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frame rotation� RDT and LES results
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�� Motivation and objectives

The stability analysis of homogeneous turbulence submitted to mean velocity
gradients can be investigated from a pure mathematical point of view by examin�
ing the growth of a single Fourier mode as a perturbation to a background �ow�
The engineering method of studying the same �ow is to use Rapid Distortion The�
ory �RDT� applied to a group of Fourier modes that represent a more �physical�
turbulent �ow� However� both approaches deal with the ampli�cation or damping
coe	cients that arise from the linearized equations� Comparison of simple RDT
approximation to the more costly Direct Numerical Simulation �DNS� has led to
good agreement� at least qualitatively� in terms of structure between predictions
of sheared homogeneous turbulent �ow through RDT and results of simulations
of a stationary channel �ow �Lee� Kim 
 Moin� ����� They �nd that the shear
induced by the mean velocity pro�le close to the walls is the main factor for this
agreement� Starting from a purely isotropic �ow� streak�like structures appear in
sheared homogeneous �ows� even in the linear approximation� The objective of this
e�ort is to carry the analysis of Lee et al� ����� to the case of shear with rotation�
We apply the RDT approximation to turbulence submitted to frame rotation for
the case of a uniformly sheared �ow and compare its mean statistics to results of
high resolution DNS of a rotating plane channel �ow� In the latter� the mean ve�
locity pro�le is modi�ed by the Coriolis force� and accordingly� di�erent regions in
the channel can be identi�ed� The properties of the plane pure strain turbulence
submitted to frame rotation are� in addition� investigated in spectral space� which
shows the usefulness of the spectral RDT approach� This latter case is investigated
here� Among the general class of quadratic �ows� this case does not follow the same
stability properties as the others since the related mean vorticity is zero�

�� RDT equations in spectral space

��� Basic equations

We consider here incompressible homogeneous turbulence with total velocity �eld
U �x� t� � U �x� � u�x� t�� where u is the �uctuating velocity and U is the mean
velocity� The mean velocity is taken to be independent of time with uniform uniform
gradient in space� Therefore� only the mean velocity gradients U i�j � Gij appear
in the equations� The �ow is set in a rotating frame with angular velocity vector
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�f � and the classical symmetric�skew symmetric decomposition is performed on the
mean velocity gradients tensor

Sij �
�
U i�j �U j�i

�
��

and
Wij �

�
U i�j �U j�i

�
�� �

The rotation tensor is related to the vorticity through W ij����ijk�k�The rapid
distortion approximation is obtained by dropping the nonlinear terms in the Navier�
Stokes equations� Using the previously introduced decomposition for the mean
velocity gradients� we get the corresponding linearized equation� which� for a non
viscous �uid� reads

�u � �tu� U j�jui � �S � u� �� � ��f � � u�rp ���

where the equations are written in the rotating frame �kIn this frame� a general
method of decomposition for homogeneous sheared �ows is used by considering
the expansion of the �uctuating �elds in terms of time�dependent Fourier modes
exp�ik�t� � x�� where the wave vectors evolve in time according to �tki � �U j�ikj �
The Lagrangian wave vectorsK� which are associated with the Lagrangian physical
coordinatesX that follow the distortion of the �ow� are related to the Eulerian ones
by the relation

k � x �K �X �

These variables� �X �K�� which follow the deformation of the space� have been used
by Cambon et al� ������ and are exactly the same as the Rogallo space variables
�Rogallo� ������

��� Solutions in the Craya�Herring local frame

In the following� we shall take advantage of the Craya�Herring decomposition of
the �uctuating velocity �u �Craya� ����� Herring� ����� by choosing a given direction
in the �ow along a vector n� This decomposition uses a local frame of reference in
the plane perpendicular to the wave vector k� The Fourier transformed velocity �u
is such that k � �u from the continuity equation k � �u � � The �rst component of
�u in this frame is its projection ��� onto the �equatorial� vector e� � k�n�jk�nj�
and its second component is the remaining part ���� along e� � e��k�je��kj� We
refer to n as the polar direction and to the plane orthogonal to n as the equator�
since the �e��e�� frame is also the set of axes associated with spherical coordinates�
The Foureir transformed �uctuating velocity can then be written as

�ui�k� t� � ����k� t�e
�

i � ����k� t�e
�

i �

Using these variables� the linearized evolution Eq� ��� can be rewritten� and one
obtains the equations for each component of �u in the Craya�Herring frame

���n�k� t� �mnl�k� ��l�k� t� �  ���
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where k� l � �� � and the linear operator matrix

mnl � Sij

�
eki e

l
j � �nl�e

�

i e
�

j

�
� �nl�

�
�l � ��f

l

� kl
k
�

Note that m does not depend on the modulus of the wave vector� but only on
its orientation� Therefore� the time evolution factors of the di�erent modes of
velocity ��n�k� t� are identical for all the wave vectors with the same orientation�
The advantage of this procedure is to save computing time since the values of the
ampli�cation factors need be computed only for di�erent orientations of a unit wave
vector �i�e� a discretization of a sphere of radius unity� �Cambon� ����� Benoit�
������ These coe	cients allow one to evaluate the time variation for all vectors in
wave space� Once Eq� ��� is solved for a given set of initial conditions by way of a
matrix exponential rather than inverting the linear system� the complete statistics in
the �ow can be computed easily without further computations� All of the statistics
such as spectra of two�point correlations and� of course� one�point quantities are
entirely known through the knowledge of the ampli�cation coe	cients and statistical
quantities at the initial time� The whole method has been implemented in a code
named MITHRA at the LMFA �Benoit� ������

Alternatively� Eq� ��� holds for all discretization of the spectral space� and we
have been able to apply this method of resolution for wave vectors that are spread
on a classical spectral cubic distribution� as for direct numerical simulations �see
Section ����� The independence of the ampli�cation of the di�erent velocity modes
with the modulus of the wave vector is no more valid when one considers a viscous

�uids for which� of course� a dissipation term proportional to �k� appears in the
equations�

Note that the distortion of the computing mesh in RDT and in DNS are the
same but have a di�erent impact on the accuracy of the computation� In the
former approach� there is no �ux of energy through the boundary of the resolved
space� Therefore� no problem of resolving the di�erent scales in the �ow arises since
the di�erent scales are as well represented by the distorted mesh as they were in
the initial one� at t � � If one now considers the DNS approach� there is a �ux
of energy through the boundaries of the resolution mesh� and a remeshing at given
periodic intervals in time is necessary if one wants to keep as much resolved energy
containing scales in the computational box as possible�

��� Linear stability results

We consider here a general type of deformation in the plane ����� with mean
velocity gradients such that �quadratic �ow��

G �

���D ��
� D

��� �

or equivalently

G �

���  D � �
D �� 

���
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if the principal axes of the associated pure strain tensor S are chosen� Cambon et al�
������ have con�rmed that linear stability analysis gives a maximum destabilization
for zero tilting vorticity ��f � � � � whereas stability is found for zero absolute
vorticity �� � ��f � �
In the case of simple uniform shear with rotation� the pressureless analysis by

Bradshaw concluded with a stability governed by the Bradshaw�Richardson number
B � R�R��� � � with R � ��f�S or B � ��f ���f �S��S� � � The maximum
growth rate of the unstable case is obtained for B � ���� �or equivalently R �
����� In the general case for given �f and D� Salhi 
 Cambon �����b� have shown
the validity of the extended criterion B � D� � ���f � ����

Now that we have stated the stability criteria for the general case of distortions�
we shall use it for studying the behavior of two speci�c cases� a purely strained and
a sheared turbulence�

�� Purely strained homogeneous turbulence in a rotating frame

The case of a plane pure strain applied to the �ow is one of the simplest� with a
deformation tensor written as

G �

���D 
 D

���

and � � � No stability result can be obtained through the classic Bradshaw
criterion for pure shear� for here � is zero� We expect the stability of the �ow
to depend upon the ratio of the two controlling parameters� namely ��f�D� the
rotation number� The symmetry of the deformation implies independence of the
results with the sign of the rotation rate �f � Indeed� the pressureless analysis gives
B � D� � ���f �� �Salhi 
 Cambon� ����b� Speziale et al�� ������

��� Stability analysis

We have computed the time evolution of the kinetic energy for di�erent values of
the rotation rate� which leads to the following simple linear stability result �Fig� ���
q� grows exponentially for ��f�D � � and is damped otherwise� the rotation of the
frame applied to a plane pure strained �ow is stabilizing only for high rotation rate�
However� at very large values of the cumulative distortion Dt� even the latter cases
may exhibit a growth of kinetic energy� In this case� the time scale is probably large
enough so that the nonlinear terms can no longer be neglected�
The evolution of the enstrophy 	� �� 	i	i � �	 is the vorticity of the �uctuating

�ow� with the non�dimensional time t�T is shown in Fig� �� T � ��
��f � is the
characteristic time of the frame rotation� We �nd that the exponential growth
occurs for all values of the rotation rate� But there is a clear separation in the
growth rates of 	� between the stabilized cases and the destabilized ones �with
respect to the kinetic energy��
For such a deformation� the growth rate of the kinetic energy should a priori be

independent of the sign of the rotation applied to the �ow� This symmetry condition
is a good test of the accuracy of the numerical resolution method� Indeed� we see
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in Fig� � that the q� evolutions for ��f�D � � and ��f�D � �� begin to depart
slightly around the value Dt � � for the cumulative distortion rate� Therefore�
if we need to reach higher values� e�g� Dt � �� with su	cient precision� a very
large number of discretized points is necessary� This condition would be much
more strenuous if we used a classical cubic discretization of the space rather than
spreading the resolution points on a sphere of unit radius�

��� Production of kinetic energy

The behavior of the production term in the equation for kinetic energy depends
on the value of the ratio ��f�D� re�ecting the stabilizing or destabilizing role of the
solid body rotation on the strained turbulent �ow� We can compute the evolution in
time of the only non�zero term � � u�u� �� and investigate its proportion at a given
instant t with respect to the kinetic energy at this instant� This relative value is a
clue for understanding how the rotation modi�es the production of kinetic energy�
We can see from Fig� � that � � u�u� � is positive when the stability criterion
��f�D � � is not met� but also that the transition from this unstable regime to the
stable one where � � u�u� ��  is not smooth� This e�ect� possibly due to round�
o� errors� shows the degree of sensitiveness of the �ow to the resolution method
even though our numerical scheme here is of very high order and our resolution grid
is very �ne�

��� Full spectral distribution

The instability of the plane strained homogeneous turbulence under rotation is
well re�ected through the one�point quantity q�� However� the exponential growth
of kinetic energy is the consequence of the ampli�cation of an unstable region of
wave vector orientations in spectral space� Accordingly� we have plotted in Figs� �
and � the distribution of kinetic energy� and similarly in Fig� � that of the enstro�
phy� on a sphere of given radius� One can therefore identify the zone of maximum
destabilization� or maximum ampli�cation� of kinetic energy as being the wave vec�
tor orientations mainly responsible for the destabilization of the �ow� The surface
is initially a sphere� but is distorted when time evolves� However� our representa�
tion is Lagrangian� and therefore all the distributions are represented on a sphere�
This kind of representation has been successfully used by Cambon et al� ������
for concluding that only a very narrow band of wave vectors is destabilized in the
case of the elliptical �ow submitted to frame rotation� Figure � shows that no such
peculiar orientation is present in the case of the strained turbulence� However� it
shows that the most destabilized wave vectors are those orthogonal to the frame
rotation vector� i�e� those that lie in the equatorial region of the sphere� since there
is no explicit e�ect of the Coriolis force on these wave vectors� Equivalently� in
physical space there is no in�uence of the Coriolis force on �uid motion that is
parallel to the rotation vector� The unstable modes are all located in a band at an
angle 
�� radians� where the longer the evolution time the thinner the band� along
with the above mentioned concentration in the equatorial plane� The di�erence
between Figs� � and � shows how the rotation tends to reduce the thinning of the
instability band� The enstrophy� shown in Fig� �� exhibits the same pattern as the
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Figure �� Normalized kinetic energy q��t��q��� for di�erent values of the rotation
rate �f � as a function of the non�dimensional time Dt� Curves clockwise from top
of �gure� �f � � ��� ��� ��� ���� ��� ���� ��� ��� ��� ��� �� �� �� �� �� ��
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Figure �� Normalized enstrophy 	��t��	��� for di�erent values of the rotation
rate �f � as a function of the non�dimensional time t���
���� The case at �f � 
is non dimensionalized using �f � �� Curves as in Fig� ��
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Figure �� Normalized production of kinetic energy � � u�u� � �q� at time t � �
for di�erent values of the ratio �f�D�

kinetic energy distribution�


� Sheared homogeneous turbulence in a rotating frame

We now go on to the case of sheared homogeneous turbulence for which the mean
velocity gradients lead to the decomposition�

S �

���  D
D 

���
and

W �

���  ��
� 

���
with the particular choice � � D� The resulting mean velocity gradient is dU��dy �
�D � S�

��� Stability analysis

The general stability results have been brie�y reviewed in Section ��� �see also
Salhi 
 Cambon� ����a�� Accordingly� the evolution of the kinetic energy shows
an exponential growth when the rotation of the frame does not compensate the
vorticity induced by the shear� namely ��f�S � �� as shown in Fig� ��

But� looking only at the enstrophy growth rates �Fig� ��� it is not possible to
distinguish the destabilized cases and the stabilized ones� as can be done in the case
of the plane strain� The mechanism of enstrophy production is di�erent in the two
cases and is less a�ected by the rotation in a homogeneous shear �ow�
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Figure �� Full spectral distribution of the enstrophy 	� for a plane strained
homogeneous turbulence with frame rotation �f � �� Left �gure� top view of the
spectral sphere� right �gure� side view� Snapshot taken at Dt � ����

Figure �� Full spectral distribution of the kinetic energy for a plane strained
homogeneous turbulence with a rotation rate �f � ��� Left �gure� top view of the
spectral sphere� right �gure� side view� Snapshot taken at Dt � ����

Figure �� Full spectral distribution of the kinetic energy for a plane strained
homogeneous turbulence with �f � �� Left �gure� top view of the spectral sphere�
right �gure� side view� Snapshot taken at Dt � ����
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Figure �� Normalized kinetic energy q��t��q��� for di�erent values of the rotation
number ��f�S� as a function of the non�dimensional time St� Curves clockwise from
top of �gure� ��f�S � ���� ��� � �� ��� ���� �� �� ��

	
�
�t
��
	
�
�
�

t���
���

0

20

40

60

80

100

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure �� Normalized enstrophy 	��t��	��� for di�erent values of the rotation
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Figure 	� Normalized production of kinetic energy � � u�u� � �q� at time t � �
for di�erent values of the ratio ��f�S�

��� Production of kinetic energy

Figure � shows the negative of the Reynolds shear stress� � � u�u� �� normalized
by the kinetic energy q��t� at time t� We �nd that the transition zone� in terms of
�� does not evolve smoothly in the crucial transition zone� in terms of the rotation
number� The distribution of the production is not symmetric around R � ��f�S �
� since� in this case� maximum destabilization is obtained for R � �����

��� Structure of rotating homogeneous shear �ow

As mentioned in Section ���� the equations for the RDT approximation can be
solved for wave vectors evenly distributed on a cube in spectral space� A resolution
of ��� points has been chosen� and an initial isotropic �uctuating velocity �eld has
been built using random Fourier modes �see Rogallo� ������ By computing the time
evolution of this velocity �eld� submitted to the mean shear� and to di�erent values
of the rotation rate� one can see qualitatively the structure of the �ow� Figures ��
��� and �� show the isolines of the streamwise component of the velocity in a given
plane of constant mean velocity and at di�erent times� i�e� di�erent cumulative
distortions�
It can be seen that the case at maximum destabilizing rotation rate �f � � in

Fig� �� has rapidly elongating structures that align with the streamwise direction�
For the intermediate destabilizing value of the rotation� �f � �� the structures still
align in this direction� but elongate somehow less� and more slowly� even at the
quite high cumulative distortion rate St � �D � �� We notice by comparing the
plots at the intermediate value St � � that one has to wait for the full deformation
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�symmetric and anti�symmetric parts� to play a role before having a full charac�
terization of the most destabilizing case �Fig� ���� Finally� the stabilizing case at
�f � �� presents a di�erent pattern at the same last value of St � �� and the in�
termediate states at St � ��� and St � � are clearly closer to the isotropic case than
those in Fig� ��� For identifying the di�erent cases� which is a priori not obvious�
one has to look at the characteristic length of the black patches on the iso�contours
plots� Figure �� presents almost no such region� whereas Fig� � exhibits longer
�structures� in darker regions than the stabilized case in Fig� ��� Nevertheless� the
� still subjective � interpretation of such a representation has to be completed
with statistical indicators of the anisotropy�

For this purpose� we can also introduce here the �D energy components E l
ij ��

uiuj � Ll
ij � as the product of the Reynolds stress tensor components with a corre�

sponding integral length scale �Salhi 
 Cambon� ����b�� These quantities may be a
better indicator for looking at the anisotropy in the �ow than each of the Reynolds
stress or the integral length separately� since both the anisotropy of � uiuj � and
Ll
ij play a role in E l

ij � For example� in the inviscid case� it is possible to get ana�
lytical solutions for the evolution of most of these energy components in the case
of a homogeneous shear �ow� but not for Ll

ij separately� The �eddy elongation

parameter�� i�e� the ratio � � L�

��
�L�

��
can be computed from these since it is also

� �� u�u� � L�

��
��� u�u� � L�

��
� � E�

��
�E�

��
� A large value of � indicates the

stretching of the structures� For instance� for R � ��f�S � �� a stabilized case�
� � ��� whereas for R � ��� the destabilized case� � � ���� both at the same
given instant St � �� And for the case of zero absolute vorticity R � �� the ratio
remains constant� These three cases are close to the situations presented in three
planes in a rotating channel �ow �see Section ��� where the destabilized� stabilized�
and middle regions are represented� �Of course� when comparing di�erent energy
components� one has to be aware that di�erent components of the Reynolds stress
tensor can be involved� as well as that opposite tendencies on � uiuj � and Ll

ij

could leave El
ij almost unchanged��

Finally� it is interesting to notice that the symmetric part of the deformation
tensor G has its eigenvectors oriented at an angle of 
�� radians to the streamwise
direction� Accordingly� at the �rst stage of the evolution� the �ow structures tend
to be aligned with this orientation� Of course� for later stages in time� the full role
of the deformation is a stretching in the direction of the mean �ow�

�� LES of a rotating channel �ow

In this section� we consider results from ���� direct numerical simulations per�
formed at NASA Ames Research Center by Kim� The reader is referred to Lee et

al� ����� for all the details of the numerical method� A stationary velocity �eld is
obtained in a channel between two parallel plane walls� which is located in a frame
rotating around the spanwise direction� The streamwise direction is x� the spanwise
direction is z� and the �inhomogeneous� vertical direction is y� The mean velocity
pro�le �shown in Fig� ��� induces a shear that depends on the transverse coordi�
nate �perpendicular to the walls�� Therefore� the previous homogeneous stability
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Figure �
� Isolines of ux component of �uctuating velocity at Dt � ���� �� �
from top to bottom at mid�height in the periodic computational box of homogeneous
isotropic turbulence� The rotation number is ��f�S � ��
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Figure ��� Mean velocity pro�le of U� in the rotating channel �top �gure�� and
corresponding shear dU��dy �bottom �gure�� On top �gure the other components
U� and U� are almost zero�

analysis of rotating shear �ows can be compared� in terms of anisotropy� to the
turbulence in di�erent planes in the rotating channel �ow where the mean shear is
constant� Experimental and numerical investigations �Johnston et al�� ����� Wat�
mu� et al�� ����� Kristo�ersen 
 Andersson� ����� have shown the particular role
of the rotation onto di�erent regions in the channel� namely the modi�cation of the
mean velocity pro�le� with a destabilization of the �ow close to the pressure wall
�negative shear�� and a stabilization near the suction wall �positive shear�� The
latter e�ect eventually leads to a relaminarization of the �ow in the corresponding
region�

Figure �� gathers the distribution of the Reynolds stress tensor components� The
lack of symmetry is evident� with enhanced components of the �uctuating velocity
towards the destabilized wall� the production � � u�u� � of kinetic energy changes
sign when moving from one wall to the other� This can be related to a similar e�ect
shown in Fig� �� where the production for the homogeneous case is plotted versus
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Figure ��� Iso�surfaces of the streamwise component of the velocity in the planes
�y�d � ����� � ������ �gures from top to bottom� in the rotating channel�

��f�S� In the DNS channel� the modi�cation of this ratio results from the variation
of S with the distance to the walls�

Distributions of the �uctuating velocity �eld exhibit di�erent patterns depending
on the distance to the wall� Figure �� shows the iso�surfaces of the streamwise
component ux in planes parallel to the walls� in the stabilized� middle and destabi�
lized regions� One sees immediately that the level of turbulence in the destabilized
region is much higher than that in the other ones �see also the variance of the com�
ponents ui in Fig� ���� Moreover� the destabilized region presents structures clearly
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elongated in the streamwise direction� as in the homogeneous case� It is interesting
to compute the corresponding integral length scales to evaluate quantitatively the
anisotropy of these structures and how much they are stretched in the di�erent
planes� Figure �� shows the integral length scales

Lk
ij �

Z
�

�

dxk � uiuj � �xk�� � uiuj � �� �

where ij shows which components of the �uctuating velocity are taken into account�
and k shows the direction of separation� Obviously� the most striking feature of
this �gure is the very large increase of Lx

��
that con�rms the elongation of the

structures� maximum at x � ���� in the region of maximum mean shear� The
tendency is somewhat smaller for the transverse correlation Lx

��
� but an interesting

fact is that the transverse correlation length for uy has its maximum displaced
towards the center of the channel� The quite large value of the mean shear close
to the stabilized wall is also responsible for the �small� peak of Lx

��
� no matter

the stabilizing e�ect of the rotation in this particular case� Here� we notice that
the qualitative predictions of RDT applied to the homogeneous shear �ow with
rotation agree with the distributions of the integral length scales in the channel �ow�
Indeed� the general streak�like structures appear in the homogeneous RDT results�
and the rotation a�ects the di�erent regions in the same way equivalent regions of
homogeneous rotating turbulence with the same value of R �as in Section ���� are
a�ected�

�� Future plans

In light of the results presented in this summary� it will be interesting to re�ne
the study by investigating quantitatively the di�erent parameters of both the homo�
geneous rotating shear �ow and the rotating channel �ow� DNS computations with
di�erent rotation rates� if available� would be a valuable database for comparison� at
the level of one�point statistics� with the equivalent RDT approach� The modeling
of the anisotropy in the �ow� especially through the evolution of the integral length
scales as well as the anisotropy tensors� will probably bene�t from such studies�
Finally� one can investigate if the Coriolis force� due to the rotation of the frame�
could be an analog of the centrifugal acceleration in curved �ows� Since the RDT
approximation can be closely related to stability analyses� we can try to see if and
how the streak�like structures in the rotating channel can be matched to G�ortler
vortices due to curvature�

Acknowledgments

The author is indebted to John Kim who made available his LES simulations� He
also wishes to thank Nagi Mansour and Claude Cambon for their helpful collabo�
ration�

REFERENCES

Benoit� J� P� ����  Etude exp erimentale et th eorique d!une turbulence homog"ene
soumise "a des e�ets coupl es de rotation et de d eformation plane� Ph�D� Thesis�



RDT and LES of rotating distorted turbulence ���

Bradshaw� P� ���� The analogy between streamline curvature and buoyancy in
turbulent shear �ow� J� Fluid Mech� ��� ���#����

Cambon� C� ����  Etude spectrale d!un champ turbulent incompressible soumis "a
des e�ets coupl es de d eformation et de rotation impos es ext erieurement� Th�ese

de doctorat d�etat	 Universit�e Claude Bernard�Lyon I�

Cambon� C�� Benoit� J� P�� Shao� L� � Jacquin� L� ���� Stability Analysis
and large�eddy simulation of rotating turbulence with organized eddies� J� Fluid
Mech� ���� ���#��

Cambon� C�� Teissedre� C� � Jeandel� D� ���� Etude d!e�ets coupl es de
d eformation et de rotation sur une turbulence homog"ene� J� M�ec� Th�eor� Appl�


� ���#���

Craya� A� ���� Contribution "a l!analyse de la turbulence associ ee "a des vitesses
moyennes� P�S�T� Minist�ere de l
Air	 no� ����

Herring� J� R� ���� Approach of axisymmetric turbulence to isotropy� Phys�
Fluids� ��� ���#����

Johnston� J� P�� Halleen� R�M� � Lezius� D�K� ���� E�ects of spanwise
rotation on the structure of two�dimensional fully developed turbulent channel
�ow� J� Fluid Mech� ��� ����

Kristoffersen� R� � Andersson� H� I� ���� Direct simulations of low�Reynolds�
number turbulent �ow in a rotating channel� J� Fluid Mech� ���� ���#����

Lee� M� J�� Kim� J� � Moin� P� ��� Structure of turbulence at high shear rate�
J� Fluid Mech� ���� ���#����

Rogallo� R�S� ���� Numerical experiments in homogeneous turbulence� NASA
Technical Memorandum� ������

Salhi� A� � Cambon� C� ����a Revisiting rotating shear �ow at high shear rate�
Submitted to J� Fluid Mech�

Salhi� A� � Cambon� C� ����b Stability of a plane quadratic �ow in a rotating
frame� Submitted to Phys� Rev� Letters�

Speziale� C� G�� Abid R� � Blaisdell� G� ���� On the consistency of Reynolds
stress turbulence closures with hydrodynamic stability theory� Submitted to
Phys� Fluids�

Watmuff� J� H�� Witt� H� T� � Joubert� P� N� ���� Developing turbulent
boundary layers with system rotation� J� Fluid Mech� ���� ��#����



��
 F� S� Godeferd

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�














RDT and LES of rotating distorted turbulence ���







k�
k�
k�
k�
k�
k�
k�
k�
k�


