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Kinetic theory of plasmas: translational energy

By T. E. Magin, B. Graille † AND M. Massot ‡

1. Motivation and objectives

Plasmas are ionized gas mixtures (either magnetized or not) that have many practi-
cal applications. For instance, lightning is a well-known natural plasma that has been
studied for many years (Bazelyan & Raizer 2000). A second application is encountered
in hypersonic flows; when a spacecraft enters into a planetary atmosphere at hyperveloc-
ity, the gas temperature and pressure strongly rise through a shockwave, consequently,
dissociation and ionization of the gas particles occur in the shock layer. Hypersonic flow
conditions are reproduced in dedicated windtunnels, such as plasmatrons, arc-jet facilities
and shocktubes (Park 1990; Tirsky 1993; Sarma 2000). A third example was discovered
approximately two decades ago, when large-scale electrical discharges were discovered
in the mesosphere and lower ionosphere above large thunderstorms; these plasmas are
now commonly referred to as sprites (Pasko 2007). Fourth, discharges at atmospheric
pressure have received renewed attention in recent years due to their ability to enhance
the reactivity of a variety of gas flows for applications ranging from surface treatment to
flame stabilization and ignition (see Raizer 1991; Starikovskaia 2006, and references cited
therein). Fifth, Hall thrusters are being developed to replace chemical systems for many
on-orbit propulsion tasks on communications and exploration spacecraft (Boyd 2006).
Finally, two important applications of magnetized plasmas are the laboratory thermonu-
clear fusion (Bobrova et al. 2005; Schnak et al. 2006) and the magnetic reconnection
phenomenom in astrophysics (Yamada 2007).

Depending on the magnitude of the ratio of a reference particle mean free path to the
system characteristic length (Knudsen number), two different approaches are generally
followed to describe the transport of mass, momentum and energy in a plasma (Bird
1994): either a particle approach at high values of the Knudsen number (solution to the
Boltzmann equation using Monte Carlo methods), or a fluid approach at low values (so-
lution to macroscopic conservation equations by means of computational fluid dynamics
methods). In this work, we study plasmas that can be described by a fluid approach, thus
encompassing most the above-mentioned applications. In this case, kinetic theory can be
used to obtain the governing conservation equations and transport fluxes of plasmas.
Hence, closure of the problem is realized at the microscopic level by determining from
experimental measurements either the potentials of interaction between the gas particles,
or the cross-sections.

A complete model of plasmas should allow for the following physical phenomena to be
described:
• Thermal non-equilibrium of the translational energy,
• Influence of the electromagnetic field,
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• Occurrence of reactive collisions,
• Excitation of internal degrees of freedom.

So far, no such unified model has been derived by means of kinetic theory. Besides, a
derivation of the mathematical structure of the conservation equations also appears to be
crucial in the design of the associated numerical methods. Based on our previous work,
we investigate (Graille et al. 2007) the thermal non-equilibrium of the translational en-
ergy (Magin & Degrez 2004a) and the influence of the magnetic field (Giovangigli &
Graille 2003). We generalize the Chapman-Enskog method within the context of a di-
mensional analysis of the Boltzmann equation, emphasizing the role of a multi-scale
perturbation parameter on the collisional operator, the streaming operator and the col-
lisional invariants of the Boltzmann equation. We then obtain macroscopic equations
eventually leading to a sound entropy structure. Moreover, the system of equations is
shown to be conservative and the purely convective system hyperbolic.

2. State-of-the-art and approach followed

Let us now describe in more detail how these issues are currently addressed in the
literature. First, a multi-scale analysis is essential to resolve the Boltzmann equation
governing the velocity distribution functions. We recall that a fluid can be described in
the continuum limit, provided that the Knudsen number is small. Besides, in the case of
plasmas, a thermal non-equilibrium may occur between the velocity distribution func-
tions of the electrons and heavy particles (atoms, molecules and ions), given the strong
disparity of mass between both types of species. Therefore, the square root of the ra-
tio of the electron mass to a characteristic heavy-particle mass represents an additional
small parameter to be accounted for in the derivation of an asymptotic solution to the
Boltzmann equation. Literature abounds with expressions of the scaling for the perturba-
tive solution method. For instance, significant results are given in Chmieleski & Ferziger
(1967); Daybelge (1970); Devoto (1966); Kolesnikov (1974); Zhdanov (2002). Yet, Pe-
tit & Darrozes (1975) have suggested that the only sound scaling is obtained by means
of a dimensional analysis of the Boltzmann equation. Subsequently, Degond & Lucquin
(1996a,b) have established a formal theory of epochal relaxation based on such a scaling.
In their study, the mean velocity of the electrons is shown to vanish in an inertial frame.
Moreover, the heavy-particle diffusive fluxes were scarcely dealt with, since their work
is restricted to a single type of heavy particles, and thus, no multi-component diffusion
was to be found: in such a simplified context, the details of the interaction between the
multi-component heavy particles and electrons degenerate and the positivity of the en-
tropy production is straightforward. We will establish a theory based on a multi-scale
analysis for a multi-component plasma (which includes the single heavy-particle case)
where the mean electron velocity is the mean heavy-particle velocity in the absence of
external forces. As an alternative, Magin & Degrez (2004a) have also proposed a model
for a multi-component plasma based on a hydrodynamic referential. They have applied a
multi-scale analysis to the derivation of the multi-component transport fluxes and coeffi-
cients. However, the proposed treatment of the collision operators is heuristic. Moreover,
since the hydrodynamic velocity is used to define the referential instead of the mean
heavy-particle velocity, the Chapman-Enskog method requires a transfer of lower order
terms in the integral equation for the electron perturbation function to ensure mass
conservation. Finally, we also emphasize that the development of models for plasmas in
thermal equilibrium shall always be obtained as a particular case of the general theory.
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Second, the magnetic field induces anisotropic transport fluxes when the electron col-
lision frequency is lower than the electron cyclotron frequency of gyration around the
magnetic lines. Braginskii (1958) has studied the case of fully ionized plasmas composed
of one single ion species. Recently, Bobrova et al. (2005) have generalized the previ-
ous work to multi-component plasmas. However, the scaling used in both contributions
does not comply with a dimensional analysis of the Boltzmann equation. Lucquin (1998,
2000) has investigated magnetized plasmas in the latter framework. Nevertheless, the
same limitation is found for the diffusive fluxes as in Degond & Lucquin (1996a,b). Fi-
nally, Giovangigli & Graille (2003) have studied the Enskog expansion of magnetized
plasmas and obtained macroscopic equations together with expressions of the transport
fluxes and coefficients. Unfortunately, the difference of mass between electrons and heavy
particles is not accounted for in their work.

Third, plasmas are strongly reactive gas mixtures. The kinetic mechanism comprises
numerous reactions (see Capitelli et al. 2000): dissociation of molecules by electron and
heavy-particle impact, three body recombination, ionization by electron and heavy-
particle impact, associative ionization, dissociative recombination, radical reactions,
charge exchange. Giovangigli & Massot (1998) have derived a formal theory of chem-
ically reacting flows for the case of neutral gases. Subsequently, Giovangigli & Graille
(2003) have studied the case of ionized gases. We recall that their scaling does not take
into account the mass disparity between electrons and heavy particles. Besides, in chem-
ical equilibrium situations, a long-standing theoretical debate in the literature deals with
non-uniqueness of the two-temperature Saha equation. Recently, Giordano & Capitelli
(2001) have emphasized the importance of the physical constraints imposed on the system
by using a thermodynamic approach. A derivation based on kinetic theory should fur-
ther improve the understanding of the problem. Choquet & Lucquin (2005) have already
studied the case of ionization reactions by electron impact.

Fourth, molecules rotate and vibrate, and moreover, the electronic energy levels of
atoms and molecules are excited. Generally, the rotational energy mode is considered
to be fully excited above a few Kelvins. In a plasma environment, the vibrational and
electronic energy modes are also significantly excited. The detailed treatment of the
internal degrees of freedom is beyond the scope of the present study, where we will
address only the translational energy in the context of thermal non-equilibrium. The
reader is thus referred to the specialized literature (Brun 2006; McCourt et al. 1990;
Nagnibeda & Kustova 2003).

Fifth, the development of numerical methods to solve conservation equations relies on
the identification of their intrinsic mathematical structure. For instance, the system of
conservation equations of mass, momentum and energy is found to be nonconservative
for thermal non-equilibrium ionized gases. This formulation is therefore not suitable for
numerical approximations of discontinuous solutions. Coquel & Marmignon (1998) have
derived a well-posed conservative formulation based on a phenomenological approach.
Nevertheless, their derivation is not consistent with a scaling issued from a dimensional
analysis. We will show that kinetic theory, based on first principles, naturally allows for
an adequate mathematical structure to be obtained, as opposed to the phenomenological
approach.

In Graille et al. (2007), we propose to derive the multi-component plasma conservation
equations of mass, momentum and energy, as well as the expressions of the associated
multi-component transport fluxes and coefficients. The multi-component Navier-Stokes
regime is reached for the heavy particles, which follow a hyperbolic scaling, and is cou-
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pled with first-order drift-diffusion equations for the electrons, which follow a parabolic
scaling. Here, we deal with equations at order ε1, hence one order beyond the expansion
commonly investigated in the literature. The derivation relies on kinetic theory and is
based on the ansatz that the particles constitutive of the plasma are inert and only pos-
sess translational degrees of freedom. The electromagnetic field influence is accounted
for. We express the Boltzmann equation in a noninertial reference frame. We show that
the mean heavy-particle velocity is a suitable choice for the referential velocity. This step
is essential to establish a formalism where the electrons follow the bulk movement of the
plasma. Then, we define the reference quantities of the system in order to derive the
scaling of the Boltzmann equation from a dimensional analysis. The multi-scale aspect
occurs in both the streaming operator and collision operator of the Boltzmann equa-
tion. Consequently, the scaling of the partial collision operators between unlike particles
requires a special treatment. In addition, we determine the space of collisional invari-
ants associated with the electrons and the heavy particles, respectively. We then use a
Chapman-Enskog method to derive macroscopic conservation equations. The system is
examined at successive orders of approximation, each corresponding to a physical time
scale. For that purpose, scalar products and linearized collision operators are introduced.
We also establish the formal existence and uniqueness of a solution to the Boltzmann
equation. The multi-component transport coefficients are then calculated in terms of
bracket operators whose mathematical structure allows for the sign of the transport co-
efficients to be determined; in particular the Kolesnikov effect, or the expressions of the
crossed contributions to the mass and energy transport fluxes coupling the electrons and
heavy particles. The explicit expressions of the transport coefficients can be obtained by
means of a Galerkin spectral method disregarded in this contribution. Finally, the first
and second laws of thermodynamics are proved to be satisfied by deriving a total energy
equation and an entropy equation. Then, we establish a conservative formulation, from a
fluid standpoint, of the system of macroscopic equations. We also identify the mathemat-
ical structure of the purely convective system. Hence, we demonstrate that kinetic theory
shall be used as a guideline in the derivation of the macroscopic conservation equations
as well as in the design of the associated numerical methods.

Beyond the obvious interest of such a study from the perspective of the applications
and design of numerical schemes, the present contribution also yields a formal kinetic
theory of mixtures of separate masses, where the light species obey a parabolic scaling and
the heavy species obey a hyperbolic scaling. The original treatment of the two different
scalings for fluid flows was first provided by Bardos et al. (1991). In their study, the
purely hyperbolic scaling yields the compressible gas dynamics equations, whereas the
purely parabolic scaling leads to the low Mach number limit. These scalings are quite
classical and both of them can be used for various asymptotics such as the Vlasov-Navier-
Stokes equations in different regimes investigated by Goudon et al. (2005a,b). A rigourous
derivation of a set of macroscopic equations in the situation where the hyperbolic and
parabolic scalings are entangled in the same problem is an original result obtained in the
present work.

3. Boltzmann equation

3.1. Assumptions

(a) Our plasma is described by the kinetic theory of gases based on classical mechanics,
provided that: 1) The mean distance between the gas particles 1/(n0)1/3 is larger than



Kinetic theory of plasmas 33

the thermal de Broglie wavelength, where n0 is a reference number density, 2) The square
of the ratio of the electron thermal speed V 0

e to the speed of light is small.
(b) The reactive collisions and particle internal energy are not accounted for.
(c) The particle interactions are modeled as binary encounters by means of a Boltz-

mann collision operator, provided that: 1) The gas is sufficiently dilute, i.e., the mean
distance between the gas particles 1/(n0)1/3 is larger than the particle interaction dis-
tance (σ0)1/2, where σ0 is a reference differential cross-section common to all species,
2) The plasma parameter, quantity proportional to the number of electrons in a sphere
of radius equal to the Debye length, is supposed to be large. Hence, multiple charged
particle interactions are treated as equivalent binary collisions by means of a Coulomb
potential screened at the Debye length.

(d) A plasma is composed of electrons and a multi-component mixture of heavy par-
ticles (atoms, molecules and ions). The ratio of the electron mass m0

e to a characteristic
heavy-particle mass m0

h is such that the nondimensional number ε =
√
m0

e/m
0
h is small.

(e) The pseudo-Mach number, defined as a reference hydrodynamic velocity divided
by the heavy-particle thermal speed Mh = v0/V 0

h , is supposed to be of the order of 1.
(f) The macroscopic time scale t0 is assumed to be comparable with the heavy-particle

kinetic time scale t0h divided by ε. The macroscopic length scale is based on a reference
convective length L0 = v0t0.

(g) The reference electrical and thermal energies of the system are of the same order
of magnitude.

The mean free path l0 and macroscopic length scale L0 allow for the Knudsen number
to be defined Kn = l0/L0. It can be shown that this quantity is small, provided that
assumptions d-f are satisfied. A continuum description of the system is therefore deemed
to be possible.

3.2. Dimensional analysis

The temporal evolution of the velocity distribution function fi of the plasma particle i is
governed in the phase space (x, ci) by the Boltzmann equation, where quantity ci stands
for the particle velocity in an inertial frame. The choice of an adequate referential proves
to be essential to conduct a rigorous multi-scale analysis. Given the strong disparity of
mass between the electrons and heavy particles, a frame linked with the heavy particles
appears to be a natural choice for plasmas. Based on the following definition of the
peculiar velocities

Ci = ci − vh, (3.1)

where vh is the mean heavy-particle velocity, the Boltzmann equation can be expressed
in nondimensional form, respectively for the electrons and heavy particles, as

∂tfe + 1
εMh

(Ce + εMhvh)·∂xfe + ε−(1+b)qe
[
(Ce + εMhvh)∧B

]
·∂Cefe

+
(

1
εMh

qeE − εMh
Dvh
Dt

)
·∂Cefe − ∂Cefe ⊗Ce:∂xvh = 1

ε2 Je, (3.2)

∂tfi + 1
Mh

(Ci +Mhvh)·∂xfi + ε1−b qi
mi

[
(Ci +Mhvh)∧B

]
·∂Cifi

+
(

1
Mh

qi
mi
E −Mh

Dvh
Dt

)
·∂Cifi − ∂Cifi ⊗Ci:∂xvh = 1

εJi, i ∈ H, (3.3)

where symbol H denotes the set of indices of the heavy particles and Je, Ji, i ∈ H, the
electron and heavy-particle collision operators (see Graille et al. 2007). Symbol E stands
for the electric field; B, the magnetic field; qi, the particle charge; and mi, its mass. The
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integer parameter b ≤ 1 describes the intensity of the magnetic field. Note that Eq. 3.2
for the light species is typical of a parabolic scaling which corresponds to the low Mach
number limit for the electron gas, whereas Eq. 3.3 for the heavy species is typical of a
hyperbolic scaling that corresponds to compressible gas dynamics for the heavy-species
gas mixture (Bardos et al. 1991). The present scaling is thus intermediate between the
usual cases; we will have to identify the mathematical structure of the resulting system
of macroscopic equations.

3.3. Collisional invariants

Definition 3.1 The space of scalar electron collisional invariants Ie is spanned by the
following elements {

ψ̂1
e = 1,

ψ̂2
e = 1

2Ce·Ce,
(3.4)

and the space of scalar heavy-particle collisional invariants Ih by




ψ̂jh =
(
miδij

)
i∈H

, j ∈ H,

ψ̂n
H+ν
h =

(
miCiν

)
i∈H

, ν ∈ {1, 2, 3},

ψ̂n
H+4
h =

(
1
2miCi·Ci

)
i∈H

,

(3.5)

where symbol nH denotes the cardinality of the set H.

For the families ξe, ζe, concerning the electrons, and ξh = (ξi)i∈H, ζh = (ζi)i∈H, concern-
ing the heavy particles, we introduce two scalar products

〈〈ξe, ζe〉〉e =

∫
ξe�ζ̄e dCe, 〈〈ξh, ζh〉〉h =

∑

j∈H

∫
ξj�ζ̄j dCj , (3.6)

where symbol � stands for the maximum contracted product in space and symbol −, the
transpose conjugate operation. Then, macroscopic properties are expressed as partial
scalar products of the distribution functions and collisional invariants

{
〈〈fe , ψ̂1

e 〉〉e = ρe,

〈〈fe , ψ̂2
e 〉〉e = ρeee,

(3.7)

and 



〈〈fh , ψ̂ih〉〉h = ρi, i ∈ H,

〈〈fh , ψ̂n
H+ν
h 〉〉h = 0, ν ∈ {1, 2, 3},

〈〈fh , ψ̂n
H+4
h 〉〉h = ρheh.

(3.8)

Symbol ρi, stands for the mass density of particle i; ρh =
∑
j∈H ρj , the heavy-particle

mass density; ee, the electron thermal energy per unit mass; and eh, the heavy-particle
thermal energy per unit mass. Moreover, translational temperatures are introduced as
averaged thermal energies

Te =
2

3ne
〈〈fe , ψ̂2

e 〉〉e, (3.9)

Th =
2

3nh
〈〈fh , ψ̂n

H+4
h 〉〉h, (3.10)

where the heavy-particle number density reads nh =
∑

j∈H nj .
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Table 1. Chapman-Enskog steps.

Order Time Heavy particles Electrons

ε−2 t0e Expression of f0
e

Thermalization (Te)

ε−1 t0h Expression of f0
i , i ∈ H Equation for φe

Thermalization (Th) Zero-order momentum relation

ε0 t0 Equation for φi , i ∈ H Equation for φ2
e

Euler equations Zero-order drift-diffusion equations
First-order momentum relation

ε t0

ε
Navier-Stokes equations First-order drift-diffusion equations

4. Generalized Chapman-Enskog method

We use an Enskog expansion to derive an approximate solution to the Boltzmann
Eqs. 3.2-3.3 by expanding the species distribution functions as

fe = f0
e (1 + εφe + ε2φ2

e + ε3φ3
e ) +O(ε4), (4.1)

fi = f0
i (1 + εφi + ε2φ2

i ) +O(ε3), i ∈ H, (4.2)

and by imposing that the zero-order contributions f 0
e and f0

h = (f0
i )i∈H yield the local

macroscopic properties

〈〈f0
e , ψ̂

l
e〉〉e = 〈〈fe , ψ̂le〉〉e, l ∈ {1, 2}, (4.3)

〈〈f0
h , ψ̂

l
h〉〉h = 〈〈fh , ψ̂lh〉〉h, l ∈ {1, . . . , nH+4}. (4.4)

Hence, based on the dimensional analysis, the electron Boltzmann equation 3.2 appears
to be

ε−2D−2
e (f0

e ) + ε−1D−1
e (f0

e , φe ) + D0
e (f0

e , φe , φ
2
e ) + εD1

e (f0
e , φe , φ

2
e , φ

3
e )

= ε−2J−2
e + ε−1J−1

e + J0
e + εJ1

e +O(ε2). (4.5)

Likewise, the heavy-particle Boltzmann equation 3.3 is found to be

D0
i (f0

i ) + εD1
i (f0

i , φi ) = ε−1J−1
i + J0

i + εJ1
i +O(ε2), i ∈ H. (4.6)

In the Chapman-Enskog method, the plasma is observed at successive orders of the
ε parameter equivalent to as many time scales: the electron kinetic time scale t0e , the
heavy-particle kinetic time scale t0h, the macroscopic time scale t0, and the macroscopic
time scale divided by ε. The micro- and macroscopic equations derived at each order
are reviewed in Table 1. The resolubility of the electron and heavy-particle perturba-
tion functions is classically based on the identification of the kernel of the linearized
collision operators and space of scalar collisional invariants of both types of species. The
quasi-equilibrium solutions are Maxwell-Boltzmann velocity distribution functions at the
electron temperature or the heavy-particle temperature depending on the type of species,
Hence allowing for thermal non-equilibrium to occur.



36 T. E. Magin, B. Graille and M. Massot

Proposition 4.1 The zero-order electron distribution function f 0
e , solution to Eq. 4.5 at

order ε−2, i.e., D−2
e (f0

e ) = J−2
e , that satisfies the scalar constraints 4.3 is a Maxwell-

Boltzmann distribution function at the electron temperature

f0
e = ne

(
1

2πTe

)3/2

exp

(
− 1

2Te
Ce·Ce

)
. (4.7)

Proposition 4.2 Considering f 0
e given by Eq. 4.7, the zero-order family of heavy-particle

distribution functions f0
h solution to Eq. 4.6 at order ε−1, i.e., J−1

i = 0, i ∈ H, that
satisfies the scalar constraints 4.4 is a family of Maxwell-Boltzmann distribution functions
at the heavy-particle temperature

f0
i = ni

(
mi

2πTh

)3/2

exp

(
− mi

2Th
Ci·Ci

)
, i ∈ H. (4.8)

At order ε1, the set of macroscopic conservation equations of mass, momentum and
energy comprises multi-component Navier-Stokes equations for the heavy particles, which
follow a hyperbolic scaling, and first-order drift-diffusion equations for the electrons,
which follow a parabolic scaling. The first-order conservation equations of heavy-particle
mass, momentum and energy read

∂tρi + ∂x·(ρivh + ε
Mh

ρiVi ) = 0, i ∈ H, (4.9)

∂t(ρhvh) + ∂x·(ρhvh⊗vh + 1
M2
h
p

�
) = − ε

M2
h
∂x·Πh + 1

M2
h
nqE

+ [δb0I0 + δb1I]∧B, (4.10)

∂t(ρheh) + ∂x·(ρhehvh) = −(ph
�

+ εΠh):∂xvh − ε
Mh
∂x·qh + ε

Mh
Jh·E′

+ ∆E0
h + ε∆E1

h. (4.11)

The first-order conservation equations of electron mass and energy read

∂tρe + ∂x·
[
ρe

(
vh + 1

Mh
(Ve + εV 2

e )
)]

= 0, (4.12)

∂t(ρeee) + ∂x· (ρeeevh) = −pe∂x·vh − 1
Mh
∂x·

(
qe + εq2

e

)

+ 1
Mh

(
Je + εJ2

e

)
·E′ + δb0εMhJe·vh∧B + ∆E0

e + ε∆E1
e . (4.13)

Quantity p = pe +ph is the mixture pressure, where pe is the electron partial pressure and
ph, the heavy-particle partial pressure. The transport fluxes are defined for the electrons
as first- and second-order diffusion velocity, Ve , V 2

e , heat flux, qe, q2
e , and conduction

current, Je, J2
e , as well as for the heavy particles as first-order species diffusion velocities,

Vi , i ∈ H, heat flux, qh, viscous tensor Πh, and conduction current, Jh. The total
conduction current reads I0 in the case where b = 0 (strong ionization) and I in the
case b = 1 (weak ionization). The zero- and second-order terms of energy exchanged in
collisions between electrons and heavy particles read ∆E0

h, ∆E1
h from the heavy-particle

standpoint, and ∆E0
e , ∆E1

e from the electron standpoint. The transport coefficients have
been written in terms of bracket operators in Graille et al. (2007); both electron and
heavy-particle transport coefficients exhibit anisotropy, provided that the magnetic field
is strong. We have also proposed a complete description of the Kolesnikov effect, i.e., the
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crossed contributions to the mass and energy transport fluxes coupling the electrons and
heavy particles. This effect, appearing in multi-component plasmas, is essential to obtain
a positive entropy production. In the case of single heavy species plasmas considered by
Degond & Lucquin (1996a,b), the Kolesnikov effect is not present. Therefore, the details
of the interaction between the multi-component heavy particles and electrons degenerate
and the positivity of the entropy production is straightforward.

5. Conservation equations and mathematical structure

The properties of electron and heavy-particle transport matrices can be established by
using the mathematical structure of the bracket operators. In particular, the properties
of symmetry and positivity imply that the second law of thermodynamics is satisfied as
shown by deriving an equation of conservation of the entropy s having a positive entropy
production rate Υ ≥ 0. Moreover, the first law of thermodynamics is also verified by
deriving an equation for the total energy E = ρeee + ρheh + M2

hρh
1
2 |vh|2. The system

of mass, momentum, total energy and entropy equations is conservative from a fluid
standpoint in the variables

U = [ρe, (ρi)i∈H, ρhvh, E , ρs]T ,
that reads

∂tU + ∂x·F + ∂x·F = Ω, (5.1)

with the convective fluxes

F = [ρevh, (ρi)i∈Hvh, ρhvh⊗vh +
1

M2
h

p
�
, Hvh, ρsvh]T ,

where the total enthalpy reads H = ρE + p, the diffusive fluxes

F = [
ρe

Mh
(Ve + εV 2

e ),
ε

Mh
(ρiVi )i∈H,

ε

M2
h

Πh,
ε

M2
h

Πh·vh +
1

Mh
Q, J ]T ,

where the total heat flux reads Q and the entropy flux J , and finally the source terms

Ω = [0, 0,
nq

M2
h

E + (δb0I0 + δb1I)∧B, I·E, Υ]T ,

where symbol n stands for the mixture number density and q, its charge. We then extract
a purely convective system from Eq. 5.1

∂tU + ∂x·F = Ω′, (5.2)

where the convective source terms are given by

Ω′ = [0, 0,
nq

M2
h

E + (δb0 + δb1)I′∧B, I′·E, Υ′]T ,

the current I′ = nqvh, and the entropy production rate

Υ′ =
(Te − Th)2

TeTh

∑

j∈H

nj
mj

νje.

Symbol νie, i ∈ H, is the collision frequency of the electron heavy-particle interaction.
The purely convective system given in Eq. 5.2 is rewritten in a quasi-linear form

∂tW +A·∂xW = Ω′W , (5.3)
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by means of the variables

W = [ρe, (ρi)i∈H, vh, pe, ph]T ,

the source terms

Ω′W = [0, 0,
nq

M2
hρh

E +
1

ρh
(δb0 + δb1)I′∧B, 2

3∆E0
e ,

2
3∆E0

h]T ,

and the Jacobian matrices

Aν =




vhν 0 ρee
T
ν 0 0

0 vhν(δij)i,j∈H (ρi)i∈He
T
ν 0 0

0 0 vhν
� 1

M2
hρh
eν

1
M2
hρh
eν

0 0 γpee
T
ν vhν 0

0 0 γphe
T
ν 0 vhν



, ν ∈ {1, 2, 3}, (5.4)

where the specific heat ratio reads γ = 5/3 and symbol eν stands for the unit vector in
the ν direction.

For any direction defined by the unit vector n, the matrix n·A is shown to be di-
agonalizable with real eigenvalues and a complete set of eigenvectors. There are two
nonlinear acoustic fields with the eigenvalues vh·n±c, where the sound speed is given by
c2 = p/(ρhM

2
h), and linearly degenerate fields with the eigenvalue vh·n of multiplicity

nH + 4. Thus, the macroscopic system of conservation equations derived from kinetic
theory in the proposed mixed hyperbolic-parabolic scaling has a hyperbolic structure, as
far as the convective part of the system is concerned. Such a property is far from being
obvious since the obtained sound speed involves the electron pressure (considering that
the rigorous derivation of the momentum equation of the heavy particles involves many
analytical steps).

6. Further development

The explicit expressions of the diffusion coefficients, thermal diffusion coefficients, vis-
cosity, and partial thermal conductivities can be obtained by means of a variational
procedure based on a Galerkin spectral method (Chapman & Cowling 1939) used to
solve the integral equations. The expressions of the thermal conductivity, thermal diffu-
sion ratios and Stefan-Maxwell equations for the diffusion velocities can be derived by
means of a Goldstein expansion of the perturbation functions, as proposed by Kolesnikov
& Tirskiy (1984). Finally, the mathematical structure of the transport matrices obtained
by the variational procedure can readily be used to build efficient transport algorithms,
as already shown by Ern & Giovangigli (1994) for neutral gases, or Magin & Degrez
(2004b) for unmagnetized plasmas.
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