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A rational interpolation scheme with
super-polynomial rate of convergence

By Q. Wang, P. Moin AND G. Iaccarino

1. Motivation and objectives

The purpose of this study is to construct a high-order interpolation and scheme for
arbitrary scattered datasets. The resulting function approximation is an interpolation
function when the dataset is exact, or a regression if measurement errors are present.
We represent each datapoint with a Taylor series, and the approximation error as a com-
bination of the derivatives of the the target function. A weighted sum of the square of
the coefficient of each derivative term in the approximation error is minimized to obtain
the interpolation approximation. The resulting approximation function is a high-order
rational function with no poles. When measurement errors are absent, the interpola-
tion approximation converges to the target function faster than any polynomial rate of
convergence.

2. Background

Let f̂(xi) ≈ f(xi) be measurements of the target function f at xi, i = 1, . . . , n. The

measurement errors f̂(xi) − f(xi) are mutually independent random variables with zero
mean and standard deviation σi. We assume that at most one measurement is given at
each point unless the measurements are inexact, i.e., if xi = xj for i 6= j, then both σi > 0
and σj > 0. This is called the non-redundancy condition. We construct an approximation

function f̃ based on these measurements. Specifically, the value of f̃ at any point x is
constructed as

f̃(x) =

n
∑

i=1

aif̂(xi), (2.1)

where ai are functions of x and satisfy

n
∑

i=1

ai ≡ 1. (2.2)

Under this normalization condition, we choose ai for each x, so that the approximation
error at this point f̃(x) − f(x) is small. Specifically, by expanding each f(xi) using
Taylor’s theorem

f(xi) = f(x) +
N
∑

k=1

f (k)(x)
(xi − x)k

k!
+ f (N+1)(ξi)

(xi − x)N+1

(N + 1)!
,
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the approximation error becomes

f̃(x) − f(x) =

N
∑

k=1

f (k)(x)

(

n
∑

i=1

ai

(xi − x)k

k!

)

+

n
∑

i=1

f (N+1)(ξi)

(

ai

(xi − x)N+1

(N + 1)!

)

+

n
∑

i=1

(

f̂(xi) − f(xi)
)

ai ,

(2.3)

where each ξi lies between x and xi. In this formula of the approximation error, both
the derivatives of the target function f (k)(x), f (N+1)(ξi) and the measurement errors

f̂(xi) − f(xi) are unknown. The approximation error f̃(x) − f(x) is a linear function
of these unknowns. In order to make the approximation error small, we choose ai to
minimize a specific norm of this linear function, which is a weighted sum of the square
of the coefficients of these unknowns

Q(x, a1, . . . , an) =

N
∑

k=1

w2
k

(

n
∑

i=1

ai

(xi − x)k

k!

)2

+

n
∑

i=1

w2
N+1

(

ai

(xi − x)N+1

(N + 1)!

)2

+

n
∑

i=1

σ2
i a2

i ,

(2.4)

where the weight on the coefficient of the measurement error f̂(xi)−f(xi) is the variance
of the measurement error σ2

i , and the weights on the coefficients of the derivatives of f are
an infinite series of positive input parameters wk > 0, k = 1, 2, . . .. For best approximation
results, these parameters should be chosen to reflect the magnitude of f (k), i.e.,

wk ≈ ‖f (k)‖, k = 1, 2, . . .

The influence of these parameters on the approximation error is illustrated in Sec. 5, and
a proper choice of wk is discussed in Sec. 6. With Q as the objective of minimization and
the normalization constraint (2.2), the interpolation coefficients ai at x are the solution
of the constraint minimization problem

minQ(x, a1, . . . , an) s.t.
n
∑

i=1

ai = 1 . (2.5)

The existence and uniqueness of the solution is proven in Sec. 3. With a set of ai deter-
mined at each x, the approximation function f̃ can then be calculated by Eq. (2.1).

3. Existence and uniqueness

This section proves the existence and uniqueness of the solution of Eq. (2.5), so that
the approximation f̃ based on Eqs. (2.1) and (2.5) is well defined. Let a = [a1 . . . an],
the objective of minimization is a quadratic function of a, and can be written in matrix
form as

Q(x, a1, . . . , an) = a AaT, (3.1)
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where A is an n by n symmetric matrix

Aij =























N
∑

k=1

(wk

k!

)2

(xi − x)k(xj − x)k i 6= j

N+1
∑

k=1

(wk

k!

)2

(xi − x)2k + σ2
i i = j

(3.2)

The matrix form of the constraint quadratic programming is

min a AaT s.t. e aT = 1 , (3.3)

where e = [1 . . . , 1] has the same length as a. In order to prove the existence and unique-
ness of its solution, we first prove some properties of the matrix A.

Lemma 1. Let wk > 0 for all k > 0; xi and σi satisfy the non-redundancy condition,
xi = xj and i 6= j =⇒ σi > 0 and σj > 0. Then A is positive definite if x 6= xi for any i
such that σi = 0.

Proof. To prove that A is positive definite, we only need to prove that a AaT =
Q(x, a1, . . . , an) > 0 whenever aj 6= 0 for some j. We prove this in two cases: (1) x 6= xi

for any i; and (2) x = xi but σi > 0. In Case (1), because x 6= xj ,

Q(x, a1, . . . , an) ≥ w2
N+1

(

aj

(xj − x)N+1

(N + 1)!

)2

> 0 . (3.4)

In Case (2), if xi = xj , from the non-redundancy condition, σj > 0, and

Q(x, a1, . . . , an) ≥ σ2
j a2

j > 0 .

On the other hand, if x = xi 6= xj , then (3.4) applies. In all these possible cases,
a AaT = Q(x, a1, . . . , an) > 0 whenever a 6= 0. Therefore, A is positive definite.

Lemma 2. Let xi and σi satisfy the non-redundancy condition as stated in Lemma
1. If x = xi and σi = 0, then A is positive semi-definite and rank one deficient. The
nullspace of A is {a | aj = 0, ∀j 6= i}.

Proof. Because a AaT = Q(x, a1, . . . , an) ≥ 0 by definition, A is positive semi-definite.
In addition, if aj = 0 for all j 6= i, then

Q(x, a1, . . . , an) =
N
∑

k=1

w2
k

(

ai

(xi − x)k

k!

)2

+ w2
N+1

(

ai

(xi − x)N+1

(N + 1)!

)2

+ σ2
i a2

i .

Because x = xi and σi = 0, all terms in the formula above are 0, and a AaT =
Q(x, a1, . . . , an) = 0, and the nullspace of A includes {a | aj = 0, ∀j 6= i}. In order
to prove that A is rank one deficient and {a | aj = 0, ∀j 6= i} is the nullspace, we need
to prove that any a AaT > 0 for any a with aj 6= 0, j 6= i. In fact, because σi = 0 and
the non-redundancy condition, x = xi 6= xj if i 6= j. Therefore, (3.4) applies if aj 6= 0 for
j 6= i. In other words, a AaT > 0 for any a is not in the one dimensional linear subspace
{a | aj = 0, ∀j 6= i}. Therefore, A is rank one deficient with nullspace {a | aj = 0, ∀j 6= i}.

Lemma 1 and Lemma 2 show that the matrix A is always positive semi-definite. In
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addition, it is rank one deficient when x coincides with a node with no measurement
error (x = xi and σi = 0), and full rank otherwise. With this property of A, we can prove
that the constraint quadratic programming (3.1) has a unique solution for any x.

Theorem 1. If xi and σi satisfy the non-redundancy condition as stated in Lemma 1,
then the solution of the quadratic programming (3.1) exists and is unique.

Proof. Since A is positive semi-definite, the existence of a solution follows the two
trivial facts: there exists a that satisfies the constraint; and a AaT is bounded from
below on the feasible region. To prove its uniqueness, we use the fact that a necessary
condition for an optimal solution of the constraint quadratic programming is that it must
satisfy the Karush-Kuhn-Tucker condition Nocedal & Wright (2000)

[

2A eT

e 0

] [

aT

λ

]

=

[

0
1

]

. (3.5)

To prove the uniqueness of the solution, we only need to prove that the matrix in the
above linear system is full rank. In other words, it is sufficient to prove that a 6= 0 or
λ 6= 0 =⇒ 2AaT+λ eT 6= 0 or e aT 6= 0. We first look at the case when a 6= 0. In this case,
if e aT = 0, then a /∈ {a | aj = 0, ∀j 6= i} for any i. By Lemma 1 and Lemma 2, a is not
in the nullspace of A even if A is singular, and we have a (2AaT + λ eT) = 2 a AaT > 0.
Therefore, either e aT 6= 0 or 2AaT + λ eT 6= 0 when a 6= 0. The second case is when
a = 0 but λ 6= 0. In this case, 2AaT + λ eT = λ eT 6= 0. Therefore, the matrix

[

2A eT

e 0

]

is full rank, and the solution of the K-K-T system (3.5) is unique. Thus the solution of
the quadratic programming (3.1) exists and is unique.

4. Rational form

This section proves that our interpolation or regression approximation function f̃ is
a rational function with no poles in the real line (−∞, +∞), and therefore is bounded,
continuous and infinitely differentiable. We first prove that it is a rational function.

Theorem 2. The approximation function f̃ given by Eqs. (2.1) and (2.5) is a rational
function of x that has no pole in (−∞, +∞).

Proof. From Eq. (3.5), we have
[

A eT

e 0

] [

aT

λ
2

]

=

[

0
1

]

.

Therefore,

[

aT

λ
2

]

=

[

A eT

e 0

]−1 [
0
1

]

=

[

A eT

e 0

]∗

∣

∣

∣

∣

A eT

e 0

∣

∣

∣

∣

[

0
1

]

(4.1)

where [ · ]∗ denotes the adjugate matrix, and | · | denotes the determinant. But according
to Eq. (3.2), each element of the matrix A is a polynomial of x. Therefore, both A∗

ij and
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all elements of

[

A eT

e 0

]∗

are polynomials of x. As a result, the r.h.s. of Eq. (4.1) is a

rational function of x. So the vector a is a rational function of x, and f̃ =
∑n

i=1 aif̃(xi)
is a rational function of x. This proves the first part of Theorem 2.

In order to prove that the rational function has no poles in the real line, it is sufficient

to prove that the denominator

∣

∣

∣

∣

A eT

e 0

∣

∣

∣

∣

has no zeros in (−∞,∞). In fact, recall that

e = [1, . . . , 1], from the definition of matrix determinant and cofactors, we have

∣

∣

∣

∣

A eT

e 0

∣

∣

∣

∣

=

n
∑

i,j=1

A∗
ij .

We show that it is non-zero in two cases. First, when x = xi and σi = 0 for some i, the ith
column and row of matrix A are zero according to Eq. (3.2). Therefore, all cofactors other
than A∗

ii are zero, and the denominator simply equals A∗
ii, which is non-zero because A

is only one rank deficient (Lemma 1). In the other case, x is not equal to any xi, and A is
positive definite (Lemma 1). Therefore, A∗ is also positive definite, and the denominator
is

n
∑

i,j=1

A∗
ij = eA∗eT > 0 .

The denominator of the rational function f̃ is therefore non-zero for any x ∈ R. Hence f̃
has no poles in (−∞, +∞).

The following property of our interpolation and regression approximation function
derives naturally from Theorem 2.

Corollary 1. The interpolant f̃ given by Eqs. (2.1) and (2.5) is continuous and
infinitely differentiable.

5. Interpolation approximation

This section discusses the case when the measurement errors are 0, i.e., f(xi) = f̂(xi)
and σi = 0 for all i = 1, . . . , n. We first prove that our approximation function f̃(x)
defined by Eqs. (2.1) and (2.5) is indeed an interpolation, in that the approximation
function goes through each datapoint (xi, f(xi)).

Theorem 3. If σi = 0, then f̃(xi) = f(xi).

Proof. Let x = xi, then from Eq. (3.2), the ith row and column of the matrix A are
all 0. Therefore, the positive semi-definite quadratic form Eq. (3.1) is equal to 0 when a
is equal to

aj =

{

1 j = i;

0 j ≤ i.

This a also satisfies the constraint in the quadratic programming (2.5); thus it is the
solution of this quadratic programming. Therefore,

f̃(xi) =

n
∑

j=1

ajf(xj) = f(xi).
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We also analyze the rate at which the interpolant function f̃ converges to the target
function f . We prove that under certain assumptions on the weights wk in Eq. (2.4)
and certain smoothness properties of f , the interpolant converges to the target function
at a rate faster than any polynomial order. We first prove a bound for the pointwise
approximation error |f̃(x) − f(x)| when the measurement errors σi are 0. Based on
this pointwise bound, we then derive a bound for the infinite functional norm of the
approximation error ‖f̃ − f‖∞.

Let Q∗(x) be the unique minimum of the constraint quadratic programming (2.5), and
a1, . . . , an be its solution. From Eq. (2.4) we have

Q∗(x) ≥ w2
k

(

n
∑

i=1

ai

(xi − x)k

k!

)2

, k = 1, . . . , N ,

Q∗(x) ≥ w2
N+1

(

ai

(xi − x)N+1

(N + 1)!

)2

, i = 1, . . . , n .

Incorporating these into the formula for the approximation error (2.3), we get
∣

∣

∣
f̃(x) − f(x)

∣

∣

∣

√

Q∗(x)
≤

N
∑

k=1

|f (k)(x)|
wk

+

n
∑

i=1

|f (N+1)(ξi)|
wN+1

(5.1)

As this equation demonstrates, in order to bound the pointwise approximation error, it
is critical to bound Q∗(x). The following Lemma provides such a bound for Q∗(x).

Lemma 3. Let σi = 0, ∀i. Let wk ≤ β γk for some β and γ. Let 1 ≤ p ≤ min(n, N).
Let {x̂1, . . . , x̂p} ⊂ {x1, . . . , xn} satisfies

max
1≤i≤p

|x − x̂i| = Dp and min
i1 6=i2

|x̂i1 − x̂i2 | ≥
Dp

rp

.

Then the following inequality holds when γDp ≤ 1:

Q∗(x) ≤ β2

(

e

p!2
+

r2p
p

N + 1

)

(γDp)
2p . (5.2)

Proof. Let

âi =

∏

j 6=i(x − xj)
∏

j 6=i(xi − xj)
, i = 1, . . . , p ,

then for any function g,

p
∑

i=1

âig(x̂i) is the value of the Lagrange interpolant of g at x

with nodes x̂1, . . . , x̂p. The residual of this Lagrange interpolation can be bounded by
Boyd (1999)

∣

∣

∣

∣

∣

p
∑

i=1

âig(x̂i) − g(x)

∣

∣

∣

∣

∣

≤
∏p

i=1 |x − x̂i|
p!

∣

∣

∣
g(p)(ξ)

∣

∣

∣
(5.3)

where min(x, x̂1, . . . , x̂p) ≤ ξ ≤ max(x, x̂1, . . . , x̂p). In particular, let g(ξ) = (ξ − x)k,
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then g(x) = 0. Incorporating this into Eq. (5.3), we have
∣

∣

∣

∣

∣

p
∑

i=1

âi

(x̂i − x)k

k!

∣

∣

∣

∣

∣

= 0 if k < p,

and
∣

∣

∣

∣

∣

p
∑

i=1

âi

(x̂i − x)k

k!

∣

∣

∣

∣

∣

≤
∏p

i=1 |x − x̂i|
p!

|ξ − x|k−p

(k − p)!
≤ 1

p!(k − p)!
Dk

p if k ≥ p.

Now let

ai =

{

âj , xi = x̂j , xi′ 6= x̂j ∀ i′ < i

0, otherwise.

Then
∣

∣

∣

∣

∣

n
∑

i=1

ai

(xi − x)k

k!

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

p
∑

i=1

âi

(x̂i − x)k

k!

∣

∣

∣

∣

∣

≤







0 , k < p ,
1

p!(k − p)!
Dk

p , k ≥ p .
(5.4)

In addition, from the definition of âi, we have

|âi| ≤
max
1≤i≤p

|x − x̂i|p

min
1≤i≤p

|x̂i2 − x̂i2 |p
≤ rp

p . (5.5)

Incorporating Eqs. (5.4) and (5.5) into the definition of Q in Eq. (2.4) yields

Q(x, a1, . . . , an) ≤
N
∑

k=p

(

wkDk
p

p!(k − p)!

)2

+

p
∑

i=1

(

wN+1D
N+1
p

(N + 1)
rp
p

)2

.

Using the assumption wk ≤ β γk and p ≤ N leads to

Q(x, a1, . . . , an) ≤ β2(γDp)
2p

p!2
e(γDp)2 +

β2r2p
p

N + 1
(γDp)

2N+2 .

Since Q∗(x) ≤ Q(x, a1, . . . , an), we have

Q∗(x) ≤ β2(γDp)
2p

p!2
e(γDp)2 +

β2r2p
p

N + 1
(γDp)

2N+2 .

When γDp ≤ 1, e(γDp)2 ≤ e and (γDp)
2N+2 ≤ (γDp)

2p, the result is

Q∗(x) ≤ β2

(

e

p!2
+

r2p
p

N + 1

)

(γDp)
2p .

This bound of Q∗(x) naturally leads to a bound of the pointwise approximation error
under certain assumptions of the high-order derivative of the function f .

Theorem 4. Let σi = 0, ∀i. Let wk ≤ β γk for some β and γ. Let 1 ≤ p ≤ min(n, N).
Let {x̂1, . . . , x̂p} ⊂ {x1, . . . , xn} satisfies

max
1≤i≤p

|x − x̂i| = Dp and min
i1 6=i2

|x̂i1 − x̂i2 | ≥
Dp

rp

.
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Let the high-order derivatives of the target function f satisfy

‖f (k)‖∞ ≤ wk, k = 1, . . . , N + 1.

Then the following inequality holds when γDp ≤ 1:

|f̃(x) − f(x)| ≤ (N + n)β

√

e

p!2
+

r2p
p

N + 1
(γDp)

p .

Proof. This result is obtained by incorporating Eq. (5.2) into Eq. (5.1).

Note that in order to obtain this pointwise error bound, the high-order derivatives
of f must be bounded by wk, which is in turn bounded by βγk. This limits this result
to functions that are smooth enough, so that the high-order derivatives grow at most
exponentially fast. With this pointwise error bound, we can construct a global error
bound.

Lemma 4. Let σi = 0, ∀i. Let wk ≤ β γk for some β and γ. Let n ≥ N ≥ p; the nodes

bl = x1 < x2 < . . . < xn = bu

are well-spaced, so that
max

1≤i<n
xi+1 − xi

min
1≤i<n

xi+1 − xi

≤ r.

Let the high-order derivatives of the target function f satisfy

‖f (k)‖∞ ≤ wk, k = 1, . . . , N + 1.

Then the following inequality holds when n ≥ γ p r (bu − bl) − p (r − 1):

‖f̃ − f‖∞ = max
bl≤x≤bu

|f̃(x) − f(x)| ≤ 2β

√

e

p!2
+ n

(r p)2p

N + 1
n

(

γ
p r (bu − bl)

n + p (r − 1)

)p

. (5.6)

Proof. Since
max

1≤i<n
xi+1 − xi

min
1≤i<n

xi+1 − xi

≤ r,

for any bl ≤ x ≤ bu, let x̂i, i = 1, . . . , p be the p grids closest to x, then

Dp max
1≤i≤p

|x − x̂i| ≤
p r (bu − bl)

n + p (r − 1)
.

Also,

n ≥ γ p r (bu − bl) − p (r − 1) =⇒ γDp ≤ 1.

Conversely, since
max

1≤i<n
xi+1 − xi

min
1≤i<n

xi+1 − xi

≤ r,

we have

min
i1 6=i2

|x̂i1 − x̂i2 | ≥
Dp

rp

,
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where

rp = r p.

Using the fact that N ≤ n, Theorem 4 yields

|f̃(x) − f(x)| ≤ 2β

√

e

p!2
+

(r p)2p

N + 1
n

(

γ
p r (bu − bl)

n + p (r − 1)

)p

for any bl ≤ x ≤ bu.

When n is large, the r.h.s. of Eq. (5.6) is O(np− 3
2 ). Therefore, this lemma shows that

for a fixed N , the interpolation approximation f̃ converges to the target function f at a
polynomial rate of p− 3

2 for any p ≤ N . This result is similar to the rate of convergence
of Floater-Hormann rational interpolation Floater & Hormann (2007). In addition, the
following theorem demonstrates a further consequence of this lemma.

Theorem 5. In addition to the assumptions in Lemma 4, if N = n, then

‖f̃ − f‖∞ ≤ M n

(

γ
b − a

n + p(r − 1)

)p

. (5.7)

where

M = 2β

√

e

p!2
+ (pr)2p

is independent of n.

Proof. It follows directly from Lemma 4.

Because the r.h.s. of Eq. (5.7) is O(np−1) when n is large, this corollary reveals the
rate at which our interpolant approximation f̃ converges to the target function f as
the number of nodes n increases. Assume that f is smooth enough so that its high-
order derivatives satisfy ‖f (k)‖∞ ≤ wk for all k > 0, the grid is well spaced so that
the ratio between the largest interval and smallest interval is bounded by r, and we
use N = n in our scheme. Then for any positive integer p, when n is big enough, i.e.,
n ≥ max(p, γ p r (b − a) − p (r − 1)), the approximation error converges at a polynomial
rate of order p − 1. This implies that under these assumptions, the rate of convergence
of our interpolation approximation is faster than any polynomial order. This theoretical
result is verified by numerical experiments. We show in Sec. 7 that the rate of convergence
is exponentially fast for all smooth functions attempted.

6. Choice of the weights

From Eq. (5.1), it is clear that the approximation error of f̃ is a weighted sum of
the derivatives of f of various orders. wk controls the weight of the contribution from
the kth derivative. This section discusses one possible choice of the weights wk in our
interpolation approximation scheme. We choose this method of calculating the weights
because it yields good results experimentally. Therefore, some formulas in this section
are obtained empirically without rigorous mathematical analysis.

Theorem 4 and Theorem 5 places the following restrictions on the weights wk:
(a) The high-order derivatives of f are bounded by wk.
(b) wk is bounded by βγk for some β and γ.
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For this reason, we choose the weights wk to be

wk = βγk, (6.1)

and compute the two parameters β and γ using the datapoints. The rest of this section
discusses how these two parameters are evaluated, and how these parameters affect the
approximation function f̃ .

We first consider β. We call this parameter the “magnitude” of the target function f .
This is because it is supposed to bound the magnitude of the target function in Theorem
4 and 5.

β = w0 ≥ ‖f (0)‖∞.

In reality, we find that our interpolation approximation is more accurate if we choose a
smaller β. Based on this fact, we can estimate β by taking the sample standard deviation
of all the given datapoints, i.e.,

β =

√

∑n

i=1(f(xi) − f̄ )2

n − 1
, where f̄ =

∑n

i=1 f(xi)

n
.

In the presence of measurement errors, an estimate of β is.

β =

√

√

√

√

∑n
i=1(f̂(xi) − f̄ )2

n − 1
exp

(

−n − 1

n

∑n
i=1 σ2

i
∑n

i=1(f̂(xi) − f̄ )2

)

. (6.2)

The “magnitude” parameters β augments the relative importance of the given mea-
surements to the importance of the measurement errors, and determines how hard the
interpolant tries to pass through each data point. By observing the quadratic form Eq.
(2.4) with wk = βγk, we find that β has no effect on the interpolant when there are no
measurement errors, i.e., σi = 0, i = 1, . . . , n. When measurement errors are present, the
ratio of ea i to β presents a relation, between the contribution to the variation of f̂(xi)

from the measurement errors, and the contribution to the variation of f̂(xi) from the
variation of the function f itself. This can be seen from the composition of the quadratic
form (2.4), as β determines the relative importance of the first two terms in A relative to

the third term, which corresponds to the measurement errors in f̂ . When β is small com-
pared to the measurement errors, A ≈ H2, and the interpolant f̃ is a constant function
whose value is

f̃(z) ≡
n
∑

i=1

1

σ2
i

f̂(xi).

In this case, all the variation of the function values f̂(xi) are attributed to the measure-
ment errors, and f̃ makes no effort to go through each datapoint. On the other hand,
when β is large compared to the measurement errors, the third term in the definition of A
can be ignored compared to the first two terms. As discussed in the previous section, the
interpolant f̃ fits the datapoint f̂(xi) exactly when σi = 0. In this case, all the variation

of the function values f̂(xi) are attributed to the variation of the function f itself.
The other parameter, the “roughness” γ, models how fast the kth derivative of f grows

as k increases. γ is called the “roughness” because if f is a sine wave of angular frequency
γ, i.e., f(x) = eiγx, then γ is the rate of growth of its derivative, i.e., ‖f (k)(x)‖ =
γk‖f(x)‖. We use this as a model for general smooth functions by assuming that the
bound of the kth derivative of f grows exponentially as γk. Here the parameter γ describes
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the frequency of the fastest varying mode of the function f , or the reciprocal of the
smallest length scale of f . With an appropriate choice of γ, this model provides a valid
estimate of the magnitude of f (k)(z) for most smooth functions.

We determine γ from the given data using the bi-section method. Upper and lower
bounds are first determined from the spacing of the nodes, then the interval of possible γ
is bisected by interpolating each datapoint using other datapoints with our method, and
comparing the actual residual f(xi) − f̃(xi) with Q∗(xi). In determining the upper and
lower bound, we rely on the fact that the reciprocal of γ models the smallest length scale
of f . On the other hand, the possible length scales that can be reconstructed from the
finite number of datapoints are limited by the span of the datapoints on one end, and
by the Nyquist sampling theorem on the other end. Specifically, we start the bi-section
with

γmin =
1

δmax
, γmax =

π

δmin
,

where δmax and δmin are the maximum and minimum distance between any two nodes.
The interval [γmin, γmax] is then bisected logarithmically at each step by γmid =

√
γminγmax.

With this γmid, for each i = 1, . . . , n, we use our interpolation scheme to calculate f̃(xi)
with datapoints other than the one at xi. We then compare Q∗(xi) calculated with Eq.
(2.5) with the true residual r(xi) = f̃(xi) − f(xi). The bi-section algorithm decide that
γ < γmid if Q∗(xi), i = 1, . . . , n are larger than the true residuals, or γ > γmid other-
wise. This choice is based on the observation that a larger γ results in a larger Q∗(xi).
Specifically, we set

γmax = γmid if
1

n

n
∑

i=1

r(xi)
2

Q∗(xi)
< 1 ,

γmin = γmid if
1

n

n
∑

i=1

r(xi)
2

Q∗(xi)
> 1 ,

or when σi are non-zero,

γmax = γmid if
1

n

n
∑

i=1

(

f̃(xi) − f̂(xi)
)2

Q∗(xi) + σ2
i

< 1 ,

γmin = γmid if
1

n

n
∑

i=1

(

f̃(xi) − f̂(xi)
)2

Q∗(xi) + σ2
i

> 1 .

(6.3)

The bi-section continues until γmin and γmax are sufficiently close. We stop the bi-section
when

γmax

γmin
< Tγ

for some threshold Tγ . At this point, we use γmid as the estimation for the “roughness”
parameter γ. Through numerical experiments several different functions, we found that
Tγ ≈ 1.1 is enough to produce very good results.

The parameter γ determines how aggressively the interpolant tries to achieve polyno-
mial accuracy. As can be seen from Eq. (5.1) with wk = βγk, when γ is small, high-order
derivatives contribute more to the approximation error. In this case, the interpolation
is accurate on smooth functions such as lower-order polynomials, but may produce very
large errors if the function contains small length scales, which cause its high-order deriva-
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Figure 1. The basis functions on uniform grid for γ = 1 (upperleft), γ = 10 (upperright),
γ = 25 (lowerleft) and γ = 100 (lowerright). The dotted vertical lines indicates the location of
the uniformly spaced nodes, and each solid line of corresponding color is the unique interpolant
that equals 1 at that node and 0 at all other nodes.

Figure 2. The basis functions on non-uniform grid for different roughness γ: γ = 1 (upperleft),
γ = 10 (upperright), γ = 25 (lowerleft) and γ = 100 (lowerright). The dotted vertical lines
indicates the location of the non-uniformly spaced nodes, and the each solid line of corresponding
color is the unique interpolant that equals 1 at that node and 0 at all other nodes.

tives to grow rapidly. As γ increases, the approximation error results more and more from
low-order derivatives. The interpolation becomes more robust on oscillatory functions but
less accurate on smooth functions.

To illustrate the effects of γ, Figures 1 and 2 plots the basis of the interpolant for
different values of γ on uniform and non-uniform grids. Both the uniform and non-uniform
grids consist of 7 nodes. The basis of the interpolant at each node is defined as the unique
interpolant on this grid that equals 1 on that node and 0 on all other nodes. An interpolant
constructed from any function values given on this grid is a linear combination of these
basis functions. Two important changes are observed as γ varies. First, the support of the
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basis functions increases as γ decreases. Although our interpolation scheme is formally
global, i.e., the function value at each data point influences the interpolant globally,
the area where the influence is essentially non-zero is finite when γ is large. In both the
uniform and non-uniform cases, the effective support of each basis function when γ = 100
barely covers the nearest neighborhood of the corresponding node. As γ decreases to 25,
the supports of each basis function extends to neighboring nodes, sometimes beyond a
neighboring node in the non-uniform grid. When γ further reduces to 10, the support of
each basis covers multiple nodes. When γ = 1, the basis really become global functions
without a finite support.

The second change when γ decreases is the increase of the Lebesgue constant. The
Lebesgue constant Λ is defined as the operator norm of the interpolation scheme as a
linear mapping from the space of continuous functions to itself, i.e.,

Λ = sup
||f ||=1

∥

∥

∥
f̃
∥

∥

∥
,

where ‖ · ‖ is the maximum norm. It can be shown that Λ is equal to the maximum of all
basis functions within the interpolation interval. Since the interpolant must go through
each datapoint, the Lebesgue constant is greater or equal to 1. As shown in Figures 1 and
2, the basis functions are almost capped at 1 when γ = 100, and the Lebesgue constant
is very close to unity. As γ decreases, the basis functions overshoots higher above 1, and
the Lebesgue constant increases. When γ = 1, the Lebesgue constant is approximately
1.3 in the uniform grid, and above 2 in the non-uniform grid. We also notice that for the
same γ, the Lebesgue constant is higher for the non-uniform grid.

These two effects, the increase of the Lebesgue number, and the growth of the sup-
port of each basis function as γ decreases, dominates the behavior of the interpolant.
A smaller γ generates a more global set of basis functions, allowing the use of a larger
number of datapoints in the calculation of the interpolant value, resulting in a more
accurate approximation for smooth functions. A larger γ, on the other hand, represents
a more conservative approach. By using fewer datapoints to determine the value of the
interpolant, the interpolation scheme loses high-order accuracy for smooth functions;
however, by constraining the basis functions to a more local support, it has a smaller
Lebesgue constant, making it more robust for non-smooth functions.

These effects of γ can be further demonstrated by the extreme cases when γ is very
small and very large. In Appendix A, we prove that our interpolation scheme converges
to Lagrange polynomial interpolation in the limit of γ → 0+. In this case, it converges
exponentially fast for smooth functions on a good grid, but is not robust for oscillatory
functions on a bad grid. On the other hand, when γ → +∞, it converges to the Shepard’s
interpolation Gordon & Wixom (1978), which is robust, but has slow convergence.

7. Numerical solution of the interpolation coefficients

In this section we discuss how to solve the quadratic programming problem (2.5). Due
to the large condition number of the matrix A, directly solving the linear system (3.5)
produces large numerical errors that completely corrupt the solution. Therefore, our goal
is to calculate the coefficients a without explicitly constructing A.

We define

â = −2a

λ
,
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then Eq. (3.5) becomes

A âT = eT, a =
â

e âT
.

Therefore, it is sufficient to accurately solve A âT = eT. Let V be an N by n matrix with

Vki = wk

(xi − x)k

k!
,

F be an n by n diagonal matrix with

E2
ii =

(

(xi − x)N+1

(N + 1)!

)2

+ σ2
i ,

then

A = V TV + E2 =
[

V TET
]

[

V
E

]

.

We perform a QR decomposition of the matrix
[

V
E

]

= QR, (7.1)

so that Q is an orthonormal matrix, and R is an upper-triangular matrix. Then the linear
system we want to solve becomes

RTR âT = eT.

Therefore, the interpolation coefficients can be solved by one forward elimination, one
backward elimination and a normalization:

RTˆ̂a
T

= eT, R âT = ˆ̂a, a =
â

e âT
. (7.2)

This process proves to be much more stable than directly solving Eq. (3.5) and produces
sufficiently accurate results. With this algorithm, he total number of operations involved
in constructing the interpolant at each point is Golub & Loan (1996) O((N + n)n2).

8. Numerical examples

In this section, we apply our interpolation scheme to the following example functions:
(a) A cosine wave f(x) = cosx. This function is smooth and expected to be an easy

case for interpolation schemes.

(b) The Runge function f(x) =
1

1 + x2
. It was used by Runge (1901) to demonstrate

the divergence of Lagrange interpolation on an equally spaced grid.
(c) A cosine wave with a sharp Gaussian notch f(x) = cosx − 2e−(4x)2. Since this

function contains two distinct length scales, we use it as a simple model for multi-scale
functions.

(d) A discontinuous function f(x) =

{

e−x2

, x > 0,

−e−x2

, x < 0.
.

For all these functions, the interpolant is constructed in the interval [−5, 5] using two
kinds of grids: a uniformly distributed grid and a Niederreiter quasi-random sequence grid
Niederreiter (1992). Figures 3 to 10 demonstrate the performance of our interpolation
scheme on these four functions using both the uniform and quasi-random grid. In each
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Figure 3. Interpolating the cosine wave using 8 (upperleft), 16 (upperright), 24 (lowerleft)
uniform grid, and the convergence plot (lowerright).

figure, the first three plots show the target function as dashed lines and our interpolant
approximation as solid lines. The dots indicate the location of the datapoints. The fourth
plot in each figure shows the convergence of our interpolations scheme. The horizontal
axis is the number of datapoints used, and the vertical axis is the difference between
the target function and the interpolant function, measured in L∞ distance (dotted lines)
and in L2 distance (solid lines). As can be seen from these figures, our interpolation
scheme works robustly for all four functions on both uniform and quasi-random grids.
For the three smooth functions, it converges exponentially to a cutoff precision of ap-
proximately 10−10 to 10−13. The rate of convergence is fastest for the cosine wave, and
slowest for the multi-scale notched cosine function. This behavior is expected because the
notched cosine function contains the most high frequency components, while the plain
cosine function contains the least. The cut-off precision is due to the round-off error ac-
cumulated in the QR factorization (7.1) and solution of the linear systems (??). For the
discontinuous function, we observe artificial oscillations near the discontinuity, whose size
doesn’t seem to decrease as the grid refines. As a result, the L∞ error in the convergence
plots stays almost constant, and the L2 error decreases slowly. Despite of this Gibbs-like
phenomenon, the interpolant seems to converge point-wise to the target function, just
as Lagrange interpolation does on a Lobatto grid. In these numerical experiments, our
interpolation demonstrates high accuracy for smooth functions, and excellent robustness
even for discontinuous functions. It combines the accuracy of Lagrange interpolation on
Lobatto grid and the flexibility and robustness of Shepard’s interpolation.

Figure 11 demonstrates our approximation scheme when measurement errors are non-
zero. In this case, our scheme becomes a nonlinear regression scheme by constructing
a “best fit” for the data. The convergence plot shows slow convergence to the target
function, due to the corruption by the measurement errors.
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Figure 4. Interpolating the Runge function using 8 (upperleft), 16 (upperright), 24 (lowerleft)
uniform grid, and the convergence plot (lowerright).

Figure 5. Interpolating the notched cosine function using 24 (upperleft), 40 (upperright), 56
(lowerleft) uniform grid, and the convergence plot (lowerright).



Rational interpolation with super-polynomial convergence 47

Figure 6. Interpolating the discontinuous function using 24 (upperleft), 40 (upperright), 56
(lowerleft) uniform grid, and the convergence plot (lowerright).

Figure 7. Interpolating the cosine wave using 8 (upperleft), 16 (upperright), 24 (lowerleft)
quasi-random grid, and the convergence plot (lowerright).
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Figure 8. Interpolating the Runge function using 8 (upperleft), 16 (upperright), 24 (lowerleft)
quasi-random grid, and the convergence plot (lowerright).

Figure 9. Interpolating the notched cosine function using 24 (upperleft), 40 (upperright), 56
(lowerleft) quasi-random grid, and the convergence plot (lowerright).
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Figure 10. Interpolating the discontinuous function using 24 (upperleft), 40 (upperright), 56
(lowerleft) quasi-random grid, and the convergence plot (lowerright).

Figure 11. Interpolating the Runge function using 12 (upperleft), 18 (upperright), 30 (lowerleft)
quasi-random grid with measurement errors indicated by bars. The lowerright is the convergence
plot.
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9. Conclusion

A univariate interpolation scheme on arbitrary grid is developed. The interpolant is
a rational function with no poles on the real line. With proper choice of the weights
wk, the interpolant converges to a smooth target function at a super-polynomial rate. In
addition, when errors exist on data points, the interpolation scheme becomes a nonlinear
regression scheme. Experiments of this interpolation scheme on uniform and non-uniform
grids show that it has both exponential convergence on smooth functions, and excellent
robustness on non-smooth and discontinuous functions.

Future research in several areas are currently being conducted. First, it is easy to
generalize the mathematical formulation of this interpolation scheme to multivariate case.
We are working on proving similar properties of the multivariate interpolant. Second, if
the derivatives are given at the data points, it is possible to construct a Hermite type of
interpolation using the same formulation, in which the derivatives at the data points are
expanded using a Taylor series similar to the values. Third, when measurement errors
are present, our interpolation scheme becomes a nonlinear regression scheme. We want
to further study the behavior and properties of this regression scheme. We also want
to extend this regression scheme to account for correlated errors and errors with given
probability density function.
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Appendix A. Miscellaneous facts about the interpolant

Theorem 6. For a fixed set of data points, σi = 0, ∀i. Let wk = βγk, and the inter-
polant function f̃ is constructed by Eqs. (2.1) and (2.5) with N ≥ n − 1. Then

lim
γ→0+

f̃(x) = fL(x), ∀x ,

where fL is the Lagrange polynomial interpolant on the same data points.

Proof. The Lagrange interpolation

fL(x) =

n
∑

i=1

aL
i f(xi), where aL

i =

∏

j 6=i(x − xj)
∏

j 6=i(xi − xj)
.

It is sufficient to prove that

lim
γ→0+

ai = aL
i , i = 1, . . . , n, (A 1)

for any x, where ai are the solution of Eq. (2.5).
Lagrange interpolation

∑n

i=1 aif(xi) is exact for polynomials up to order n−1. There-
fore,

n
∑

i=1

aL
i (xi − x)k = (x − x)k =

{

1, k = 0

0, k = 1, . . . , n − 1 ,
(A 2)

Incorporating Eq. (2.4) and the assumptions N ≥ n − 1, σi = 0 and wk = βγk, we get

Q(x, aL
1 , . . . , aL

n) = β2
N
∑

k=n

γ2k

(

n
∑

i=1

aL
i

(xi − x)k

k!

)2

+ β2
n
∑

i=1

γ2N+2

(

aL
i

(xi − x)N+1

(N + 1)!

)2

.

Therefore,

lim
γ→0+

Q(x, aL
1 , . . . , aL

n)

γ2n−1
= 0 .

Since aL
i satisfy the constraint

∑n
i=1 aL

i = 1, we know that

Q∗(x) = Q(x, a1, . . . , an) ≤ Q(x, aL
1 , . . . , aL

n) ,

therefore,

lim
γ→0+

Q(x, a1, . . . , an)

γ2n−1
= 0 .

i.e. ∀ǫ, ∃γǫ s.t. ∀ 0 < γ < γǫ,

Q(x, a1, . . . , an)

γ2n−1
< ǫ2 .

On the other hand, with out loss of generality, we can assume γǫ ≤ 1 and n!2γǫ ≤ β2.
From Eq. (2.4) we obtain

ǫ2 >
Q(x, a1, . . . , an)

γ2n−1
≥

n−1
∑

k=1

(

n
∑

i=1

ai(xi − x)k

)2

.
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Denote the n by n Vandermonde matrix Vki = (xi − x)k−1, Then the inequality above
combined with the constraint (2.2) implies

∥

∥V aT − e1

∥

∥

2
< ǫ ,

where a = (a1, . . . , an), e1 = (1, 0, . . . , 0). On the other hand, the matrix form of Eq.
(A 2) is

V aLT = e1 ,

where aL = (aL
1 , . . . , aL

n). By combining the above inequality and equality, we obtain
∥

∥V (aT − aLT)
∥

∥

2
< ǫ .

Since the determinant of the Vandermonde matrix V is nonzero Golub & Loan (1996), it
is invertible and the operator norm ‖V −1‖2 is finite. Therefore, ∀ǫ, ∃γǫ, s.t. ∀ 0 < γ < γǫ

|ai − aL
i | ≤ ‖a − aL‖2 ≤ ‖V −1‖2

∥

∥V (aT − aLT)
∥

∥

2
≤ ǫ ‖V −1‖2 ,

Therefore, Eq. (A 1) holds.

Theorem 7. For a fixed set of data points, σi = 0, ∀i. Let wk = βγk, and the inter-
polant function f̃ is constructed with (2.1) and (2.5). Then

lim
γ→+∞

f̃(x) = fS(x), ∀x ,

where fS is the Shepard’s interpolant Gordon & Wixom (1978) with power parameter
2N + 2 on the same data points.

Proof. Shepard’s interpolation, a.k.a. inverse distance weighting, is given by

fS(x) =

n
∑

i=1

aS
i f(xi), where aS

i =
|x − xi|−p

∑n

j=1 |x − xi|−p
.

where p is the power parameter. Therefore, it is sufficient to prove

lim
γ→0+

ai = aS
i , i = 1, . . . , n (A 3)

with p = 2N + 2.
aS = (aS

1 , . . . , aS
n) with p = 2N + 2 is the unique solution for the constraint minimiza-

tion problem

QS = min
P

ai=1

n
∑

i=1

(

ai

(xi − x)N+1

(N + 1)!

)2

(A 4)

Then

Q∗(x)

β2γ2N+2
= min

P

ai=1

Q(x, a1, . . . , an)

β2γ2N+2
≤ Q(x, aS

1 , . . . , aS
n)

β2γ2N+2

= QS +

N
∑

k=1

γ2k−2N−2

(

n
∑

i=1

aS
i

(xi − x)k

k!

)2

.

The second term goes to 0 as γ → ∞. Therefore,

lim
γ→+∞

Q∗(x)

β2γ2N+2
≤ QS , (A 5)
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On the other hand,

Q∗(x)

β2γ2N+2
=

Q(x, a1, . . . , an)

β2γ2N+2
≥

n
∑

i=1

(

ai

(xi − x)N+1

(N + 1)!

)2

.

Therefore,

lim
γ→+∞

n
∑

i=1

(

ai

(xi − x)N+1

(N + 1)!

)2

≤ lim
γ→+∞

Q∗(x)

β2γ2N+2
≤ QS .

Since QS is the minimum of the quadratic programming (A 4), the above inequality is an
equality. In addition, because this quadratic programming (A 4) is non-degenerate with
unique solution aS

1 , . . . , aS
n , we conclude that Eq. (A 3) holds.

Theorem 8. For any interpolant function f̃ constructed with (2.1) and (2.5),

lim
x→±∞

f̃(x) =
1

n

n
∑

i=1

f(xi)

Proof. Define a∞
i =

1

n
. It is sufficient to prove that

lim
x→±∞

ai = a∞
i , i = 1, . . . , n. (A 6)

Note that a∞ is the solution of the constraint quadratic programming

Q∞ = min
P

ai=1

n
∑

i=1

a2
i (A 7)

Then

(N + 1)!2

β2(γx)2N+2
Q∗(x) =

(N + 1)!2

β2(γx)2N+2
min

P

ai=1
Q(x, a1, . . . , an)

≤ (N + 1)!2

β2(γx)2N+2
Q(x, aS

1 , . . . , aS
n)

=

n
∑

i=1

a2
i

(

x − xi

x

)2N+2

+

N
∑

k=1

γ2k−2N−2

(

n
∑

i=1

aS
i

(xi − x)k

xN+1

(N + 1)

!k!

)2

.

Because lim
x→±∞

x − xi

x
= 1 and lim

x→±∞

(xi − x)k

xN+1
= 0 for i = 1, . . . , N , the r.h.s. in the

inequality above converges to
n
∑

i=1

a2
i = Q∞. Therefore,

lim
x→±∞

(N + 1)!2

β2(γx)2N+2
Q∗(x) ≤ Q∞
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On the other hand,

(N + 1)!2

β2(γx)2N+2
Q∗(x) =

(N + 1)!2

β2(γx)2N+2
Q(x, a1, . . . , an) ≥

n
∑

i=1

a2
i

(

x − xi

x

)2N+2

.

Therefore,

lim
x→±∞

n
∑

i=1

a2
i = lim

x→±∞

n
∑

i=1

a2
i

(

x − xi

x

)2N+2

≤ lim
x→±∞

(N + 1)!2

β2(γx)2N+2
Q∗(x) ≤ Q∞ .

Since Q∞ is the minimum of the quadratic programming (A 7), the above inequality is an
equality. In addition, because this quadratic programming (A 7) is non-degenerate with
unique solution a∞

1 , . . . , a∞
n , we conclude that Eq. (A 6) holds.

Corollary 2. The rational interpolant f̃ has no poles on the extended real line
[−∞, +∞].

Proof. This result is obtained by combining Theorems 2 and 8.


