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Grid-independent large-eddy simulation using
explicit filtering

By S. T. Bose, P. Moin AND D. You

1. Motivation and objectives

Large-eddy simulation (LES) directly solves for large-scale motions in turbulent flow,
while modeling the influence of small-scale eddies. Recent studies have shown that LES
provides a tractable method for the simulation of turbulent flows at high Reynolds num-
bers in complex geometries (Mahesh et al. 2006; You et al. 2007). The governing LES
equations of LES are derived by the application of a low-pass filter, G, to the Navier-
Stokes equations:
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where 7;; = w;u; — u;u;. Although the filtering operation is unambiguously defined in
deriving Eq.1.2, in most numerical simulations the filter is not defined. It is assumed
that the attenuation of high wavenumbers present in most finite difference/ finite volume
schemes acts as a low pass filter (Rogallo & Moin 1984):
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Thus, if provided a closure model for the subgrid stress tensor, 7;; = f(u;,%;) and an
initial condition for u,, it is possible to advance the solution for the filtered variables
in time without defining the filtering operation. However, Lund (2003) has shown that
the equivalence of discretized operators and filtering is inconsistent with the derivation
of filtered Navier-Stokes equations. One of the difficulties associated with the arguments
for “implicitly filtered” LES is that the filtering is only performed in the direction that
the derivative (or interpolation) is applied. Hence, each term in the LES equation is
subjected to a different 1-D filter, and the actual equation being solved cannot be rig-
orously derived from the Navier-Stokes equations. Due to the inherent dependence of
the filtering operation on the discretized operators, it is not surprising that solutions of
“implicitly filtered” LES are extremely sensitive to the numerical grid used. These is-
sues have been highlighted by Kravchenko & Moin (2000), Meyers & Sagaut (2007), and
others who counterintuitively found that agreement with direct numerical simulation or
experimental data became worse when grid refinement was used. In practice, a sequence
of solutions is obtained on successively finer meshes until a sufficient number of scales
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in the flow field has been resolved such that the statistical quantities of interest are in-
variant with respect to the mesh. This is often referred to as grid convergence. However,
the grid converged solution of the implicitly filtered LES is not the true solution of the
LES equations. Rather, the true LES solution corresponds to the filtered velocity field
calculated given a particular closure model and a well defined spatial filter. In the limit
when the mesh size is sufficiently small to capture the smallest scale motion, an implicit
filtered LES will converge to a direct numerical simulation because the filter width also
tends to the size of the smallest eddy.

LES is also particularly sensitive to numerical errors. In most numerical simulations of
physical phenomena, the detrimental impact of numerical errors can be avoided by choos-
ing the mesh size to be much smaller than the smallest dynamically relevant length scale.
This is difficult or impossible for finite difference/finite volume approaches. Kravchenko
& Moin (1997) demonstrated that the performance of the subgrid stress model could be
impeded due to the truncation error as the higher wavenumbers of the energy spectrum
became distorted. A priori analyses of direct numerical simulation data of stably strati-
fied shear flow demonstrated that both the truncation error and aliasing error associated
with a numerical scheme could independently dominate the contribution of the subgrid
stress tensor (Chow & Moin 2003).

Explicit filtering emerged a decade ago in order to separate the filtering and discretiza-
tion operators. However, several difficulties impeded its widespread implementation. In
the derivation of the Navier-Stokes equation, the filtering operation is assumed to com-
mute with differentiation, and thus, any explicit filter used in a numerical simulation
must also commute with differentiation. Vasilyev et al. (1998) derived filters that can
commute with differentiation on nonuniform meshes to the order of accuracy of the nu-
merical scheme. Further development of this general class of commuting filters by Mars-
den et al. (2002) and Haselbacher & Vasilyev (2003) have extended their applicability to
unstructured meshes.

To date, only a handful of explicit filtered LES simulations have been performed. Ini-
tial use of explicit filtering in LES was in conjuction with solving an inverse problem for
the unfiltered variables, w;, from the filtered quantities, @;. Winckelmans et al. (2001)
implemented a 2-D explicit filter for isotropic turbulence and a channel flow in evaluat-
ing the performance of various mixed models. Stolz & Adams (2001) implemented the
filtering schemes of Vasilyev et al. in using an approximate deconvolution model for the
convective term in the LES equations. Lund (2003) implemented two dimensional ex-
plicit filters for a channel flow and evaluated the performance of explicit filtering versus
implicitly filtered LES for a variety of models. Gullbrand (2003) attempted the first grid-
independent solution of the LES equations with explicit filtering. However, the explicit
filter used on the finer meshes failed to commute and the statistics obtained were not
conclusively grid-independent.

The objective of the present study is to obtain grid-independent solutions of the gov-
erning equations for large eddy simulation. It should be noted that the performance of
explicit filtered LES with respect to direct numerical simulation is not relevant to this
discussion. If the grid-independent solution of the explicit filtered LES equations fails to
accurately predict the filtered DNS flow field, its failure can be solely attributed to the
capability of the subgrid stress model employed. Section 2 constructs the mathematical
framework for explcit filtered LES, Section 3 presents results from explicit filtered LES
of a turbulent channel flow at different Reynolds numbers, and concluding remarks are
presented in Section 4.
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2. Mathematical framework
2.1. Explicit filtered LES

The convective term in the governing equations for LES can be recast in an equivalent
form:
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with the remaining condition that filtered velocity field, u;, is solenoidal. The primary
motivation for using this form of the convective term is that a filtering operation is
applied to the non-linear product #;ii;, thereby forcing an explicit definition of the filter
applied in deriving the LES equations. Moreover, the filtering operator is no longer
implicitly defined by the particular grid used, and filtering and discretization operations
are formally separted. A remaining constraint on the filtering operator is that it must
commute with differentiation:

Vasilyev et al. (1998) proposed a discrete filtering operation of the form:

~0. (2.3)
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that does not satisfy Eq.2.3 exactly, but can satisfy the commutation condition to an

arbitrary order of accuracy, [%] = O(Af’). The order of commutation, p, is typically

chosen to be the same order of the truncation error of the numerical scheme used and A
corresponds to the uniform grid spacing in the mapped space. The discrete filter operator
in Eq.2.5 was shown to commute on non-uniform meshes by defining a transformation
from the physical space to a uniformly-spaced computational space, and then performing
the filtering operation in the computational space.

In the above derivation, the choice of the filter is arbitrary provided that it com-
mutes with differentiation. However, the choice of the particular filter kernel, G(z', z),
is motivated by consideration of the inherent numerical error. Standard finite difference
and finite volume operators have large numerical errors that are concentrated at high
wavenumbers, and thus the filter kernel can be chosen in order to damp high wavenum-
bers that would be contaminated by the truncation error. Figure 1 shows the modified
wavenumbers for a fourth order central difference operator and a hypothetical cutoff fil-
ter; the filter cutoff depicted can preserve the range of wavenumbers that are adequately
resolved by the discrete difference operator, and damp the higher wavenumbers, thereby
reducing the influence of numerical errors on the simulation. Ghosal (1996) used a similar
modified wavenumber analysis assuming a von Karman energy spectrum in concluding
that for a second-order finite-difference scheme, the filter width should be eight times
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FIGURE 1. Modified wavenumbers for a second-order central difference and fourth-order
central difference shown with a hypothetical cutoff filter at kA = %

wider than the local grid spacing, and twice as wide for an eigth-order difference scheme,
in order to remove the influence of numerical error from the simulation.

Using this explicit filtering framework, it is possible to search for solutions to the LES
equations that are independent of the resolution of the grid. A physical filter width is
specified (for instance, a Axf for wall-bounded flows), and an explicit filter is applied to
the LES equations to only preserve the scales larger than the filter width. The mesh can
then be refined in order to make the contribution from numerical errors to be small in
comparison to the resolved physical scales until a solution independent of the grid used
is achieved. This convergent solution is the “true” LES solution for that corresponding
filter (width) and choice of subfilter closure model.

This particular form of the LES equations is not new; Biringen & Reynolds (1981) and
Moin & Kim (1982) both utilized this convective form in order to exploit the fact that the
Leonard stresses could be directly calculated from the filtered velocity variable. Further,
this definition of explicit filtered LES is different from the approach where primitive
variables are explicitly filtered at the end of each time step. The latter is inconsistent
with the governing equations for LES (for a more complete discussion, see (Lund 2003).
One potential drawback of using Eq.2.1 is that it is not necessarily invariant under
Galilean transformation (Spezilae (1985)), although it is possible to choose a subgrid
stress model such that the invariance is restored (Stolz et al. 2001; Gullbrand 2003).

2.2. Numerical method

The test case considered in this study is the turbulent, planar channel flow (Kim et al.
1987; Moser et al. 1999). This particular flow configuration is chosen because it is wall
bounded, but the geometry is simple enough that a physical filter width could be fixed
for different grids without undue difficulty. The fourth-order finite-difference scheme ad-
vocated by Morinishi et al. (1998) was implemented in a staggered mesh formulation and
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the convective term is computed in its skew-symmetric form in order to discretely con-
serve kinetic energy. The time integration is performed using the fractional step method
of Dukowicz & Dvinsky (1992) with the wall normal diffusion terms treated implicity
with a Crank-Nicholson scheme, while the remaining terms were advanced with a second
order Adams-Bashforth scheme.

Fourth order commuting, discrete filters derived by Vasilyev et al. were used to perform
the explicit filtering of the convective term. The discrete 1-D filter used for the coarsest
mesh was identical to the one implemented by Gullbrand:

1 9 1 9 1
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The 3-D filtering operation is then treated as a tensor product of the three 1-D filters
shown in Eq.2.6. The grid distribution in the streamwise and spanwise directions are
uniform with grid spacing, A,, but the wall-normal grid distribution is non-uniform. Since
the filtering operation is derived to be applied in a uniformly distributed computational
space, (, the non-uniform distribution of points in physical space results in a non-uniform
filter width in the wall normal direction. The distribution of grid points in the wall-normal
direction is given by a hyperbolic tangent stretching function:

tanh (7(1 — 2j/N2))
tanh(7)

y(]): :Oa"'vN27 (27)
where Ny and ~ are the number of grid points in the wall normal direction and a mesh
stretching parameter, respectively. Figure 2 depicts the Fourier transform of the filter
functions used for the channel simulations. The discrete filters implemented are a smooth
approximation to the spectral cutoff filter. The damping of the higher wavenumbers,
é(%) > %, has the effect of de-aliasing the convective term and damping the contri-
butions of wavenumbers that are contaminated by the truncation error. As the mesh is
refined from the coarsest mesh to the finer meshes, the filter width in Eq.2.6 fixed. The
width of the filter with respect to the local grid spacing has been the subject of discussion
(Lund 1997). Typically, the second moment of the filter is used as the effective filter as
a measure of the width of a filter (Leonard 1973); in the case of high-order commuting
filters, the second-order moment of the filter is zero. However, for filters that commute
with orders of accuracy greater than two, the second order moment is zero. Instead, all
the filters are computed so that the transfer functions in Fourier space are identical,
thereby resolving the same scales on different grids (see Figure 2).

Asymmetric filtering is implemented in the wall-normal direction near the boundaries.
The constraint that the filters commute to the same order as the truncation is enforced
near the boundaries, but the shape of the transfer function is sacrificed. Because the filter
stencil is no longer symmetric, it is noted that the filtering operation introduces a phase
shift, although the effect of asymmetric filtering in the wall-normal direction would be
minor in well-resolved LES. this has LES solution. An example of the asymmetric filter
transfer function is shown in Figure 3.

A dynamic Smagorinsky subfilter stress model is used in all channel flow simulations
(Germano et al. 1991). Because the subfilter stress term, 7,; = Wu; — w;u;, is differ-
ent from the standard subgrid term in “implicit filtered” LES, the Germano identity is
modified as:
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FIGURE 2. Fourier transform of filter functions G(k) with respect to a nondimensional wavenum-
ber for a coarse grid, A.k. Medium grid, A,, = %Ac and fine grid, Ay = %AC transfer functions
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FIGURE 3. Real and imaginary parts of Fourier transform of asymmetric filtering operator on a
six-point stencil, K = 2, L = 3 as defined in Eq.2.4.

7/';‘; = U;U; — ﬁiﬁj (28)
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The standard Smagorinsky model 7; |5’Z-j|5'ij will also generate aliasing errors, and so in
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Re; Ny Ny N. Am}" Azj[ Ay}' (center) L, L.

180 64 64 64 71 24 20-25 i iw
180 96 96 96 71 24 20-25  Ar 37
180 128 128 128 71 24 2025  Ar 3w
395 64 64 64 78 39 50-60 2r
395 96 96 96 78 39 50-60 2r
395 128 128 128 78 39 50-60 2r

TABLE 1. Numerical parameters for channel flow simulations. Ny, Ny, N, denote the number of
grid points used in the streamwise, wall-normal, and spanwise directions respectively. L., L, are
the streamwise and spanwise domain length respectively, and a wall-normal size of 2 is used in all
simulations. A:c}' is the effective grid resolution in the streamwise direction in wall units based
on filter width criteria of Vasilyev et al. (1998); Az}' and Ay}' are the effective grid solutions in
the streamwise direction and in the wall normal direction at the channel centerline, in wall units

respectively. A range of Ay™ resolutions near the centerline is given depending on the criteria
used (Lund 1997).

order to avoid such a potential difficulty, the contribution of the subfilter stress model is
also filtered. Therefore, the subfilter source term used is:

1 _—
Tij — ngkéij = —2(CA2)|Sij|Sij . (29)

3. Results and discussion

Channel flow simulations are performed at Re, = 180 and Re, = 395 using a fixed
pressure gradient. At both Reynolds numbers, three LES are performed, listed in Table 1.
The distribution of grid points in the wall normal direction is described by the hyperbolic
tangent stretching function, Eq.2.7; the stretching parameter, -, is fixed at 2.40 for all
simulations.

The streamwise mean and the root mean square (rms) of the three velocity components
are ensemble averaged. Figure 4 shows the mean streamwise velocity profiles at both
Reynolds numbers. At both Reynolds numbers, the mean velocity profiles collapse be-
tween the two finer grid simulations, on the 96% and 128 meshes. The direct numerical
simmulation (DNS) at Re, = 180 is filtered to the same resolution that the corresponding
LES. Even though the finer LES simulations collapse to a grid-independent prediction,
the grid independent solution does not correspond to the filtered DNS results. As the
grid is refined and the numerical error is decreased, the discrepancy between the grid
independent LES and DNS is no longer attributed to the numerical error associated with
the finite difference scheme. The discrepancy suggests that the potential incapability of
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FIGURE 4. Mean streamwise velocity for a turbulent channel flow at Re, = 180 (top) and
Re, = 395 (bottom) on 64° (e ), 96° (A), and 128 (o ) grids.

the subfilter closure model used.

Figures 5 and 6 show the rms velocity profiles for the streamwise, wall-normal, and span-
wise directions, respectively. Near the channel centerline, the rms velocity profiles for
the two finer LES calculations collapse well at both Reynolds numbers, similar to the
behavior shown for the mean streamwise velocity. The collapse, however, is not as appar-
ent in the near-wall peaks at both Reynolds numbers. The deviations in the predictions
in the near-wall regions for the rms profiles is partially attributable to the statistical
convergence. Although the high wavenumbers are damped by the explicit filtering, their
amplitudes in time decay slowly. The deviations between the different grid levels have
been observed to decrease as the solution is further integrated in time, but at a slow
rate. The difficulty in matching the transfer functions of the asymmetric filters in the
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FIGURE 5. RMS velocity profiles for a turblent channel flow at Re, = 180 using 64° (e ), 96°
(A), and 128° (o) grids.
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FIGURE 6. RMS velocity profiles for a turblent channel flow at Re, = 395 using 64% (e ), 963
(A), and 128% (o) grids.

near-wall region could also contribute to the observed deviations. In the finest LES sim-
ulations using 1283 grid points, the first seven grid points away from the wall require
asymmetric filtering.

A measure of the integrated relative error is proposed to estimate the difference between
the wall-normal profiles:

E(f1, f2)

L[ A0, (31)

"2/ R
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Re, E(@) E(Uems) E(Thms) E(Whms)

180 0.9% 0.8% 2.6% 2.1%

395 0.7% 0.7% 1.3% 0.9%

TABLE 2. Integrated relative difference, Eq.3.1, between simulations performed with 96 and
1283 grid points for first and second order statistical quantities at Re, = 180 and 395.

Table 2 shows the relative differences in the wall normal profiles between the simulations
performed on the medium and fine meshes for both Reynolds numbers. Even though the
same number of grid points is used in the simulations at both Re,. = 180 and Re, = 395,
the Re, = 395 case shows a better collapse of the statistics to grid-independent levels.
Because the Smagorinsky model is derived for high Reynolds number turbulence, it is
possible that the subfilter closure model is better suited for the Re, = 395 case as opposed
to the Re, = 180 simulations, and the poor convergence may be an indicator of a poor
choice for a closure model for a given simulation. It is noted that this metric may be
inappropriate for assessing the grid independence of different solutions. The commuting
filter kernel derived by Vasilyev et al. is expressed as a linear combination of Dirac delta
functions, and so it is not guaranteed that the LES solutions will converge pointwise to
the true LES solution.

One-dimensional energy spectra in the streamwise and spanwise wavenumbers are also
presented (Figures 7, 8). The nominal cutoff for all simulations, using the filter width
criteria suggested by Lund (1997), is k; . = 16 in both the streamwise and spanwise
directions. The 1-D energy spectra collapse for the LES simulations on 963 and 1283
grids. The difference between the finer grids and the coarser simulation on 643 is due to
the numerical error in the resolved scales. The collapsed spectra does not collapse well
against the true DNS spectra, particularly for the F,,,, quantities. The explicit filtered
LES overpredicts the F,,,, quantities even at the low wavenumbers that the simulations
are supposed to resolve. However, the energy spectra confirm that the inclusion of an
explicit filter does damp the higher frequencies and shows that the collapse of the first-
and second- order statistics is not an artifact of the ensemble averaging.

Wall shear stress, g—“, contours are also presented in Figure 9 for the coarsest and finest
explicit filtered LES calculations at Re, = 395. In addition, Figure 10 depicts the same
contours for an “implicit filtered” LES calculation using the same grid at the finest LES
with 1283 grid points. The structures associated with the skin friction are dominated by
long streamwise streaks but smaller streamwise vortices also appear. The structures in
the explicit filtered LES simulations are of the same size even as the grid is refined. The
structures in the implicit filtered LES equation show the prescence of smaller scales and
even small corrugations of the long streamwise streaks; this can be compared with the
explicit filtered LES solution on the finest grid where these small scale corrguations are
not present.

Although, the velocity profiles at both Reynolds numbers converge as the grid is refined,
the output of the subfilter closure model does not. An ensemble average of the 719 = 14512
output of the Smagorinsky model is computed at Re, = 180 and Re, = 395 (Figure 11).
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FIGURE 7. One dimensional energy spectra, Euy.(k:) (top left), Eyu(k.) (top right), Fyw(kes)
(bottom left), and Ey.w (k) (bottom right) for Re, = 180 channel flow on 64> (e ), 96° (A), and
1283 (o ) grids.
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FIGURE 8. One dimensional energy spectra, Eyu (k) (top left), Eyu(k.) (top right), Fyw(ks)
(bottom left), and Euuw (k=) (bottom right) for Re, = 395 channel flow on 64° (e ), 96° (A), and
1283 (o) grids.
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FIGURE 9. Wall shear stress, g—’;, contours of an explicit filtered LES at Re, = 395 for 64>
(top) and 128% (bottom) grids.

The magnitude of the 75 component between the coarsest and finest explicit filtered
simulations differs by a factor of four roughly, though their profiles remain similar. It is
possible that the output of the Smagorinksy model is amplified by the prescence of white
noise at the higher wavenumbers; as the grid is refined and numerical errors are reduced,
the output of the subfilter closure model also decreases. This would imply that models
that are heavily biased to the higher wavenumbers may not be suitable for simulations
with low-orders of accuracy.

4. Concluding remarks

Grid-independent statistics and spectra for a turbulent channel flow at different Reynolds
numbers has been demonstrated in this study. The application of an explicit filter to the
LES equations have enabled for an ambiguous separation of the scales that are resolved
in the simulation, and consequently, those that must be modeled. Explicit filtering also
offers hope of controlling the influence of numerical error in simulations, even if the
order of the truncation error, O(A?), is larger than the contribution of the smallest,
dynamically relevant, physical scale, 7. This result answers a few questions regarding the
fidelity of LES, particularly the dependence of statistical estimates on the local grid size,
raised by Pope (2004). While grid-independent solutions substantiate the consistency of
LES as a numerical method, it does not answer questions regarding the dependence of
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F1GURE 10. Wall shear stress, g—;, contours of an implicit filtered LES at Re, = 395 for 1283
grids.

statistical estimates on the filter width, Ay; a grid-independent solution obtained by an
explicit filtered LES is not independent of the filter chosen or the filter width. In order to
avoid supplanting ambiguity of LES predicitions due to the grid with dependence on the
choice of filter, effective deconvolution approaches should be explored, either integrated
into the simulation (Stolz et al. 2001) or in a post-processing context (Shu & Wong 1995).

Moreover, the failure of the grid-independent LES solutions to converge to a filtered
DNS can now be directly attributable to errors in the subfilter stress closure model.
In the “implicit filtered” LES framework, it was difficult to assess the fidelity of the
closure model due to the observed sensitivity of the subgrid model to numerical errors.
It is suggested that grid-independent solutions of the explicit filtered LES equations be
used to determine the performance of a particular subfilter stress model when compared
against a filtered DNS.

Although it is relatively easy to implement explicit filtering in LES simulations on
structured grids, the prospect of explicit filtered LES on unstructured grids is more
arduous. Although the commuting filters on unstructured meshes have been derived,
they have yet to be implemented in any full 3-D LES simulation. While it is suggested
that explicit filtering be utilized in unstructured grid simulations in order to increase their
fidelity, it will be more difficult to find grid-independent solutions. Due to the particular
implementation of the unstructured, commuting filters, it is more difficult to specify a
filter width that can be preserved on different meshes. Further, the computational cost of
implementing wide filters (greater than three times the local grid spacing) may become
prohibitively expensive. However, explicit filtering on unstructred grids and in complex
geometries remains an open question that deserves further attention.
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