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A family of dynamic models
for large�eddy simulation

By D� Carati�� K� Jansen� AND T� Lund

�� Motivation and objectives

Since its �rst application� the dynamic procedure has been recognized as an e�ec�
tive means to compute rather than prescribe the unknown coe�cients that appear
in a subgrid�scale model for Large�Eddy Simulation �LES�� The dynamic procedure
�Germano et al� �		�
 Ghosal et al� �		�� is usually used to determine the non�
dimensional coe�cient in the Smagorinsky ��	�
� model� In reality the procedure
is quite general and it is not limited to the Smagorinsky model by any theoretical
or practical constraints� The purpose of this note is to consider a generalized family
of dynamic eddy viscosity models that do not necessarily rely on the local equilib�
rium assumption built into the Smagorinsky model� By invoking an inertial range
assumption� it will be shown that the coe�cients in the new models need not be non�
dimensional� This additional degree of freedom allows the use of models that are
scaled on traditionally unknown quantities such as the dissipation rate� In certain
cases� the dynamic models with dimensional coe�cients are simpler to implement�
and allow for a 
�� reduction in the number of required �ltering operations�

�� Accomplishments

��� A new family of dynamic eddy viscosity models

The LES equations are obtained from the Navier�Stokes equations by applying a
�lter� denoted by an overline� which is assumed to damp scales smaller than �� In
the context of eddy viscosity models� the unknown subgrid�scale stress generated
by this operation� �ij � ui uj � ui uj � is assumed to be proportional to the strain
tensor Sij � ��iuj � �jui����

�ij � ���eSij � ���

The eddy viscosity� �e� has dimensions L��T � where L is length and T is time� The
characteristic length in the problem is obviously Lc � �� Following the Kolmogorov
��	��� dimensional analysis� the characteristic time may be expressed as a function
of the rate of energy transfer within the inertial range E� Tc � ����E����� The
�Kolmogorov expression� for the eddy viscosity is thus�

�e � ckE
�������� ���
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where ck is a non�dimensional constant� The rate of energy transfer is usually
not directly accessible in LES� and thus Smagorinsky proposed to identify the rate
energy transfer within the inertial range with the subgrid�scale dissipation�

E � ��ijSij � �ejSj
�� �
�

where jSj� � �SijSij � When integrated over the volume� the above relation be�
comes a good approximation since nearly all the dissipation will be carried by the
subgrid�scale model when the cuto� is in the inertial range� In the Smagorinsky
model� this equality is assumed to be valid at every point in space by invoking a
local�equilibrium assumption between production and dissipation of energy� Insert�
ing relation �
� into the Kolmogorov scaling for the eddy viscosity ��� gives the
Smagorinsky model

�e � csjSj�
�� ���

where cs � c
�����
k is the non�dimensional Smagorinsky constant� In the Smagorinsky

model� the time scale is seen to be jSj��� Thus� if local equilibrium is assumed� two
expressions are available for the time scale in the eddy viscosity� By dimensional
analysis� the eddy viscosity can depend on the ratio of these two time scales as well
as on the fundamental scaling in Eq� ���� The most general model can therefore be
written as

�e � F

�
jSj���

E

�
E��� ����� ���

where F is an arbitrary function� In particular� we may focus on a series represen�
tation for F �

�e �
nX

l��

cl jSj
�l E����l��� ������l���� ���

Here �l are a sequence of numbers that de�ne the exponents for the various terms
in the series� They need not be integers� The parameters cl are non�dimensional
coe�cients� As important special cases� note that n � �� �� � � leads to the
Kolmogorov scaling with c� � ck� whereas n � �� �� � � leads to the Smagorinsky
model with c� � cs�

While Eq� ��� is rather general� it has the apparent drawback that the unknown
dissipation rate� E� appears as a model parameter for �l �� �� Historically this
defect has e�ectively excluded all models encompassed by Eq� ��� except for the
Smagorinsky model� The situation has changed with the introduction of the dy�
namic procedure� however� and it is possible to use Eq� ��� generally if it is recast
in a slightly di�erent form� If we assume that the test and grid �lters are in the
inertial range� then the dissipation rate as well as each of the model coe�cients�
cl� should be the same at two �ltering levels� The product of the dissipation rate
�raised to some power� and a model coe�cient should also be invariant with �ltering
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scale� and thus the dynamic procedure may be used to determine the dimensional

parameters �cl � clE����l���� Thus when Eq� ��� is recast in terms of �cl� we can
make use of Eq� ��� and write the subgrid�scale models at the grid and test level as

�ij � ��
nX

l��

�cljSj
�l������l���� Sij � ��a�

Tij � ��
nX

l��

�cljSj
�l �������l��� Sij � ��b�

where �� is the test��lter width and Sij is the test��ltered strain rate� When
Eqs� ��a� and ��b� are substituted into the Germano identity �Germano et al� �		���
a set of integral equations for the �cl are obtained� Following Ghosal et al� ��		��
we can reduce the integral equations to algebraic relations if we constrain the co�
e�cients to have no spatial variation over the directions in which the test �lter is
applied� The end result is

hMlki�ck � �hLijm
�l�
ij i� ���

where the Leonard tensor is given by Lij � uiuj � uiuj � The lth model tensor is
de�ned as

m
�l�
ij � ��

�
������l��� jSj�lSij � �������l��� jSj�l Sij

�
� �	�

The left hand side of Eq� ��� is a matrix of products of these tensors� Mlk �

m
�l�
ij m

�k�
ij � Finally� hi denotes a spatial average taken over the directions in which

the test �lter is applied�� Note that when n �� �� a linear system must be solved
in order to determine the dynamic model coe�cients� When the pure Kolmogorov
scaling �n � �� �� � �� is used� the dynamic estimation for the eddy viscosity reduces
to�

�e � �
�

������ � ��

hLijSiji

hSijSiji
� ����

where � � ����� This relation was derived earlier by Wong � Lilly� ��		��� This
model has the advantage that knowledge of the Smagorinsky time scale jSj is not
required� and thus the model is independent of the local equilibrium assumption�
The Kolmogorov model also has the practical advantage that fewer �ltering opera�
tions are required as compared with the Smagorinsky model� This is true since

the term jSjSij does not appear in the Kolmogorov model� Finally� it should

� In practice averaging is usually not performed in inhomogeneous directions even if these are

included in the test �lter� This inconsistency introduces an error that has been found to have a

negligible impact on the simulation results 	Ghosal et al�� �

���
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Figure �� Decay of resolved turbulent kinetic energy� � Dynamic Smagorin�
sky model
 � Dynamic Kolmogorov model
 � � �ltered experimental data of
Comte�Bellot and Corrsin ��	���� U is the mean advection speed in the wind tunnel
experiments� M is the spacing between the bars in the turbulence�generating grid�
and ���q� is the total turbulent kinetic energy at the �rst measurement station�
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Figure �� Velocity spectra� � Dynamic Smagorinsky model
 �
Dynamic Kolmogorov model
 � � experimental data of Comte�Bellot and Corrsin
��	��� for Ut�M � 	� and ��� respectively� L � ����M is the length of a side of
the computational box� The other scaling parameters are de�ned in Fig� ��
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be mentioned that models mixing the Kolmogorov and the Smagorinsky scalings
�n � �� �� � �� �� � �� could be investigated for situations with poorly developed
inertial ranges� Indeed� in that case both Kolmogorov and Smagorinsky time scales
might play independent roles and the dynamic procedure could determine the rel�
ative weighting of these two scalings�

��� Numerical tests

As a �rst step in evaluating the new class of models� the Kolmogorov model
�Eq� ����� is tested in simulations of decaying isotropic turbulence� The simulations
target the experimental measurements of Comte�Bellot and Corrsin ��	��� and are
performed with a pseudo�spectral code �Rogallo� �	��� using 
�� mesh points� The
equation for the model coe�cient is averaged over the volume so that the coe�cient
is a function of time only� The simulations are initialized so that the 
�D energy
spectrum agrees with the experimental data �up to the mesh wavenumber� at the
�rst measuring station� The initial �eld is obtained by simulating the decay from an
earlier time where the velocity phases are set at random� By iteratively adjusting
the energy spectrum at the earlier time� it is possible to construct a �eld that has
the desired energy spectrum as well as realistic phase information� The objective
of the simulation is to predict the energy decay rate and the 
�D spectrum at the
two subsequent experimental measurement stations�

Figure � shows the kinetic energy decay history for the dynamic Kolmogorov and
Smagorinsky models� There is little di�erence between the results of the two mod�
els and both agree quite well with the experimental data� Near the starting point�
the Kolmogorov model is seen to be slightly less dissipative than the Smagorinsky
model� This could have to do with the fact that the initial �eld is generated with
the Smagorinsky model and thus a transient is introduced when the model is sud�
denly switched to the Kolmogorov scaling� Three�dimensional velocity spectra are
shown in Fig� �� Again there is very little di�erence between the two models� The
spectra are seen to be slightly less damped at high wavenumbers in the case of the
Kolmogorov model� This di�erence actually makes the Kolmogorov model agree
slightly better with the experimental data at the �nal measurement station�

The results of these tests suggest that the dynamic Kolmogorov model may work
just as well as the Smagorinsky model� This is signi�cant since comparable accuracy
can be expected with 
�� fewer �ltering operations� The fact that the Kolmogorov
scaling works also suggests that other terms in Eq� ��� may be useful as well�

�� Future plans

The Kolmogorov model will be tested next in turbulent channel �ow� If is proves
successful there it will be incorporated in the CTR complex geometry codes� Once
these results are interpreted� we will study models that include more terms with
the obvious �rst choice being a blend of Smagorinsky and Kolmogorov scaling �n �
�� �� � �� �� � ���
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