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Anomalous Knudsen diffusion and reactions in
disordered porous media

By S. Fedotov†, S. H. Kim AND H. Pitsch

1. Motivation and objectives

In this paper we study the Knudsen diffusion and reactions in the random porous media
in terms of continuous time random walk (CTRW) models. The main purpose of the work
is to set up a mathematical model describing anomalous transport of molecules, absorp-
tion and reaction of molecules on pore walls. Anomalous transport is known to exist in a
wide range of physical, chemical and biological situations (see reviews Metzler & Klafter
2000; Metzler & Klafter 2004). The theory of anomalous diffusion is well-established and
leads to the integral equations or the alternative fractional diffusion equations for number
densities. Despite the progress in understanding the anomalous transport, most work has
concentrated on the passive density of the particles, and comparatively little is known
about the interaction of non-standard transport with chemical reactions. This paper is
intended to address this issue by utilizing the random walk techniques in order to model
the Knudsen diffusion with reactions in disordered porous media.

The traditional approach to reaction-transport phenomena is based on reaction-diffusion
equations. Its main feature is that the reaction and diffusion processes are separable. It
has been discovered recently that this is no longer the case for subdiffusive transport
with reactions (Henry et al. 2006; Yadav & Horsthemke 2006; Fedotov & Iomin 2007).
The memory effects in the random walks result in a non-trivial combination of reac-
tions and spatial transport for densities. Thus new mesoscopic models are necessary to
make long-awaited progress in understanding and developing a theoretical description of
anomalous transport in the random porous media. Our aims are to (i) use a probabilis-
tic approach for underlying microscopic transport for molecules; (ii) derive mesoscopic
balance equations for number densities; (iii) show that the standard mean-field reaction-
diffusion equations do not always give the right mesoscopic description; and (iv) validate
the models by performing Monte Carlo simulations.

In the Knudsen regime, when the transport is dominated by collisions with the pore
walls, the molecules move along the sequence of line segments (chords) connecting the
pore surface. The main statistical characteristics of the disordered porous media is the
chord length probability density function f(r). Usually it has a power law distribution
f(r) ∼ r−µ as r → ∞ and may lead to anomalous transport of molecules (Levitz 1997).
It is assumed that a molecule moves a distance r chosen from a probability density
function f(r), then it hits the pore wall and changes direction. The new direction is
independent of the direction in which it approaches the wall. This can be described by
the well-known Knudsen cosine law. Here we approximate the random trajectories of
molecules by CTRW, which involves two random time scales τf and τw. The first one
is the flight time, τf = r/c, where c is the speed of the molecule, and the second time
τw is the waiting time of temporal absorption of molecules by the pore surface. One
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can identify two asymptotic regimes: τf << τw and τf >> τw that correspond to the
different models: random jumps model and Levy walks (Metzler & Klafter 2000; Metzler
& Klafter 2004).

2. Knudsen diffusion, reactions and random walk models

For simplicity we consider the Knudsen diffusion in hypothetical 2-D pore represented
by two parallel lines a distance l apart (Malek & Coppens 2005). The interaction of
molecules with the pore wall can be described as follows. When a molecule hits the wall,
it can either react on the surface with the probability α or it can be temporally absorbed
for the time τw with the probability 1 − α. It is convenient to consider the horizontal
displacement of molecules and corresponding 1-D random walk. The key probabilistic
characteristic is the joint probability density function Φ (x, t) governing the single transi-
tion. It gives the probability of making a step of length x within time interval t to t+ dt.
It can be written in the following form

Φ (x, t) = ψ(t|x)ρ(x), (2.1)

where ρ(x) is the probability density function to move a distance of length x and ψ(t|x)
is the conditional pdf making this displacement in time t. The explicit expression for the
function ρ(x) can be found from the standard cosine law: dp = 1

2
cos θdθ. It gives the

probability that the molecule leaves the wall in the direction forming the angle θ with
the normal to the surface. From two equations ρ(x)dx = 1

2
cos θdθ and x = l tan θ (see

Fig.1) we obtain

ρ(x) =
1

2l

(
1 +

(x
l

)2
)

−
3

2

. (2.2)

This is an example of a power law distribution for which ρ(x) ∼ x−3 as x → ∞. In the
following we consider the probability density function involving the exponent µ > 2

ρ(x) = a

(
1 +

(x
l

)2
)

−
µ

2

(2.3)

with the asymptotic property ρ(x) ∼ x−µ as x→ ∞ and the distribution with the cutoff
lcut

ρ(x) =

{
a

(
1 +

(
x
l

)2
)
−

µ

2

, |x| ≤ lcut

0, |x| > lcut

(2.4)

where a is the normalization constant.
When the time of flight τf is small compared to the time of absorption τw we can

use the random jumps model. In this case the function Φ (x, t) can be written in the
decoupled form

Φ (x, t) = ψ(t)ρ(x), (2.5)

where ψ(t) is the waiting time distribution for the absorption time τw and ρ(x) is the
jumps-pdf. This form corresponds to the case when the waiting time and jumps are
independent. The survival probability for the molecule to stay at the surface is

Ψ (t) = Pr [t > τw] =

∫
∞

t

ψ(τ)dτ. (2.6)

The anomalous (subdiffusion) regime occurs if the mean waiting time τ =
∫
∞

0
τψ(τ)dτ
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is infinite and the variance σ2 =
∫

R1 x
2ρ(x)dx is finite. If the asymptotic behavior for

the waiting-time density ψ (t) for large t is t−1−γ with 0 < γ < 1, the mean waiting time
τ = ∞ and the mean-squared displacement ∼ σ2tγ (subdiffusion) (Metzler & Klafter
2000). For the finite mean value τ , we have the standard diffusion for which the mean-
squared displacement is Dt, where

D =
σ2

2τ
. (2.7)

Decoupling assumption (2.5) is inappropriate for long jumps x for which our assumption
τf = x/c << τw is no longer valid. That is why one needs to consider the jumps-pdf ρ(x)
with a finite variance: σ2 <∞ such as Eq. (2.4).

Note that Levy flights correspond to the case when the time of flight τr is large com-
pared to the absorption time τw. In this case we have a coupled probability density
function (2.1) with the pdf ρ(x) for horizontal displacements and the conditional pdf
ψ(t|x) to move along the given distance of length x in time t. If all particles move with
the constant velocity v, the pdf ψ(t|x) has the form ψ(t|x) = δ(x − vt). In what follows
we consider the random jumps model only.

3. Random jumps models and mesoscopic equations

Now we are in a position to discuss the mesoscopic reaction-transport process in porous
media in the Knudsen regime. The main purpose is to show that the standard mean-
field reaction-diffusion equations do not always give the right mesoscopic description.
We introduce two mesoscopic densities J (x, t) and n(x, t). The first one is the number
of molecules reaching the point x at time t. The equation for J (x, t) can be written in
terms of joint pdf Φ(x, t) = ψ(t)ρ(x) and the initial density n0(x)

J(x, t) = (1−α)

∫ t

0

∫
∞

−∞

J(x−z, t−τ)ψ(τ)ρ(z)dzdτ+(1−α)ψ(t)

∫
∞

−∞

n0 (x− z)ρ (z) dz,

(3.1)
where α is the probability of annihilation on the surface. The factor 1 − α takes into
account the fact that after collisions with the pore interface, only the fraction of molecules
continues the movement. The density of particles n(x, t) at point x at time t can be found
in terms of the survival function Ψ (t)

n(x, t) = (1 − α)

∫ t

0

J(x, t− τ)Ψ (τ) dτ + (1 − α)n0(x)Ψ (t) . (3.2)

The first term on the right-hand side represents the molecules that arrive at position x
earlier than t at the time t− τ , and do not jump up to time t and do not annihilate (the
factor 1 − α). The second term represents the initial number of molecules that wait at
the position x up to time t and do not react.

3.1. Integro-differential equations

From the balance equations (3.1) and (3.2) we can find the integro-differential equation
for the mesoscopic density n(x, t)

∂n

∂t
=

∫ t

0

K(t− τ)

∫
∞

−∞

[n(x− z, t− τ) − n(x, τ)] ρ(z)dzdτ −
α

1 − α

∫ t

0

R(t− τ)n(τ)dτ,

(3.3)
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where the memory kernels K(t) and R(t) have to be determined (see Eq. (4.11)). We
derive this equation by using the standard technique of the Laplace transform for ψ(t),
the Fourier transform for ρ(x)

ψ̃(p) =

∫
∞

0

ψ(t)e−ptdt , ρ̂(k) =

∫
∞

−∞

ρ(x)eikxdx (3.4)

and the Fourier-Laplace (F-L) transform for the densities J(x, t) and n(x, t). From
Eqs. (3.1) and (3.2) we obtain

J̃(k,p) = (1 − α)ψ̃(p)ρ̂(k)
(
J̃(k,p) + n̂0(k)

)
, (3.5)

ñ(k,p) =
(1 − α)(1 − ψ̃(p))

p

(
J̃(k,p) + n̂0(k)

)
. (3.6)

Here we use the standard convolution property

J̃(k,p)ψ̃(p)ρ̂(k) =

∫ t

0

∫
∞

−∞

J(x − z, t− τ)ψ(τ)ρ(z)e−pτ+ikz dzdτ

and

Ψ̃(p) =
1 − ψ̃(p)

p
.

Rearranging Eqs. (3.5) and (3.6) and introducing the memory kernels K(t) and R(t) in
terms of their Laplace transform:

K̃(p) =
pψ̃(p)

1 − ψ̃(p)
, R̃(p) =

p

1 − ψ̃(p)
, (3.7)

we find

pñ(k,p) − n̂0(k) = K̃(p)(ρ̂(k) − 1)ñ(k,p) −
α

1 − α
R̃(p)ñ(k,p) . (3.8)

Applying the inverse F-L transform to Eq. (3.8), we obtain the integro-differential equa-
tion (3.3).

One can use the Taylor series in (3.3) expanding n(x− z, t− τ) in z and truncate the
series at the second moment. Equation (3.3) takes the form of local in space differential
equation with the memory effects

∂n

∂t
=
σ2

2

∫ t

0

K(t− τ)
∂2n

∂x2
dτ −

α

1 − α

∫ t

0

R(t− τ)n(τ)dτ, (3.9)

where

σ2 =

∫
∞

−∞

z2ρ(z)dz. (3.10)

Note that this truncation is valid only when the higher moments become progressively
smaller. It is not always the case for the Knudsen diffusion in porous media. For the
power law distribution ρ(x) ∼ x−µ as x→ ∞, all moments Exm diverge for m ≥ µ− 1.
For this reason, in this section (jumps model) we use only the pdf with the cutoff lcut

(2.4) for which all moments are finite. To illustrate the theory let us consider several
examples of the waiting time distributions ψ(t).
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4. Waiting time distributions

4.1. Exponential waiting time distribution

Consider first the classical case when the waiting time pdf is of exponential form

ψ(t) =
1

τw
exp

(
−
t

τw

)
. (4.1)

The mean waiting time is finite and equals to τw. The Laplace transforms are

ψ̃(p) =
1

1 + pτw
, K̃(p) =

1

τw
, R̃(p) =

1 + pτw
τw

. (4.2)

Since we are interested in the long time limit t → ∞ (τw << t), we could consider
the asymptotes pτw → 0 and approximate R̃(p) by the constant τ−1

w . Then the memory
kernels in Eq. (3.3) are delta functions:

K(t) = R(t) =
1

τw
δ(t). (4.3)

The equation for the mesoscopic density n(x, t) is

∂n

∂t
=

1

τw

∫
∞

−∞

[n(x− z, t) − n(x, t)] ρ(z)dz −
α

τw(1 − α)
n. (4.4)

This corresponds to the Markovian case for which Eq. (3.3) becomes local in time. If
we use the Taylor series expansion for n(x − z, t) in z we obtain the standard reaction-
diffusion equation

∂n

∂t
= D

∂2n

∂x2
− νn, (4.5)

where

D =
σ2

2τw
, ν =

α

τw(1 − α)
. (4.6)

Equation (4.5) with the initial condition n(x, 0) = n0(x) can then be easily solved.

4.2. Power law distribution

Now let us consider the case for which the waiting time density is

ψ(t) ∼
(τp
t

)1+γ

, t→ ∞ (4.7)

where τp is the time scale. It follows from Eq. (4.7) that the first moment (the mean
waiting time) diverges when 0 < γ < 1. This leads to a slow anomalous diffusion (Metzler
& Klafter 2000). For the pdf ρ(x) with a finite variance, σ2 < ∞, the mean-squared
displacement is

Ex2(t) ∼ Dγt
γ , (4.8)

where Dγ is the generalized diffusion coefficient:

Dγ =
σ2

2τγ
p
. (4.9)

The Laplace transform of ψ(t) for the small p is

ψ̃(p) ≈ 1 − Cγ (pτp)
γ , 0 < γ < 1 (4.10)
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(see Metzler & Klafter 2000). The memory kernels K(t) and R(t) in term of their Laplace
transforms are

K̃(p) = R̃(p) ≈
p1−γ

Cγτ
γ
p
. (4.11)

From Eq. (3.8), we obtain

pñ(k,p) − n̂0(k) =
p1−γ

Cγτ
γ
p

(ρ̂(k) − 1)ñ(k,p) −
α

1 − α

p1−γ

Cγτ
γ
p
ñ(k,p) . (4.12)

This leads to the temporal fractional differential operator and corresponding anomalous
reaction-transport equation for the mesoscopic density n(x, t)

∂n

∂t
=

1

Cγτ
γ
p

D1−γ

∫

R1

[n(x− z, t) − n(x, t)] ρ(z)dz −
α

(1 − α)Cγτ
γ
p

D1−γn, (4.13)

where D1−γ is the Riemann-Liouville fractional derivative:

D1−γn (x, t) =
1

Γ (α)

∂

∂t

∫ t

0

n (x, s) ds

(t− s)
1−γ

(4.14)

and 0 < γ < 1. One can see that the memory effects due to the power law for waiting
time result in the dependence of the reaction term on transport properties. The reaction
and transport processes are not separable and their influence on the rate of change ∂n

∂t
is

not a simple sum (Henry et al. 2006; Yadav & Horsthemke 2006; Fedotov & Iomin 2007).
By using the Taylor series for n(x− z, t) in z we obtain

∂n

∂t
=

σ2

2Cγτ
γ
p

D1−γ ∂
2n

∂x2
−

α

(1 − α)Cγτ
γ
p

D1−γn. (4.15)

The analytic solution to this equation can be found in Henry et al. (2006).

5. Monte Carlo simulations

The Monte Carlo simulations are performed to validate the proposed model equations.
The time evolution of stochastic particles is determined as follows. An initial position of
a particle is randomly chosen according to an initial profile of the number density n0(x).
The particle then jumps to a new position with the jump distance δx being randomly
chosen from ρ(δx). Upon arriving at a new position, it is determined if the particle is
absorbed or not, with the probability of the absorption being given by α. For a non-
absorbed particle, a waiting time is determined according to a waiting time distribution
function. For a random jumps model, where the time of flight is assumed to be much
shorter than the waiting time scale, the time elapsed during this one jump is equal to
the randomly chosen waiting time. The jump process is repeatedly simulated until the
time of the particle reaches a final time of the simulation. Only non-absorbed particles
are considered in the evaluation of statistics.

Figure 1 shows the time evolution of the mean squared displacement in Monte Carlo
simulations. For the exponential waiting time distribution, both reacting and non-reacting
cases follow

E[xi(t) − xi(0)]2 = Dt, (5.1)

where xi(t) is the location of the particle i at time t, E is the expectation. In Fig. 1(b),
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Figure 1. Time evolution of the mean-squared displacement in Monte Carlo simulation of the
random walk model. The reacting cases (circles) are compared with non-reacting cases (squares).
The time is normalized by τ , where τ is τw for (a) the exponential waiting time distribution
and τp for (b) power law waiting time distribution. For the power law waiting time distribution,
µ = 0.8. lcut = 1. l = 0.01lcut. For the adsorption simulations, α = 10−6 for (a) and α = 10−4

for (b).
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Figure 2. Time evolution of the total number of particles, normalized by its initial value, in
Monte Carlo simulation of the random walk model with the power law waiting time distribution.
The time is normalized by τp. µ = 0.8, lcut = 1, l = 0.01lcut and α = 10−4.

the results are shown for the power law waiting time distribution given by

ψ(t) ∼
(τp
t

)1.8

. (5.2)

The mean-squared displacement for the non-reactive case thus follows

E[xi(t) − xi(0)]2 = Dγt
0.8. (5.3)

Note that the mean-squared displacement for the reacting case increases more slowly than
for the non-reactive case in Fig. 1(b). This shows that the memory effects in the reaction
term in Eq. (4.15) also affect the transport process. Overall effects of the reactions are
to make particles diffuse more slowly than for the non-reacting case. Figure 2 shows the
time evolution of the total number of particles, normalized by its initial value, for the
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Figure 3. Distribution of the normalized number density for (a) the non-reacting case and (b)
the reacting case at t = 0 (solid lines), t = 2.5 × 105 (dashed line) and t = 1 × 106 (dashed
dotted line). n∗ = n/N , where N is the total number of particles, and x∗ = x/σ, where σ2 is the
variance of the distribution n. The time is normalized by τp. µ = 0.8, lcut = 1and l = 0.01lcut.
For the reacting case, α = 10−4.

power law waiting time distribution (5.2). The memory effects also slow the total reaction
rate.

Figure 3 shows the distribution of the normalized number density for the non-reacting
and reacting cases at several time instants. The number density initially has the Gaussian
distribution. While the number density is not far from the Gaussian, it deviates from
the Gaussian at later times, especially at the tails. It is seen that the non-Gaussianity is
more pronounced in the reacting case, which is consistent with the time evolution of the
mean squared displacement in Fig. 1.

6. Discussion and conclusions

The aim for studying Knudsen diffusion with reactions was to develop insight into
the role of anomalous transport and corresponding memory effects for a gas transport
in random porous media. The main purpose was to set up mesoscopic equations for
the number density by using continuous time random walk (CTRW). The usefulness of
CTRW formalism for studying Knudsen diffusion has been noted before by (Levitz 1997;
Malek & Coppens 2005), but for the first time we have exploited the anomalous trans-
port in porous media together with chemical reactions. Thus, unlike earlier researchers
who dealt with passive diffusion, we have developed the mesoscopic model that describes
the anomalous transport together with chemical reactions on the pore walls. We have
shown that the standard mean-field reaction-diffusion equations do not always give the
right description of the mesoscopic process. It happens when the temporary absorption of
particles is modeled with the power law waiting time distribution. In this case temporary
trapping of particles not only reduces the Knudsen diffusivity but makes it subdiffusive.
Another implication of power law distribution is that the memory effects in the random
walks result in the dependence of reaction term on transport characteristics. This depen-
dence slows down the total reaction rate. Monte Carlo results lead us to conclude that
anomalous transport gives rise to the essentially non-Gaussian behavior of the number
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density. Note that the 1-D model of anomalous diffusion with reactions that we have
presented is a simplification of transport and reactions in the real porous random media.
But the inclusion of several species and corresponding chemical reactions would make
the calculations presented here more applicable to the transport phenomena of gases in
disordered media such as solid oxide fuel cells (Larminie & Dicks 2003), etc. Many other
extensions of this work are possible. We plan to consider the Levy flights as well as the
generalization to the 3-D.
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