeks. The memory required for SUmb is
about 1 GB per million grid cells. The total memory required is 307 GB or 41 MB per
processor.

A final word to the inflow boundary conditions: at the inflow, radial distributions of
total pressure, total temperature and the velocity direction are prescribed. At the outlet,
a radial distribution of static pressure is given. One-dimensional Riemann invariants are
used to determine the values in the ghost cells. At the turbine inlet, due to the large
variation in the prescribed total temperature in the near wall region, a total enthalpy
scaling had to be applied to the acoustic Riemann invariant w - n — 2a/(y — 1). Without
this scaling, the one-dimensional boundary condition treatment was not stable.

3. Large-scale turbomachinery computations

The compressor of a gas turbine engine is used to compress the ambient air to a very
high pressure. The compressed air is passed to the combustor, where it is mixed with fuel
and burned. High-performance jet engines usually employ multiple compressors consec-
utively; the Pratt & Whitney engine considered in this work has two: the low pressure
compressor (LPC) and the high-pressure compressor (HPC). The LPC compresses the
air from atmospheric pressure to a higher level. The rotational speed of this compressor
is relatively low at about 5,000 rpm. The HPC compresses the air further and rotates
usually at about 15,000 rpm. The focus here will be on the high-pressure compressor
(HPC), which is computationally more demanding. It consists of eleven blade rows with
six stators and five rotors. Due to the adverse pressure gradient, the compressor flow is
prone to flow separation, and a proper modeling of the turbulence in the near wall region
is mandatory.

The turbine is located at the outlet of the combustor and extracts energy to propel the
compressor and the fan. Like the compressor, the turbine consists of a high-pressure sec-
tion (high-pressure turbine, HPT), which powers the high-pressure compressor, and the
counter rotating low-pressure spool (low-pressure turbine, LPT), which powers the low-
pressure compressor. Since these spools are connected by a shaft, the rotational speeds
in the two sections of the turbine correspond to their counterparts in the compressor.
In the computations presented here, the HPT consists of one stator and one rotor, and
the first stage of the LPT consists of an additional stator and a rotor. Due to the high
temperatures at the inlet of the turbine, cooling flow is normally injected through holes
in the blades to avoid burning of material. Although SUmb has the capability to model
these cooling flows, all the results shown in sections 4 and 5 are obtained without the
cooling model.

The operating conditions for these large-scale simulations have been determined in
discussions with our industrial collaborators at Pratt & Whitney. Two conditions will
be considered. These correspond to the regular cruise condition and the so called min
cruise condition. The cruise condition will be used as a baseline simulation. At this
condition, the performance of the engine, measured by the pressure ratio and mass flow
rate at a given work input, is certainly crucial. This condition is also very important
for questions related to fatigue, durability, and engine lifetime. The min cruise operating
point corresponds to cruise at the minimum possible altitude. At min cruise, compressor
stability becomes an important factor, since the compressor operating line approaches
the stability line (surge line). The compressor becomes unstable when the operating line
crosses the surge line. This is the so-called pinch point in the stability map.
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FI1GURE 2. Convergence histories for the PW6000 turbine, mixing plane assumption. 3W cycle
in combination with a 5 stage Runge Kutta smoother.

We start by running simple steady-state simulations using the mixing plane concept for
both the turbine and the compressor. The solutions of those mixing plane simulations
are used to initialize the 20° sector and the full wheel unsteady simulations for both
turbomachinery components.

3.1. Geometry and grids

Original full-wheel and scaled sector grids have been provided by Pratt & Whitney for
the compressor and turbine. The tip gap regions have been neglected and shrouded
casings are assumed for the rotating parts. Both the compressor and the turbine grids
have the same topology consisting of an O-grid around the blade and an H-type grid in
the passage. The compressor and turbine grids for one passage consist of 3,080,092 and
1,425,408 cells, respectively. The full wheel grid for the compressor consists of 1552 blocks
(219,299,840 cells), while for the turbine it consists of 492 blocks (87,865,344 cells). The
disk space needed to store these grids in double precision is 2.1 GB for the turbine and
5.7 GB for the compressor.

In these grids, the full wheel geometries of the compressor and of the turbine contain
blade rows of different blade counts that do not have a common denominator. Circum-
ferentially scaled grids that adjust the number of blades in each blade row have been
provided to allow the creation of a 20° periodic sector of the geometry. The scaling does
not change the number of cells in one passage. The 20° sections of compressor and turbine
consist of 90 blocks (12,713,984 cells) and 28 blocks (4,982,784 cells), respectively.

For the flow conditions considered, the compressor grid is quite coarse. It is has an
average yT value of about 3. It is, however, used as a wall integration grid. The average
y+ value of the turbine grid is about 60, thereby requiring the use of wall functions. Both
grids are multigrid friendly to at least three levels with a proper one-to-one cell matching
on the coarser levels between the O and H grids.

4. Steady computations

The flow is first computed for a single multistage passage of turbine and compressor
for steady state conditions. The flow in the passage is assumed to be periodic in the
circumferential direction, and a mixing plane approximation is used for the boundary
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FIGURE 3. Entropy for mixing plane computation of one flow passage of the turbine.

FIGURE 4. Entropy for mixing plane computation of one flow passage of the compressor.

condition between the blade rows. In the mixing plane approximation, the computed flow
at the end of each blade row is circumferentially averaged and used as inflow condition
for the downstream blade row. Similarly, the circumferentially averaged solution at the
beginning of the flow passage is used as an outflow boundary condition for the upstream
blade row. The averaging for the coupling of individual blade rows is necessary, since
stator and rotor move relative to each other.

4.1. Steady computations for a single turbine passage

The convergence history for this test case is presented in Fig. 2. Although 3,000 multi-
grid cycles were used, the solution reached engineering accuracy after approximately
1,000 cycles. Note that the initial solution on the fine grid was obtained by applying
grid sequencing on the coarser meshes. Consequently, the relative initial position for the
convergence histories shown in Fig. 2 is already two orders of magnitude lower than when
the solution is initialized from free stream conditions.

The turbine computation can be started relatively easily from an arbitrary initial
guess. The pressure difference between the inflow and the exit drives the flow through
the turbine. The entropy field of a steady state mixing plane solution in a turbine passage
is shown in Fig. 3. The abrupt disappearance of the wakes between the blade rows is a
direct consequence of the one-dimensional interpolation.
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FI1GURE 5. Evolution of the relative inlet and FIGURE 6. Evolution of the relative torque on
outlet mass flow for the scaled turbine geome- the four blade rows for the scaled turbine ge-
try. ometry.

4.2. Steady computations for a single compressor passage

As for the turbine, the standard turbomachinery boundary conditions are applied. Radial
profiles of stagnation pressure and temperature, as well as the velocity unit vector pre-
scribing the flow direction, are specified at the inlet. For the compressor, the inlet velocity
has - in addition to the component in the axial direction - an additional circumferential
velocity component specified to mimic the flow direction from the upstream rotor. The
static pressure is specified at the exit.

The compressor computation is far more challenging to start due to the high compres-
sion ratio that results from the work transmitted from the rotating blades to the fluid.
Since the exit pressure is higher than the pressure at the inlet, the flow tends to reverse
its direction as soon as large pockets of separation occur in the passage. As a conse-
quence, the computations must be carried out in several steps, first by slowly raising the
rotational speed of the wheels while keeping the pressure low at the exit, and then by
increasing the pressure once the full rotational speed was achieved. The final pressure at
the exit matches the pressure that is specified at the inlet of the combustor. The entropy
field of a steady state mixing plane solution in a compressor passage is shown in Fig. 4.

5. Unsteady computations

A more accurate description of the flow field can be achieved by performing unsteady
simulations. In contrast to the mixing plane approximation, the values in the halo cells
on the sliding mesh interfaces are determined by interpolation from the neighboring
blade row without any averaging. Interpolated values from the downstream blade row
are imposed in the halo cells of the upstream blade row and vice versa; the flow field is
continuous over the sliding mesh interface.

Unsteady simulations can be performed on a periodic sector of the geometry. This is
often impossible, since each blade row can have a different number of blades that do
not have a common denominator. This is done to avoid instabilities caused by resonance
between two components. For a sector simulation, the number of blade counts is rescaled
such that sector periodicity is obtained. The pitch and chord of the blades are adjusted
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FicUrRe 7. Comparison of the relative inlet FIGURE 8. Comparison of the relative outlet
mass flow of the unsteady solution and the two mass flow of the unsteady solution and the two
mixing plane solutions. mixing plane solutions.

to preserve the same flow blockage. Unsteady simulation for the exact geometry can only
be done for the entire wheel.

5.1. Unsteady computations of 20° turbine sector

The 20° turbine sector computations have been advanced for 1,300 timesteps. 50 time
steps are used for one blade-pass of the first rotor. This corresponds to 2,700 time steps
for a full wheel revolution. Transient effects are still present in the flow, as illustrated
by time evolutions of the relative inlet and outlet mass flow. The torque on the blades
seems less sensitive and has reached a seemingly periodic state.

Figures 7 and 8 show the mass flow evolution during the last 400 time steps compared
to mixing plane solutions computed using both scaled and unscaled geometry. First, it
can be seen that all solutions have a lower mass flow rate at the outlet than at the
inlet, despite the use of a conservative scheme. In a conservative scheme only the sum
of central and dissipative fluxes is conserved. This means that on coarse grids, the mass
flow computed from central fluxes is not conserved, as shown in Figures 5, 7 and 8.
For the mixing plane solution, this leads to a loss of 3 percent in the mass flow rate
due to dissipation. The unsteady solution predicts an average loss of approximately 4
percent. This is a clear indication that the grid is too coarse, and the solution is not grid
converged. This result was anticipated, but the decision was made to proceed with such
coarse grids in order to learn some initial lessons about the unsteady nature of these
large scale computations at somewhat lower computational cost.

Secondly, the average mass flow for the unsteady computation is lower than for the
mixing plane solutions. Although this could still be a transient effect, Fig. 5 indicates
that this is not the case. Finally, the unsteady mass flow rate at the outlet, Fig. 8, shows
a much higher frequency than the mass flow rate at the inlet, Fig. 7. The flow at the
outlet is influenced by all blade rows, while the flow at the inlet seems to be influenced
only by the first blade row.

Figures 9 to 12 show the relative torque on the blade rows for the unsteady solution
of the last 400 time steps, for the mixing plane solutions, and for the time averaged
values. The difference between the value obtained with the mixing plane assumption and
the time averaged value is between 1 and 3 %. However, due to the steady nature of
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the mixing plane assumption, it does not give any information about the amplitude and
frequencies of the oscillations, which are important design properties.

Figure 13 shows the instantaneous entropy distribution in the same plane as Fig. 2. It
is clear that the solution is now continuous over the sliding mesh interface, and the effect
of the wakes on the downstream blades is evident.

5.2. Unsteady computations of 20° compressor sector

For a full wheel revolution of the compressor, 6,300 time steps are needed. This value
again corresponds to 50 time steps for a blade passing of the blade row with the highest
blade count. Figure 14 presents the instantaneous entropy distribution after 1500 time
steps, which corresponds to approximately 85° of rotation.
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FI1GURE 13. Turbine, 20° sector; Instantaneous entropy distribution for the unsteady solution
for the scaled geometry.

FIGURE 14. Compressor, 20° sector; Instantaneous entropy distribution for the unsteady
solution for the scaled geometry.

5.3. Unsteady computations of full-wheel turbine

Due to the smaller number of blade rows in the turbine, the computational costs for the
unsteady simulation of the full wheel turbine are smaller than for the compressor. Again,
a mixing plane solution is used as initial solution for the unsteady simulation. This case
has been run on the LLNL ALC machine on either 300, 600 or 1,200 processors, depending
on the available resources; SUmb writes the solution in a single file and a restart can be
made on a different number of processors due to the fully integrated parallel preprocessor.

The time step is chosen such that a full revolution of the turbine takes 2,700 time steps.
On 600 processors, the computation of one time step takes approximately 10 minutes.
This includes 2 minutes for writing the grid and the solution files. A solution computed
with 593 time steps, i.e. approximately 1/6 of a revolution, is compared to the steady
solution using the mixing plane approximation and to the unsteady solution for the 20°
sector in Fig. 15. Transient effects are still present, and more time steps are needed. It
is estimated that approximately half a revolution is needed to remove these transients,
and another full revolution is needed to obtain a periodic solution. This corresponds to
approximately 4,000 time steps and thus to 680 hours wall clock time on 600 processors,
i.e. 500,000 CPU hours.

For these full wheel computations, the disk storage space also becomes an issue. If a
solution file is written in double precision, this leads to a file size of 6.7 Gb. Together
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FIGURE 15. Instantaneous entropy distribution for turbine simulations after 593 time steps, i.e.
59.3° rotation of the HPT rotor. Steady solution with the mixing plane approximation (left),
unsteady solution for 20° sector (middle), and unsteady solution for the full wheel (right).

with the 2.1 Gb for the grid file, this leads to a total of approximately 9 Gb of data per
time step. When the solution is to be saved at every time step, this will lead to a disk
storage requirement of approximately 35 Th for the entire simulation; for single precision
this is equal to 17.5 Th. The question is whether to store the whole solution every time
step or only to dump a priori chosen planes. The advantage of the latter approach is
that the disk space requirements are reduced by at least one order of magnitude. The
disadvantage is that some a priori knowledge of the solution is needed.

The numbers above are based on a grid of 88 million cells, i.e. approximately 300,000
per blade passage. It has been shown for the 20° sector that this grid resolution is not
enough to obtain a grid converged solution. It is estimated that such a grid converged
solution is obtained with 1,500,000 cells per blade passage if wall-integrations is used,
i.e. using a grid five times finer. The corresponding CPU and disk space requirements
for such a grid then also increase by a factor of 5, under the assumption that 2,700 time
steps for a full revolution are still enough to obtain a time converged solution.

5.4. Unsteady computations of full-wheel compressor

The full-wheel approach does not require rescaling of the turbomachinery blades. The
current state-of-the-art turbomachinery computations rarely include more than one stage
when computing the entire wheel. Here, however, we compute the full-wheel of the entire
high pressure compressor for an extended period of time, which, to our knowledge, has
not been previously attempted.

The time step chosen for this simulation is such that a full revolution of the HPC takes
7,000 time steps. This corresponds to 50 time steps per blade passing of the blade row
with the most blades. We were able to run this computation on 600 processors for 20
hours obtaining 40 time steps (see Fig. 16), which corresponds to approximately 2° of
rotation.

The size of the solution file for current simulation is approximately 20 GB when stored
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FIGURE 16. Instantaneous entropy distribution for the full wheel compressor simulation after
40 time steps, i.e. 2° rotation of the HPC rotor.

as double precision. Combined with 5.7 GB for the grid, this leads to approximately 26
GB per time step. If the solution is stored at every time step, the total amount of disk
space required for one full revolution is 180 TB. With single precision, this number is
reduced to 90 TB.

The mesh for the full wheel high pressure compressor consists of 220 million control
volumes, which corresponds to approximately 300,000 cells per blade passage. Note that
this grid is a wall-integration grid. From the turbine simulations, we have already con-
cluded that 300,000 cells per passage seems to provide insufficient resolution, even when
wall-functions are used. A better resolution with wall-integration would require about 1.5
million cells per passage. This would lead to full-wheel grids consisting of approximately
1 billion cells.

The large number of control volumes of this case allows for the scalable execution on a
high number of processors. Previous experience on the ALC platform suggests that the
linear speed-up can be expected to be obtained by up to 10,000 processors, provided that
good load balance can be assured.

6. Conclusions

This paper describes the large scale unsteady turbomachinery computations currently
performed at the Center for Integrated Turbulence Simulations (CITS) at Stanford. The
steady simulations of a single multi-stage passage for both turbine and compressor using
the mixing plane approximation represent a challenging test case for compressible RANS



150 van der Weide, Kalitzin, Schluter, Medic & Alonso

flow solvers. The impact of boundary conditions, numerical scheme, turbulence model and
grid resolution can be investigated in detail. The unsteady simulations for a 20° sector
go beyond current industry standards and provide an insight into the unsteady effects
that may significantly influence the important design properties. The computational cost,
although high, is still acceptable and allows for a comprehensive investigation of unsteady
features. However, the geometry usually needs to be modified by rescaling the blade
counts. This change alters the flow physics and might have a significant impact on specific
time dependent features. The full wheel computations circumvent this problem, albeit
at an enormous cost. The grids used here consist of 88 million cells for the turbine and
220 million cells for the compressor. Unfortunately, these grids are still too coarse, and a
higher resolution is needed; the estimate is that grids with at least 5 times as many cells
are needed. However, the described pioneering large scale computations have identified
the computational challenges and have provided an initial understanding of the complex
three dimensional turbomachinery flow features.

7. Acknowledgment

The authors would like to acknowledge support from Saadat Syed, Dillip Prasad and
William Sprout of Pratt & Whitney, who provided grids and boundary conditions.

REFERENCES

ADAMCZYK, J.J. 1999 Aerodynamic analysis of multistage turbomachinery flows in
support of aerodynamic design. ASMFE-99-GT-80.

CHEN, J.P. & BARTER, J.W. 1998 Comparison of time-accurate calculations for the
unsteady interaction in turbomachinery stage. AIAA-98-3292.

DEeNTON, J.D. & SincH, U.K. 1979 Time marching methods for turbomachinery flows.
VKI LS 1979-07.

DURBIN, P.A. 1995 Separated flow computations with the k-e-v2 model. ATAA J. 33,
659-664.

JAMESON, A., SCHMIDT, W. & TURKEL, E. 1981 Numerical solution of the Euler equa-
tions by finite volume methods using Runge Kutta time stepping schemes. AIAA-
81-1259.

JAMESON, A. 1998 Time dependent calculations using multigrid, with applications to
unsteady flows past airfoils and wings. ATAA-91-1596.

MEepic, G., KALITZIN, G., TACCARINO, G. & VAN DER WEIDE, E. 2006 Adaptive wall
functions with applications. 86th AIAA Fluid Dynamics Conference and FExhibit.

KavLitziN, G., MEDIC, G., [ACCARINO, G. & DURBIN, P. A. 2005 Near-wall behavior
of RANS turbulence models and implications for wall function. J. Comp. Phys. 204,
265-291.

ROE, P. 1982 Fluctuations and signals - a framework for numerical evolution problems.
In Numerical Methods for Fluid Dynamics, Academic Press.

SPALART, P. R. & ALLMARAS, S. R. 1994 A one-equation turbulence model for aero-
dynamic flows. La Recherche Aerospatiale 1, 1-23.

Wanga, X. & CHEN J. 2004 A post-processor to render turbomachinery flows using
phase-lag simulations. ATAA-04-615.

WiLcox., D.C. 1988 Reassesment of the scale-determining equation for advanced tur-
bulence models. ATAA J. 26, 1299-1310.



