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Stable and compact finite difference schemes

By K. Mattsson, M. Svärd AND M. Shoeybi

1. Motivation and objectives

Compact second derivatives have long been known to have good accuracy properties
for pure second derivatives. However, for many equations subject to boundary conditions,
stability can not easily be proven for problems with a combination of mixed (∂2/∂x∂y)
and pure (∂2/∂x2, ∂2/∂y2) second derivatives, such as the compressible Navier-Stokes
equations.

We remark that spatial Padé discretizations (see, for example, Lele (1992)) are often
referred to as ”compact schemes”. The approximation of the derivative is obtained by
solving a tri- or penta-diagonal system of linear equations at every time step. Hence, Padé
discretizations lead to full difference stencils, similar to spectral discretizations. In this
paper the term ”compact” will be used exclusively for schemes with a minimal stencil
width.

For the continuous problem one can derive an energy estimate for the linearized and
symmetrized Navier-Stokes equations, proving boundedness of the initial-boundary value
problem (see for example Nördstrom & Svärd (2005) and Carpenter et al. (1999)). Al-
though the analysis is done for 2-D problems, the extension to 3-D problems is straight-
forward. If first-derivative difference operators that satisfy a Summation-By-Parts (SBP)
formula (see Kreiss & Scherer (1974)) are employed twice for all second-derivatives (pure
and mixed), yielding a non-compact stencil, and if the Simultaneous Approximation Term
(SAT) method by Carpenter et al. (1994) is used to implement the boundary conditions,
one can exactly mimic the continuous energy estimate (proving stability). There are two
obvious drawbacks to this approach when compared to a compact formulation, namely:

(1) There is no mechanism to damp the highest frequency mode (spurious oscillations).
(2) Less accurate difference approximations of pure second-derivative terms (due to

the leading order error constant) are created.
The former could partially be resolved by the addition of artificial damping, but it is

difficult to tell a priori how much is needed. Accuracy and stability are closely linked.
The two drawbacks above work together to make compact schemes more accurate than
non-compact schemes, especially in regions where viscous effects are important. A prop-
erty that is not addressed in this paper is computational cost. For a scalar problem on
a Cartesian grid, the compact scheme is clearly less expensive, but for more realistic
applications (for example the 3-D Navier-Stokes equations on a curvilinear grid), this is
still an open question.

Compact second-derivative SBP operators that are stable in combination with first-
derivative SBP approximations were derived in Mattsson & Nordström (2004). However,
it is not clear how to obtain a stable and accurate overall scheme with the addition of
mixed derivative terms.

In Section 2 we discuss the SBP property for the first- and second-derivative difference
operators. A 2-D model for the Navier-Stokes equations is introduced in Section 3, and
we show how to combine the SAT method and the SBP operators to obtain stable finite
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difference approximations using the energy method (see for example Gustafssonet al.
(1995)). In Section 4 the accuracy of the compact and the non-compact formulations are
compared by performing numerical simulations for the both the model-problem and the
2-D Navier-Stokes equations. Conclusions are presented in Section 5.

2. Definitions

The two-dimensional schemes are constructed using 1-D SBP finite-difference opera-
tors. We begin with a short description and some definitions (for more details, see Kreiss
& Scherer (1974); Strand (1994); Mattsson & Nordström (2004)).

2.1. One-dimensional problems

Let the inner product for real-valued functions u, v ∈ L2[0,1] be defined by (u, v) =∫ 1

0
u v dx, and let the corresponding norm be ‖u‖2 = (u, u). The domain (0 ≤ x ≤ 1) is

discretized using N+1 equidistant grid points,

xi = i h, i = 0, 1..., N, h = 1
N .

The approximative solution at grid point xi is denoted vi, and the discrete solution
vector is vT = [v0, v1, · · · , vN ]. Similarly, we define an inner product for discrete real-
valued vector functions u, v ∈ RN+1 by (u, v)H = uT H v, where H = HT > 0, with the
corresponding norm ‖v‖2H = vT H v. The following vectors will be used frequently:

e0 = [1, 0, ..., 0]T , eN = [0, ..., 0, 1]T . (2.1)

Consider the hyperbolic scalar equation ut + ux = 0 (excluding the boundary condi-
tion). Multiplying by u and integration by parts (referred to as the energy method) leads
to

d

dt
‖u‖2 = −(u, ux)− (ux, u) = −u2|10 , (2.2)

where u2|10 ≡ u2(x = 1)− u2(x = 0).

Definition 2.1. A difference operator D1 = H−1Q approximating ∂/∂ x is a compact
first-derivative SBP operator if H = HT is diagonal, xTHx > 0, x 6= 0, and Q+QT =
B = diag (−1, 0 . . . , 0, 1).

A semi-discretization of ut + ux = 0 is vt + D1v = 0. Multiplying by vTH from the
left and adding the transpose lead to

d

dt
‖v‖2H = −(v,H−1Qv)H − (H−1Qv, v)H = −vT (Q+QT )v = v2

0 − v2
N . (2.3)

Equation (2.3) is the discrete analog of (2.2).
For parabolic problems, we need an SBP operator for the second derivative. Consider

the heat equation, ut = uxx. Multiplying by u and integration by parts leads to

d

dt
‖u‖2 = (u, uxx) + (uxx, u) = 2uux|10 − 2‖ux‖2 . (2.4)

Definition 2.2. A difference operator D2 = H−1(−M +BS) approximating ∂2/∂ x2

is said to be a compact second-derivative SBP operator if H = HT is diagonal, xTHx >
0, x 6= 0, M = MT is sparse, xTMx ≥ 0, S includes an approximation of the first-
derivative operator at the boundary and B = diag (−1, 0 . . . , 0, 1).
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Figure 1. Domain 2-D

In Mattsson & Nordström (2004), high-order compact second-derivative SBP oper-
ators were constructed. A semi-discretization of ut = uxx is vt = D2v. Multiplying by
vTH and adding the transpose, lead to

d

dt
‖v‖2H = 2vN (Sv)N − 2v0(Sv)0 − 2vTMv . (2.5)

Formula (2.5) is the discrete analog of (2.4).

Obtaining energy estimates for schemes utilizing both D1 and D2 requires that both
are based on the same norm H.

2.2. Two-dimensional domains

We begin by introducing the Kronecker product

C ⊗D =



c0,0 D · · · c0,q−1 D

...
...

cp−1,0 D · · · cp−1,q−1 D


 ,

where C is a p× q matrix and D is an m× n matrix. Two useful rules for the Kronecker
product are (A⊗B)(C ⊗D) = (AC)⊗ (BD) and (A⊗B)T = AT ⊗BT .

Next, consider the domain Ω defined as 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with an (N+1)×(M+1)-
point equidistant grid as

xi = ihx, i = 0, 1..., N, hx = 1
N ,

yj = jhy, j = 0, 1...,M, hy = 1
M .

The numerical approximation at grid point (xi, yj) is denoted vi,j . We define a discrete
solution vector vT = [v0, v1, . . . , vN ], where vk = [vk,0, vk,1, . . . , vk,M ] is the solution
vector at xk along the y direction, illustrated in Fig. 1. To simplify the notation we
introduce vw, e, s, n to define the boundary values at the west, east, south and north
boundaries (see Fig. 1). In order to distinguish whether a difference operator P is working
in the x or the y direction, we will use the notations Px and Py. The following two-
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dimensional operators will frequently be used:

Dx = (D1 ⊗ Iy), Dy = (Ix ⊗D1),
D2x = (D2 ⊗ Iy), D2y = (Ix ⊗D2),
Hx = (H ⊗ Iy), Hy, = (Ix ⊗H),

(2.6)

where D1, D2, and H are the one-dimensional operators. Ix, y are the identity matrices
of appropriate sizes in the x and y direction, respectively. We also introduce the two-
dimensional norm H̄ ≡ HxHy.

3. Numerical method

Our main interest is the compressible Navier-Stokes equations, which can be written
as:

ut + (Au)x + (Bu)y = C11uxx + C12uxy + C21uyx + C22uyy, [x, y] ∈ Ω, t ≥ 0. (3.1)

The non-linear equations can be stated as (3.1) but we consider (3.1) to be the linearized,
symmetrized, and frozen coefficient equations. It can be shown (see Strang (1964))
that if the frozen coefficient problem is well-posed so the non-linear problem will be for
smooth solutions. These equations have been studied more extensively (see for example
Nördstrom & Svärd (2005)).

3.1. The continuous model problem

As a model of (3.1) we consider the two-dimensional non-linear parabolic problem

ut + (
u2

2
)x + (

u2

2
)y = c11uxx + c12uxy + c21uyx + c22uyy + F, [x, y] ∈ Ω, t ≥ 0, (3.2)

where F is a forcing function. Equation (3.2) is subject to the following boundary con-
ditions:

αwu+ c11ux + c12uy = gw
αeu+ c11ux + c12uy = ge

αsu+ c21ux + c22uy = gs
αnu+ c21ux + c22uy = gn

. (3.3)

The subscripts denote (w)est, (e)ast, (s)outh and (n)orth boundaries, respectively. The
main focus of this paper is to analyze the discretization of the viscous terms.

To further simplify the analysis, we will consider the linearized parabolic problem

ut + aux + buy = c11uxx + c12uxy + c21uyx + c22uyy + F, [x, y] ∈ Ω, t ≥ 0 (3.4)

and assume that the boundary data are homogeneous. (The analysis holds for homoge-
neous data, but introduces unnecessary notation. ) We wish to discretize uxx and uyy
with the compact stencil while the mixed derivatives are approximated using Dx and
Dy. The problem lies in deriving sufficient stability conditions for the resulting scheme.

We apply the energy method to (3.4), and with the use of (3.3) we obtain

d

dt
‖u‖2 = BT +DI + FO , (3.5)

where FO = η‖u‖+ 1
η‖F‖ (for an arbitrary constant η > 0) and

DI = −
∫ 1

0

∫ 1

0

wT (C + CT )w dx dy , (3.6)
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where

C =

[
c11 c12

c21 c22

]
, w =

[
ux
uy

]

denotes the contribution from the dissipative terms. Parabolicity requires that

xT (C + CT )x ≥ 0 . (3.7)

The Navier-Stokes equations (3.1) satisfy the same relation (3.7) with Cij instead of
cij . (See Nördstrom & Svärd (2005).)

The boundary terms are given by

BT =

∫ 1

0

(a+ 2αw)u2
w − (a+ 2αe)u

2
e dy +

∫ 1

0

(b+ 2αs)u
2
s − (b+ 2αn)u2

n dx .

An energy estimate exists for

(a+ 2αw) ≤ 0 , (a+ 2αe) ≥ 0 , (b+ 2αs) ≤ 0 , (b+ 2αn) ≥ 0 . (3.8)

3.2. The non-compact formulation

A semi-discretization of (3.4) employing only the first-derivative SBP operator combined
with the SAT method can be written as

vt + aDxv + bDxv = c11DxDxv + c12DxDyv

+ c21DyDxv + c22DyDyv + SAT + F .
(3.9)

The discrete version of the boundary conditions (3.3) is given by

Lwv = αwvw + c11(Dxv)w + c12(Dyv)w = gw
Lev = αeve + c11(Dxv)e + c12(Dyv)e = ge
Lsv = αsvs + c22(Dyv)s + c21(Dxv)s = gs
Lnv = αnvn + c22(Dyv)n + c21(Dxv)n = gn

. (3.10)

The penalty term in (3.9) is given by

SAT =
+τwH

−1
x e0 ⊗ (Lwv − gw) + τeH

−1
x eN ⊗ (Lev − ge)

+τsH
−1
y (Lsv − gs)⊗ e0 + τnH

−1
y s(Lsv − gn)⊗ eN . (3.11)

Lemma 3.1. The scheme (3.9) with homogeneous data has a non-growing solution, if
D1 is a compact first-derivative SBP operator, τw, s = 1, τe, n = −1 and (3.7), (3.8) hold.

Proof. Let F = gw, e, s, n = 0. Multiplying (3.9) by vTt H̄ from the left and adding the
transpose lead to

d

dt
‖v‖2H̄ =− 2c11v

T
wH(Dxv)w(1− τw)− 2c12v

T
wH(Dyv)w(1− τw)

+ 2c11v
T
e H(Dxv)e(1 + τe) + 2c12v

T
e H(Dyv)e(1 + τe)

− 2c22v
T
s H(Dyv)s(1− τs)− 2c21v

T
s H(Dxv)s(1− τs)

+ 2c22v
T
nH(Dyv)n(1 + τn) + 2c21v

T
nH(Dxv)n(1 + τn)

+ (2τwαw + a)vTwHvw + (2τeαe − a)vTe Hve

+ (2τsαs + b)vTs Hvs + (2τnαn − b)vTnHvn +DI

.
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The dissipative term is given by

DI = −
[
Dxv
Dyv

]T [
(C + CT )⊗ H̄

]
w

[
Dxv
Dyv

]
, (3.12)

which exactly mimics (3.6). If τw, s = 1, τe, n = −1 we obtain

d

dt
‖v‖2H̄ = (2αw + a)vTwHvw − τe(2αe + a)vTe Hve

+ (2αs + b)vTs Hvs − (2αn + b)vTnHvn +DI
.

This is completely analogous to (3.5). If (3.8) hold we obtain a non-growing energy.

3.3. The compact formulation

A semi-discretization of (3.4) using compact operators and the SAT method can be
written as

vt + aDxv + bDxv = c11D2xv + c12DxDyv

+ c21DyDxv + c22D2yv + SAT + F .
(3.13)

The discrete version of the boundary conditions (3.3) are now (compare with (3.10))
given by

L̃wv = αwvw + c11(Sxv)w + c12(Dyv)w = gw
L̃ev = αeve + c11(Sxv)e + c12(Dyv)e = ge
L̃sv = αsvs + c22(Syv)s + c21(Dxv)s = gs
L̃nv = αnvn + c22(Syv)n + c21(Dxv)n = gn

. (3.14)

The penalty term in (3.13) is given by

SAT =
+τwH

−1
x e0 ⊗ (L̃wv − gw) + τeH

−1
x eN ⊗ (L̃ev − ge)

+τsH
−1
y (L̃sv − gs)⊗ e0 + τnH

−1
y s(L̃sv − gn)⊗ eN

. (3.15)

Lemma 3.2. The scheme (3.13) with homogeneous data has a non-growing solution,
if D1 is a compact first-derivative SBP operator, D2 is a compact second-derivative SBP
operator, xT (M −QTH−1Q)x ≥ 0, τw, s = 1, τe, n = −1 and (3.7), (3.8) hold.

Proof. Let F = gw, e, s, n = 0. Multiplying (3.13) by vTt H̄ from the left and adding the
transpose lead to

d

dt
‖v‖2H̄ =− 2c11v

T
wH(Dxv)w(1− τw)− 2c12v

T
wH(Syv)w(1− τw)

+ 2c11v
T
e H(Dxv)e(1 + τe) + 2c12v

T
e H(Syv)e(1 + τe)

− 2c22v
T
s H(Dyv)s(1− τs)− 2c21v

T
s H(Sxv)s(1− τs)

+ 2c22v
T
nH(Dyv)n(1 + τn) + 2c21v

T
nH(Sxv)n(1 + τn)

+ (2τwαw + a)vTwHvw + (2τeαe − a)vTe Hve

+ (2τsαs + b)vTs Hvs + (2τnαn − b)vTnHvn +DIc

.

In Lemma (3.1) it is shown that by using the first derivative twice, i.e., (D1)2 = H−1(−QTH−1Q+
BD1) to approximate the two terms, c11uxx and c22uyy, we obtain DI as in (3.12).
The dissipative part of (D1)2 is given by −QTH−1Q. If the compact second derivative
D2 = H−1(−M + BS) is used, the dissipative part is given by −M . We restate M as
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M = QTH−1Q+(M−QTH−1Q) and define the rest term R ≡M−QTH−1Q. According
to the assumption, R is positive semi-definite. Then we obtain for the compact scheme
the dissipative term analogous to (3.12),

DIc = DI − c11v
TRxHyv − c22v

THxRyv ,

which mimics (3.6) with two small additional damping terms.
Finally, for stability of the scheme we also need to bound the boundary terms. With

τw, s = 1, τe, n = −1 we obtain

d

dt
‖v‖2H̄ = (2αw + a)vTwHvw − τe(2αe + a)vTe Hve

+ (2αs + b)vTs Hvs − (2αn + b)vTnHvn +DIc

.

This is completely analogous to (3.5). If (3.8) hold we obtain a non-growing energy.

3.4. Definiteness of R

Consider a pth-order accurate discretization of the periodic problem (3.13). One can
easily derive the following relations for the rest term R(p) (see Lemma 3.2)

−R(2) = −h3

4 D4

−R(4) = +h5

18D6 − h7

144D8

−R(6) = −h7

80D8 + h9

600D10 − h11

3600D12

−R(8) = + h9

350D10 − h11

2520D12 + h13

14700D14 − h15

78400D16,

(3.16)

where

D2n = (D+D−)n (3.17)

is an approximation of d2n

d x2n ; (D+D−v)j = (vj+1−2vj +vj−1)/h2 is the compact second-
order finite difference approximation. By using Fourier analysis, it is easily shown (see,
for example, Mattsson et al. (2004)) that −R(p) constitutes only dissipative terms.

We have shown that the non-compact stencil plus a dissipative term is equal to the
compact scheme for a Cauchy problem. Since we have derived an energy estimate for the
non-compact scheme, we conclude that the same estimate (with an additional dissipative
term) will lead to stability for the compact scheme as well. However, a careful boundary
closure is required in order to maintain this property for initial-boundary value problems.

Lemma (3.2) introduces a relation between the compact first- and second-derivative
SBP operators via R ≡M −QTH−1Q. For the second-order accurate case we have

R(2) =
1

h




1
4 − 1

2
1
4 0 0 0 0

− 1
2

5
4 −1 1

4 0 0 0

1
4 −1 3

2 −1 1
4 0 0

0 1
4 −1 3

2 −1 1
4 0

0 0 1
4 −1 3

2 −1 1
4

0 0 0 1
4 −1 5

4 − 1
2

0 0 0 0 1
4 − 1

2
1
4




. (3.18)

The following Theorem can be proven (although it is not shown here).

Theorem 3.3. Let A be an n×n pentadiagonal symmetric matrix. Assume
∑n
j=1Aij =
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0 and Aii > 0, Ai,i+1 < 0, Ai,i+2 > 0. If −A2,3 ≥ 2A2,4, −An,n−1 ≥ 2An,n−2 and
−Ai,i+1 ≥ 2Ai−1,i+1 + 2Ai,i+2, i = 3...n− 2, then A is positive semi-definite.

Corollary 3.4. The matrix, R(2), given by (3.18) is positive semi-definite.

Proof. The conditions in Theorem 3.3 can easily be verified.

In the fourth- and sixth-order cases it is possible to derive similar Theorems. After
extensive analysis (not shown here) we conclude that the compact schemes are bounded
by energy estimates, if the boundary closures are chosen properly.

4. Results

We compare the efficiency of the compact and the non-compact formulation by per-
forming numerical simulations of the non-linear problem (3.2). Choosing c11 = c12 =
c21 = c22 = ε, we construct the analytic solution

u = −a tanh

(
a ((1− α)x+ αy − ct)

2 ε

)
+ c , (4.1)

which describes a two-dimensional viscous shock. The parameter α defines the propaga-
tion angle of the shock, and a,c can be chosen arbitrarily. We solve the problems on a
rectangular domain Ω. The standard explicit fourth-order Runge-Kutta method is used
for time integration.

One of the leading motives (see Section 1) for using a compact formulation was to have
damping on the high-frequency modes, which are often triggered by unresolved features
in the solution (like a shock). In the first test we compared the compact and non-compact
fourth-order discretizations with a = 1, c = 2, and α = 0.2, allowing the viscous shock
to travel out through the north-east boundary. The results are shown in Fig. 2.

In the second test we choose a = 1, c = 0 to obtain a stationary viscous shock. This
means that there are no dispersive errors present in the computation, which isolates
the dissipative errors. To test the efficiency in handling mildly under-resolved problems
(strong shocks require additional artificial dissipation), we compared the second-order
formulations for the case with ε = 0.01. For N < 100, this is a slightly under-resolved
problem. To obtain a solution with an l2(error) < 0.01, the compact second-order for-
mulation requires 382 grid points, and the non-compact 2nd-order formulation requires
942 grid points. This is due to the presence of high-frequency modes in the non-compact
formulation. In Fig. 2 we show a comparison of the convergence history between the com-
pact and the non-compact formulation on the mesh with 382 grid points. Both solutions
were run to t = 10. The compact discretization is clearly superior.

4.1. The two-dimensional compressible Navier-Stokes

To demonstrate that the stability properties of (3.4) carry over to the 2-D Navier-Stokes
equations, we will compute an analytic viscous shock solution (see Svärd & Nordström
(2006)) and laminar flow over a cylinder. (In fact, the the stability properties carry over
to the 3-D Navier-Stokes equations as well.)

In the first test we chose a computational domain 0 ≤ x, y ≤ 3. The shock is initiated
0.25 unit lengths away from the diagonal of the box and is propagated with an angle of
45o, 0.5 length units across the grid. The Reynold number is 10, which results in a smooth
profile. A convergence study is shown in Table 1. The convergence rate is calculated as
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Figure 2. The convergence histories. The solid line (and circles) are the fourth-order compact
and the dashed (and boxes) the non-compact.
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N l
(compact)
2 q(compact) l

(non−compact)
2 q(non−compact)

30 -1.61 -1.43
60 -2.28 2.22 -2.06 2.07
120 -2.89 2.14 -2.68 2.06
240 -3.50 2.10 -3.28 2.05

Table 1. log(l2 − error) and convergence rate, q, for the compact and non-compact stencils
on Cartesian grids.

Drag Maximum Drag Maximum Lift Base Pressure
Coefficient Coefficient Coefficient Coefficient

1.3471 1.3569 0.3254 0.7407

Strouhal Separation Recirculation Umin
number Angle Bubble length

0.1687 118.6 1.414 -0.1778

Table 2. Simulation results.

q = log10

(‖w − w(h1)‖h
‖w − w(h2)‖h

)
/ log10

(
h1

h2

)
, (4.2)

where w is the analytic solution and w(h1) the corresponding numerical solution with
grid size h1. ‖w − w(h1)‖h is the discrete l2 − error.

Although the study is not shown here, the difference in accuracy between the compact
and wide stencil formulations (for a steady problem) was found to be larger when the
shock is not fully resolved (by increasing the Re number, using a coarse grid).

In the second test we computed the flow over a 2-D cylinder at ReD = 100. An
unstructured finite volume code for compressible N-S equations is used to simulate the
flow. The free-stream Mach number is set to 0.1 to be able to compare the results from
previous incompressible simulations. The domian is a cylinder of radius 30×D. Structured
grid is used near the cylinder while unstructured grid is used to capture the wake. To
resolve the thin laminar boundary layer in front of the cylinder, the minimum radial
grid spacing is set to 3× 10−3, while 260 points are used in the circumferintial direction.
Figure 3 shows the contour of density.

Table 2 shows the results, which are in good agreement with the results presented in
Kravchenko (1998); Kwon & Choi (1995).
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Figure 3. Flow over a 2-D cylinder (density), ReD = 100.

5. Conclusions and future work

Our approach have been to use SBP operators and the SAT technique to enforce the
boundary conditions. By using energy estimates it is proven that there are compact SBP
operators that lead to stability for problems with mixed and pure second derivatives, such
as the compressible Navier-Stokes equations. Numerical computations for both Burgers’
equation and the two-dimensional Navier-Stokes equations corroborate the stability prop-
erties and also show that the compact schemes are more accurate than the corresponding
non-compact schemes.

The next step will be to couple the compact unstructured finite volume discretization
to a high-order finite difference discretization to obtain an efficient hybrid Navier-Stokes
solver. This will allow us to capture the geometry using the unstructured method and
also allow us to capture the wave propagation in the farfield.
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