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Numerical study of boundary layer
interaction with shocks � method
improvement and test computation

By N� A� Adams

�� Motivation and objectives

The general motivation of this work has been outlined in Adams ������� The
objective is the development of a high�order and high�resolution method for the
direct numerical simulation of shock turbulent�boundary�layer interaction� Details
concerning the spatial discretization of the convective terms can be found in Adams
and Shari� ������� The computer code based on this method as introduced in
Adams ������ was formulated in Cartesian coordinates and thus has been limited
to simple rectangular domains� For more general two�dimensional geometries	 as a
compression corner	 an extension to generalized coordinates is necessary� To keep
the requirements or limitations for grid generation low	 the extended formulation
should allow for non�orthogonal grids� Still	 for simplicity and cost e
ciency	 peri�
odicity can be assumed in one cross��ow direction�

For easy vectorization	 the compact�ENO coupling algorithm as used in Adams
������ treated whole planes normal to the derivative direction with the ENO scheme
whenever at least one point of this plane satis�ed the detection criterion� This is
apparently too restrictive for more general geometries and more complex shock
patterns� Here we introduce a localized compact�ENO coupling algorithm	 which is
e
cient as long as the overall number of grid points treated by the ENO scheme is
small compared to the total number of grid points�

Validation and test computations with the �nal code are performed to assess the
e
ciency and suitability of the computer code for the problems of interest� We de�
�ne a set of parameters where a direct numerical simulation of a turbulent boundary
layer along a compression corner with reasonably �ne resolution is a�ordable�

�� Accomplishments

��� Generalized coordinates

The fundamental equations solved are the conservation equations for mass	 mo�
mentum	 and energy in generalized coordinates
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where the conservative variables are
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with E � �

���
p
 �

�
�u�
v�
w��� Considering only spanwise periodic con�gurations

we limit the coordinate generalization to the �x� z��plane� The convective �uxes are
given by
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and similarly for GE and HE � The viscous �uxes are given by
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and similarly GS and HS � The Jacobian of the coordinate transformation is

J � �x�z � �z�x � ���

The stresses are de�ned as
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with analogous de�nitions for �yy and �zz �
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and similarly for �xz	 �yz	 and �xz� The heat �uxes are de�ned as
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qy and qz analogously� The viscosity is calculated according to Sutherland�s law�
We also assume the thermal equation of state for perfect gases to be valid�
Given a wall�normal temperature gradient distribution �T
�n	 a von Neumann

condition for the temperature is imposed by setting
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whenever it appears during the computation of heat �ux and stress terms �due to
the temperature dependence of the viscosity��
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��� Grid generation

For the generation of an analytic mapping of the computational domain onto the
physical domain we follow a simple algebraic procedure� We restrict our interest to
channel�like geometries where lower and upper boundary can be approximated by
simple functions� The mapping is non�conformal and thus the orthogonal partition
of the computational domain will be mapped onto a non�orthogonal partition of the
physical domain in general� The mapping consists of two steps� ��� the computa�
tional domain f�� �g � ��� ��� ��� �� with a uniformly spaced partitioning is mapped
onto an intermediate space with non�uniform partitioning fs� tg � ��� ��� ��� ��� ���
the intermediate space fs� tg is mapped onto the physical space fx� zg� Using a
linear blending function between lower and upper boundary	 we de�ne this latter
mapping function by

x��� �� � ��� t�xl�s� 
 txu�s� ����

z��� �� � tzl�s� 
 ��� t�zu�s� � ����

the indices l and u indicate that the functions are to be taken at the lower and
upper boundary	 respectively� The components of the Jacobi matrix are then given
by
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Later the metric coe
cients will be needed	 which are the components of the inverse
Jacobi matrix	
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and the Jacobian
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For the point distributions along the parameter lines s��� along the lower and
upper boundary	 we de�ne

s��� � a� 
 b
 c� sinh�g����� ����

and its derivative
ds���
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The following abbreviations are used�
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b � c� sinh

�
c�
c�

�
� ����

If we consider compression corner geometries	 then c� and c� are parameters that
tune the grid point condensation around the corner point xc� It coincides with the
zero of sinh�g�����	 which is the condition from which c� is computed by solving

xc � x�c�� � � ����

for c�� Knowing all parameters we de�ne the variation of x along the lower or upper
boundary in terms of the parameter s as

x�s� � Ls � ����

where L is the maximum value x assumes on the lower or upper boundary	 respec�
tively� Having obtained x�s� we get z�s� in the following manner�

z�x� � d�

�
x
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ln �cosh �d�x � xc�� 
 d�

	
� ����

A corner singularity in the mapping is avoided by prescribing a �nite curvature rc
at fxc� �g� The ramp endpoint is given by fL� sin����L� xc�g	 where � is the ramp
angle in physical space fx� zg� The parameter d� is computed from the condition

z�L� � sin����L � xc� � ����

Finally one sets
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In the transversal direction we introduce the parameter function t���
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Herein following abbreviations and parameters are used� e� and e� control the grid
stretching at a point f�� zmvg similar to d� and d�� about half of the grid points are
between f�� �g and f�� z���g� f�� z�g is the upper�left corner point� The auxiliary
functions h� and h� are de�ned as

h���� � c� 
 d
 e� sinh�h����� ����

and

h���� �
� � e�
e�

� ����

The constants c and d are given by

c � �� e�

�
sinh

�
�� e�
e�

�

 sinh

�
e�
e�

�	
����

and

d � e� sinh

�
e�
e�

�
� ����

Given zmv	 the parameter e� is computed from the condition that the argument of
z��� � zmv coincides with h���� � �	 i�e� e� is obtained by solving

zmv � z�t�e�� � � � ����

��� Local compact�ENO coupling

The principle of the coupling between ENO�scheme and the compact �nite�
di�erence scheme is discussed in Adams and Shari� ������� The actual imple�
mentation with a reasonable capability for vector optimization is more involved�
Let us consider the one dimensional and one component problem� Given the �ux
F on the grid fxjg	 its derivative for x is approximated by

�F

�x

�
� PN �F � � M��

L MRF ����

Assume that fxgE � fxp� � � � � xqg� � � � � � fxr� � � � � xsgnE is the union of regions of
points where the �ux derivatives are approximated by the ENO scheme� If a shock
detection algorithm has detected a point xi to be treated by the ENO scheme	 �i
is set true and we de�ne a topology vector � by

� � f�ig � ����

This vector has nE unity blocks with dimensionsNnE � �Nsep
�	 where Nsep is the
dimension of the padding on both sides of ENO regions �Adams and Shari�	 ������
Whenever we have �i � � for a certain grid point	 we calculate PN �F �i � PENO

N �F �i
from the ENO scheme�



��� N� A� Adams

The e�ect of the compact�ENO coupling on Eq� ���� is that the ith component
of MRF is replaced by the �ux derivative at i calculated with the ENO scheme
whenever �i is �� The row i of ML has then to become unity so that the ENO
�ux derivative PENO

N �F � is exactly returned when Eq� ���� is solved for PN �F ��
We de�ning a correction matrix BCD	 which changes the rows i of ML to unity
whenever �i is true by its dyadic decomposition into the matrices B	 D	 and C	 the
dimensions of which are given below� With this de�nition the fundamental equation
for the computation of �ux derivatives of the hybrid scheme can be written as

�ML �BDC�PN �F � � MRF 
��PENO
N �F ��MRF � � ����

The rank of the correction matrix BCD is
PnE

���N� � mE� It is evident that
Eq� ���� returns the ENO �ux derivatives exactly at points i whenever �i � ��
To solve Eq� ���� e
ciently we make use of the identity by Frobenius and Schur

�Zurm�uhl and Falk	 ����	 pg� ���	���� which allows to compute �ML �BDC���

by using the inverse of ML corrected by a the inverse of a rank mE matrix R� If
mE 

 N this procedure is more e
cient for multi�dimensional problems by using
the precomputed inverse of ML than inverting the LHS�matrix of Eq� �����
The matrices B	 D and C are de�ned as follows�

B
�z�
mE�N

�

mEX
���

�eT� � ����

D
�z�
mE�mE

� I
�z�
mE�mE

� ImE ����

and
C
�z�

mE�N

� BT �ML � I� � ����

Here we de�ne e� as the mE�component vector with its � component equal to unity
the rest being zero�
The solution algorithm for Eq� ���� according to �Zurm�uhl and Falk	 ����� is the

following�
���� calculate the uncorrected solution vector y from

MLy �MRF 
��PENO
N �F ��MRF �

by direct inversion using the precomputed LU�decomposition of ML�
���� compute matrix V from

MLV � B

by direct inversion using the precomputed LU�decomposition of ML�
���� generate the rank mE correction matrix R from

R � ImE �CV �
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TABLE �� Flow parameters for M� � � ramp�

quantity value comment

T �� �����K free stream temperature
M� � free stream Mach number
p�� ������Pa free stream pressure
Pr ��� Prandtl number
	 ��� ratio of speci�c heats
R ������ gas constant
��� ���� � ����kg
m
s free stream viscosity
S� �����K Sutherland constant
Re�� ������ running length Reynolds number
Re�� ���� reference Reynolds number
��� ������ � ����m reference length
�� ����� in�ow dist� from lead� edge
L� ����� length of �rst ramp segment
L� ��� length of second ramp segment
� ���o ramp de�ection angle

���� get the solution correction vector z from

Rz � Cy

�note that R is usually fully occupied so that this procedure is only e
cient if
mE 

 N��
���� �nd the solution vector from

PN �F � � y 
 z �

For a multidimensional problem all points in index planes normal to the derivative
direction are gathered and a vector loop is spanned over these�

��� Code validation

Similar to Adams ������ we validate the generalized coordinate code by compar�
ison with a steady state solution� Experimental and numerical data for comparison
are taken from the computational and experimental results of a laminar boundary
layer along a ���o compression corner at M� � � by Simeonides et al� �������
We emphasize that for the results presented in this section time�accurate and low�
dissipationmethods have been used� The computations have thus been halted before
a true steady state has been reached �residual about ������ The �ow parameters
are given in Table � �reference length is ��� 	 dimensional quantities are marked with
a star��

In Fig� � the grid generated by the algorithm in section ��� is shown �each �th
grid line�� The grid is condensed towards the wall and towards the kink of the
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Figure �� Skin friction and surface pressure	 ���o laminar compression corner at
M� � �� Symbols� 	 ENO�TVDR�� 	 CUHDE�R�� � 	 Simeonides et
al�	 exp�� � 	 Simeonides et al�	 comput�

ramp� As initial condition we take outside of the boundary layer the solution of the
inviscid de�ection problem	 while near the wall a boundary layer from a similarity
solution is given �ignoring the adverse pressure gradient on the inclined segment
of the ramp�� As boundary conditions we �x at the in�ow the initial condition
for all primitive variables giving the correct number of � conditions for the Navier�
Stokes equations �Oliger � Sundstr�om	 ������ At the out�ow we prescribe perfectly
non�re�ecting boundary conditions �Thompson	 ������ At the upper boundary
freestream conditions for all �ow variables are prescribed�
The computation is started with Nx � ��� and Nz � ��� After ���� iterations

with a �rd order LLF�ENO scheme	 the resolution is increased to Nx � ��� and
Nz � ��� and the computation is continued for ����� time steps� Finally	 we switch
to the hybrid scheme ��th compact upwind	 �th order LLF�ENO� and continue for
another ����� iterations� For the shock detection parameters we use �x � � and
�z � �� The agreement between the computational and experimental results of
Simeonides et al� ������ and the present results is satisfactory	 Fig� �� A small
in�ow transient is caused by the fact that we prescribe a boundary layer pro�le at
in�ow� This is to match the procedure in later DNS� In Simeonides et al� ������
the plate leading edge is included in the computational domain�
Figure � shows a quasi�Schlieren plot �merely the norm of the density gradient�

when the computations were halted� Both the separation shock and the main ramp
shock are clearly visible�
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Figure �� Grid for ���o ramp	 each �th grid line shown�

Figure �� Quasi�Schlieren plot �intensity proportional to norm of density gradi�
ent��

��� Test computation � �at plate

A test computation of a turbulent boundary layer along a �at plate at M� � �
has been performed� The Reynolds number is Re�� � �����	 where �� is the lam�
inar displacement thickness corresponding to the in�ow station	 which is also the
reference length� We take as reference length the displacement thickness from a lam�
inar similarity solution since it is uniquely de�ned corresponding to a downstream
station measured from the plate leading edge� The �ow parameters are given in
Table �� Discretization is Nx � ���	 Ny � �� and Nz � ����
The in�ow data are generated from the temporal simulation data of Guo and

Adams ������ using Taylor�s hypothesis� Initial condition is a laminar similarity
solution which is also the reference solution used in the sponge region �� 
 x � ��
�Adams	 ������ The computation extends over ���� time steps� Time step size is
about �t � ������ t�� The output data are sampled over the �nal ���� time steps	
starting after the in�ow plane has been convected through the out�ow� The time
sampling interval is about ��� t��

For a comparison we refer to the in�ow boundary layer pro�le of the experimental
data at higher Reynolds number for a ��o compression corner of Zheltovodov et

al� ������� In Table � we compare data from simulation and experiment� In
Fig� � we compare mean �ow pro�les �spanwise and ensemble averaged� at the
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TABLE �� Flow parameters for M� � � �at plate�

quantity value comment

T �� ���K
M� �
Pr ����
	 ���
R ������
��� ���� � ����kg
m
s
S� �����K
Re�� �����
��� ������ � ����m
�� ������ in�ow station
Lx �� streamwise box�length
Ly � spanwise box�length
Lz �� wall�normal box�length

TABLE �� Boundary layer data for �at plate	 Cf is the skin friction coe
cient	
v� is the friction velocity	 l� is the wall unit	 �� is the grid spacing in wall units
�for the wall�normal direction z it is the distance of the �rst point away from the
wall�	 and �� is the turbulent displacement thickness�

quantity x � ����� x � ����� x � ����� exp

Cf ���� � ���� ���� � ���� ���� � ���� ���� � ����

v� ������ ������ ������ ������
l� ������ ������ ������ ������
��
x ����� l� ����� l� ����� l� �

��
y ���� l� ���� l� ����� l� �

��
z ���� l� ���� l� ���� l� �

�� ���� ���� ���� ����

same streamwise stations as in Table � with the experiment�

In general the quality of the simulation data is unsatisfactory� This is due to
several reasons� One is the large distance of the �rst grid point away from the
wall	 which results in a poor approximation of wall�normal gradients� Another
is the relatively small streamwise extent of the computational domain	 which is
only about �� turbulent boundary layer thicknesses	 considering the fact that the
out�ow sponge a�ects about another ��� boundary layer thicknesses	 even less� The
downstream extent of the in�ow transient cannot be clearly assessed� Also	 we
make the same observation as in Guo and Adams ������ that there is a mass defect
visible in the pro�les from the simulation in the lower boundary layer half� This
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Figure �� Mean �ow pro�les for M� � � �at plate� Symbols� 	 x � ���
	 x � ��� 	 x � ��� � 	 exp�

is attributed to the too small streamwise extent	 which apparently does not allow
for the appropriate evolution of streamwise streaks� The computational cost was
���s
�Npoint Ntimestep� for a single CRAY C�� CPU�

�� Future plans

From the numerical experiments mentioned in the previous section	 we estimate
a set of parameters where a direct numerical simulation of a compression corner
is feasible� A direct numerical simulation at these parameters will be attempted
while an accompanying large�eddy simulation is under consideration by K� Mahesh
�CTR��

��� DNS parameters and cost estimate

The Reynolds number with respect to the turbulent displacement thickness at
in�ow is about ����� Turbulent boundary layer thickness and turbulent displace�
ment thickness can be estimated as about ��� l� and ��� l�	 respectively� With
an expected discretization of Nx � ���	 Ny � ��	 and Nz � ���	 we estimate
�x � �� l� and �z � �� l�� With an estimated Tpass � ��� t� for the in�ow
plane to be convected through the domain	 a time step of about �t � ���� t�	 and
a code performance of about ���s
�Npoint Ntimestep� on a single CRAY C�� CPU	
we require an estimated ��� hours per Tpass�
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TABLE �� Flow parameters for M� � � ramp�

quantity value comment

T �� ���K
M� �
Pr ����
	 ���
R ������
��� ���� � ����kg
m
s
S� �����K
Re�� ����
��� ������ � ����m reference length
�� ������ in�ow station
L� �� length of �rst ramp segment
L� �� length of second ramp segment
� �� ramp de�ection angle
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Appendix A� Split form of the convective �uxes

A typical indication of underresolution �thus of aliasing errors� of a direct numer�
ical simulation of a compressible �ow	 solving the compressible Navier�Stokes equa�
tions	 is the appearance of regions with negative temperature �or pressure�� This
is related to a local imbalance of internal �potential� and kinetic energy	 caused
mostly by aliasing errors� It has been observed by Blaisdell et al� ������ that
for the pseudospectral computation of derivatives of convolutions of dependent
variables	 as ��fg�	 the aliasing error is reduced by using the identity ��fg� �
�
����fg� 
 �
� 
 f�g 
 �
�g�f � For �nite�di�erence schemes the coe
cients of
the discrete Fourier series for the derivative have to be multiplied by the integer
modi�ed wavenumber	 which becomes a function of the integer wavenumber� for
dissipative schemes this modi�ed wavenumber is complex� In this appendix we
brie�y investigate the e�ect of a split form of the convective �uxes for a dissipative
�nite�di�erence schemes� From numerical experimentation with coarsely resolved
computations for a �at plate	 we see that for the upwind scheme used above aliasing
errors are even more critical for the split formulation than for the conservative form�

First we derive the expressions for pseudospectral convolution in terms of discrete
Fourier series for a Fourier scheme �in the following the summations

P
n�m�k andP

n�m�k�N are always to be taken over m�n � �N
�� �����N
�� ��

�x�fg� �

N

�
��X

k��N
�

ik


 X
m�n�k

 fm gn 

X

m�n�k�N

 fm gn

�
eikx �A���

and
�

�
�x�fg� 


�

�
g�xf 


�

�
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�

N
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��X

k��N
�


 X
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i
�
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�k 
m
 n�  fm gn 


X
m�n�k�N

i
�
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�k 
m
 n�  fm gn

�
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N

�
��X

k��N
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Using the symmetry properties of the dispersion function and of the dissipation
function	 we restrict the following to � � � � �� We approximate the modi�ed
wavenumber !���� piecewise linearly by
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For the split formulation we get�
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For the non�split formulation we get�
Case ��� �K � k � K�
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Figure �� Sketch of the dispersion for non�split and split formulation�
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The factors in the above Fourier sums have character of modi�ed wavenumbers
and represent the wave properties �dispersion and dissipation� of the particular
Fourier mode� We now inspect particular factors� Considering the �rst terms on
the left�hand sides �rst	 we see that the split formulation generates the spurious
wave �II	VI� while the non�split formulation generates �V	VIII�� From the disper�
sion shown in Fig� � it is evident that II and V contribute by aliasing to the resolved
spectrum� The spurious waves �II	VI� from the split formulation however	 are par�
tially ampli�ed �negative dissipation� while the spurious waves from the non�split
formulation are damped� From the second terms on the right�hand side we see that
the split formulation generates another pair of spurious waves which contribute to
the resolved spectrum by aliasing which is also ampli�ed �III	VII�� We conclude
that the non�split formulation for an upwind scheme can exhibit spurious waves
which are ampli�ed contrary to the non�split form� This is due to the fact that the
modi�ed wavenumber for dissipative schemes is complex�


