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A stable, efficient, and adaptive hybrid method
for unsteady aerodynamics

By J. Nordström†, M. Svärd, M. Shoeybi, F. Ham, K. Mattsson, G. Iaccarino,
E. van der Weide AND J. Gong‡

1. Motivation and objectives

The generation and transportation of vortices from wingtips, rotors, and wind mills,
and the generation and propagation of sound from aircraft, cars, and submarines require
methods that can handle locally highly non-linear phenomena in complex geometries as
well as efficient and accurate signal transportation in domains with smooth flow and
geometries.

These demands require a hybrid between a finite volume method on an unstructured
grid (for the non-linear phenomena and complex geometries) and a high-order finite
difference method on the structured part (for the wave propagation).

There are essentially two different types of hybrid methods. The most common one
employs different governing equations in different parts of the computational domain. A
typical example is noise generated in an isolated part of the flow, considered as the sound
source. The nonlinear phenomenon in the complex geometry is often computed by the
Euler or Navier-Stokes equations. The sound propagation to the far field is considered
governed by the linear wave equation with source terms from the Euler or Navier-Stokes
calculation, see Lyrintzis (1994); Wells & Renaut (1997).

All coupling procedures that involve different governing equations suffer from one ma-
jor problem. A stable and accurate numerical procedure does not suffice for convergence
to the true solution, even if accurate data is at hand. Convergence to the true solution
requires a priori knowledge of exactly where and how the solution shifts from being
governed by one equation set to being goverened by the other. This a priori knowledge
cannot be obtained as part of the coupling procedure.

In this project we intend to develop another type of hybrid method that avoids the
artificial decoupling mentioned above and uses the same governing equations (in this
case the Euler or Navier-Stokes equations) in the whole computational domain, not just
close to the source. The word hybrid points in this case to the use of different numerical
methods in different parts of the computational domain. Examples of this type of hybrid
method can be found in Burbeau & Sagaut (2005); Rylander & Bondeson (2000). In this
type of coupling procedure (provided that accurate data is known), a stable and accurate
numerical procedure does suffice for convergence to the true solution.

Strict stability, which prevents error growth on realistic mesh sizes, is very important
for calculations over long times. We have derived and studied strictly stable unstruc-
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tured finite volume methods (Nordström et al. 2003; Svärd & Nordström 2004; Svärd
et al. 2006) and higher-order finite difference methods (Carpenter et al. 1999; Nord-
ström & Carpenter 1999, 2001; Mattsson & Nordström 2004; M. & Nordström 2006) for
hyperbolic, parabolic, and incompletely parabolic problems. These methods employ so-
called summation-by-parts (SBP) operators and impose the boundary conditions weakly
(Nordström et al. 2003; Carpenter et al. 1994).

In (Nordström & Gong 2006) it was proven that a specific interface procedure is stable
for hyperbolic systems of equations. This project will rely heavily on these results; we
will apply the theoretical results to the Euler equations. In a forthcoming paper we will
include the treatment of the viscous terms in the Navier-Stokes equations.

A general 3-D code (CDP) that uses the node-centered finite volume method mentioned
above has been developed by the Center for Turbulence Research (CTR) at Stanford
University. A 3-D multi-block code (SUmb) that uses the finite difference technique
discussed above is available at the Department of Aeronautics & Astronautics at Stanford
University. These codes compute approximations to the Euler or Navier-Stokes equations
and are the initial building blocks for the new hybrid method. A third coupling code
(CHIMPS-lite, a simplified version of CHIMPS) will administer the coupling procedure
and make it possible for the two solvers to communicate in an efficient and scalable way
(Alonso et al. 2006).

2. Analysis

The material in this section is based on Nordström & Gong (2006). To introduce our
technique we will consider the hyperbolic system

ut +Aux +Buy = 0, −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 (2.1)

with suitable initial and boundary conditions. A and B are constant symmetric matrices
with k rows and columns. We will also consider a simplified computational domain that is
divided into two subdomains. A so-called edge-based unstructured finite volume method
will be used to discretize (2.1) on subdomain [−1, 0]× [0, 1] with an unstructured mesh,
while a high-order finite difference method will be used on subdomain [0, 1]× [0, 1] with
a structured mesh (see Fig. 1).

The fact that the unknowns in the finite volume and the finite difference methods are
located in the nodes and can be collocated at the interface is a key ingredient in the
coupling procedure presented below.

2.1. The edge-based finite volume method

In Nordström et al. (2003); Nordström & Gong (2006) it was shown that the semi-discrete
finite volume form of (2.1) on subdomain [−1, 0]× [0, 1] can be written

ut + {[(PL)−1QLx ]⊗A}u + {[(PL)−1QLy ]⊗B}u = {[(PL)−1(ELI )TPLy ]⊗ ΣL}(uI − vI)

+ SATL, (2.2)

where SATL is the penalty term that imposes the outer boundary conditions weakly.
The SAT technique is a penalty procedure that can be used to specify outer boundary
conditions as well as treating block interfaces. uI and vI are vectors that represent u and
v (v is the discrete finite difference solution that will be presented below) on the interface
respectively. ELI is a projection matrix that maps u to uI such that uI = (ELI ⊗ Ik)u.
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Figure 1. The hybrid mesh on the computational domain.
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(b) on the boundary

Figure 2. The grid (solid lines) and the dual grid (dashed lines).

The non-zero components of ELI have the value 1 and appear at the interface. PLy ⊗ ΣL

is a penalty matrix that will be determined below by stability requirements.
PL is a positive diagonal m ×m matrix with the control volumes Ωi on the diagonal

and QLx and QLy are almost skew symmetric m×m matrices. The matrices QLx and QLy
have the components

(QLx )ij =
∆yj

2
= −(QLx )ji, (QLx )ii/∈∂Ω = 0, (QLx )ii∈∂Ω =

∆yi
2
, (2.3)

(QLy )ij = −∆xj
2

= −(QLy )ji, (QLy )ii/∈∂Ω = 0, (QLy )ii∈∂Ω = −∆xi
2
. (2.4)

The definition of ∆xj and ∆yj is presented in Fig. reffig:grid. Moreover, (2.3) and (2.4)
imply that QLx and QRy satisfy

QLx + (QLx )T = Y, QLy + (QLy )T = X, (2.5)
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where the non-zero elements in Y and X are ∆yi, −∆xi and correspond to the boundary
points. For more details on the SBP properties of the finite volume scheme, see Nordström
et al. (2003).

2.2. The high-order finite difference method

Consider the subdomain [0, 1] × [0, 1] with a structured mesh of n× l points. The finite
difference approximation of u at the grid point (xi, yj) is a k×1 vector denoted vij . We or-
ganize the solution in the global vector v = [v11, . . . ,v1l,v21, . . ., v2l, . . . ,vn1, . . . ,vnl]

T .
vx and vy are approximations of ux and uy and are approximated using the high-order
accurate SBP operators for the first derivative constructed in Mattsson & Nordström
(2004); Kreiss & Scherer (1974); Strand (1994). The difference operators in the x and y
direction on the right subdomain are denoted (PRx )−1QRx and (PRy )−1QRy , respectively.

The semi-discrete approximation of (2.1) on subdomain [0, 1]× [0, 1] can be written,

vt + {[(PRx )−1QRx ]⊗ IRy ⊗A}v + {IRx ⊗ [(PRy )−1QRy ]⊗B}v = SATR

+ {[(PRx ⊗ PRy )−1(ERI )T ]PRy ⊗ ΣR}(vI − uI), (2.6)

where the sizes of the identity matrices IRx and IRy are n×n and l×l respectively. SATR is

the SAT penalty term for the outer boundary conditions. ERI is a projection matrix that
maps v to vI , that is, vI = (ERI ⊗ Ik)v. ΣR is a penalty matrix that will be determined
below by stability requirements.

Note that uI and vI in (2.2) and (2.6) are collocated at the interface. This is absolutely
essential for the accuracy of the hybrid scheme. It will be shown that it is also necessary
for stability.

Note that the operators (PRx )−1QRx and (PRy )−1QRy are SBP operators since matrices

PRx and PRy are symmetric and positive definite and the matrices Qx and Qy are nearly
skew-symmetric, that is,

QRx +
(
QRx
)T

= DR
x = diag(−1, 0, ...0, 1), QRy +

(
QRy
)T

= DR
y = diag(−1, 0, ...0, 1), (2.7)

where DR
x and DR

y are n× n and l × l matrices, respectively.

2.3. Stable interface treatment

We define the norms NL = PL⊗ Ik and NR = (PRx ⊗PRy )⊗ Ik, where NL = (NL)T > 0

and NR = (NR)T > 0. We also define an inner product and a norm for discrete real
vector-functions a,b ∈ Rn by

(a,b)H = aTHb, ‖a‖2H = (a, a), H = HT > 0. (2.8)

We apply the energy method by multiplying (2.2) and (2.6) with uTNL and vTNR

respectively. We also use (2.5), (2.7), (2.8), (2.5) and assume that the terms including uB ,
vE , vS , vN at the outer boundaries are precisely cancelled by the SAT terms (Carpenter
et al. 1999; Nordström & Carpenter 1999). This yields the energy estimate

d

dt

(
‖u‖2NL + ‖u‖2NR

)
= [uI ,vI ]

TMI [uI ,vI ], (2.9)

where

MI =

[
−PLy ⊗A+ PLy ⊗ ΣL + PLy ⊗ (ΣL)T −PLy ⊗ ΣL − PRy ⊗ ΣR

−PLy ⊗ ΣL − PRy ⊗ ΣR PRy ⊗A+ PRy ⊗ ΣR + PRy ⊗ (ΣR)T

]
.
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We need MI to be negative semi-definite for stability. Consider a simplified case where

PLy = PRy = Py, ΣL = (ΣL)T , ΣR = (ΣR)T . (2.10)

This yields,

MI = Py ⊗
[
−A+ 2ΣL −ΣL − ΣR

−ΣL − ΣR A+ 2ΣR

]
= Py ⊗M.

To obtain stability M has to be negative semi-definite. We can diagonalize A by
XTAX = Λ, where X is an orthogonal matrix consisting of the eigenvectors of A.
Moreover, consider penalty parameters ΣL and ΣR of the form XTΣLX = ΛL and
XTΣRX = ΛR. We denote by λi the ith diagonal component of Λ and similarly λLi and
λRi for ΛL and ΛR. Then we obtain a negative semi-definite M if

λRi = λLi − λi, λLi ≤
λi
2
, i = 1, . . . , k. (2.11)

The first condition in (2.11) is recognized as the condition for a conservative interface
treatment. The second condition in (2.11) leads to stability if conservation is guaranteed.
For more details, see Nordström & Carpenter (1999).

We have proved the following proposition:

Proposition 2.1. If the conditions (2.10)-(2.11) hold, (2.9) leads to a bounded energy
and (2.2), (2.6) have a stable and conservative interface treatment.

The specific SBP operators that are based on diagonal norms are given in Mattsson &
Nordström (2004); Strand (1994). When we use the second-order diagonal norm PRy =
diag[1/2, 1, . . . , 1, 1/2]/h on the right subdomain, we do not need to change the control
volumes on the left domain, since PLy = PRy . But the standard fourth- and sixth-order
diagonal norms are

1
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(2.12)
respectively. In both cases we need to modify the control volume for the finite volume
method at the points on the interface to guarantee PLy = PRy . The old dual grid for the
points at the interface consists of the lines between the center of the triangles and the
midpoints of the edges. In order to match PLy and PRy , the new lines will connect the

center of the triangles and the points at the interface that correspond to the PRy (see
Fig. 3).
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(b) Sixth-order SBP

Figure 3. The modified control volumes for the points on the interface.

2.4. The coupling code, CHIMPS-lite

A general 3-D code (CDP) that uses the node-centered finite volume method previously
mentioned has been developed by the Center for Turbulence Research (CTR) at Stanford
University. Also available at the Department of Mechanical Engineering at Stanford Uni-
versity is a 3-D multi-block code (SUmb) based on high order finite difference methods.

These two codes compute approximations to the Euler or Navier-Stokes equations and
are the initial building blocks for the new hybrid method. The codes are node-based
and use SBP operators and penalty techniques for imposing the boundary and interface
conditions weakly. This numerical technique enables coupling of the two codes by sending
the value of the dependent variables in the nodes located on the interface to the other
code while simultaneously recieving the colocated data at the interface from the other
code. Each code provides boundary data to the other code.

A third coupling code (CHIMPS-lite) administers the coupling procedure and makes it
possible for the two solvers to communicate in an efficient and scalable way. CHIMPS-llite
is a simplified version of CHIMPS (Alonso et al. 2006) designed specifically for interfaces
with collocated nodes where no interpolation is required. In an initial setup phase, both
codes register their interface nodes with CHIMPS-lite, and the parallel communication
pattern is built. Using this communication pattern, CHIMPS-lite then facilitates the ex-
change of interface data at each stage in the Runge-Kutta scheme. The development of
coupling software like CHIMPS and CHIMPS-lite is an essential new ingredient that will
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Figure 4. Transport of a vortex across an interface for the Euler equations.

take the coupling idea from theoretical concept to practical tool for fluid flow investiga-
tions.

3. Results

We consider this project as work in progress; only a few preliminary results currently
exist. Fig. 4 presents a calculation using the unstructured finite volume code CDP coupled
to the high order finite difference code SUmb. The calculation is fourth order accurate
and shows the transport of a vortex across an interface for the Euler equations. Other
similar results have been produced. The results indicate that the procedure is stable and
useful.

4. Future work

Future work involves verifying the computational procedure against exact solutions to
ensure that it converges at the correct rate. We also intend to apply the method to a
high-lift device problem with complex geometry and high accuracy requirements. These
results will be presented at the 2007 SIAM Conference on Computational Science and
Engineering, in Costa Mesa, California.

Viscous terms will then be included and verified in the same manner. A stable and
accurate operational hybrid method for the Navier-Stokes equations will allow for the
analysis of very demanding fluid flow problems involving complex geometries and wave
propagation effects that are not possible to address today.
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