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Conservative properties of �nite
di�erence schemes for incompressible �ow

By Youhei Morinishi�

�� Motivation and objectives

The purpose of this research is to construct accurate �nite di�erence schemes for
incompressible unsteady �ow simulations such as LES �large�eddy simulation� or
DNS �direct numerical simulation��
Experience has shown that kinetic energy conservation of the convective terms

is required for stable incompressible unsteady �ow simulations� Arakawa ���		�
showed that a �nite di�erence scheme that conserves the enstrophy in the absence
of viscous dissipation is required for long�time integration in the two�dimensional
vorticity�streamfunction formulation� The corresponding conserved variable is ki�
netic energy in velocity�pressure formulation
 and some energy conservative �nite
di�erence schemes have been developed for the Navier�Stokes equations in three di�
mensions� Staggered grid systems are usually required to obtain physically correct
pressure �elds� The standard second order accurate �nite di�erence scheme �Harlow
� Welch ��	�� in a staggered grid system conserves kinetic energy and this scheme
has proven useful for LES and DNS� However
 the accuracy of the second order
�nite di�erence scheme is low and �ne meshes are required �Ghosal ������ Spectral
methods �Canuto et al� ��� o�er supreme accuracy
 but these methods are lim�
ited to simple �ow geometries� Existing fourth order accurate convective schemes
�A�Domis ���
 Kajishima ����� for staggered grid systems do not conserve kinetic
energy� Higher order staggered grid schemes that conserve kinetic energy have not
been presented in the literature�
The conservation of kinetic energy is a consequence of the Navier�Stokes equations

for incompressible �ow in the inviscid limit� In contrast
 energy conservation in a
discrete sense is not a consequence of momentum and mass conservation� It is
possible to derive numerical schemes that conserve both mass and momentum but
do not conserve kinetic energy� It is also possible to derive schemes that conserve
kinetic energy even though mass or momentum conservation are violated�
In this report
 conservation properties of the continuity
 momentum
 and kinetic

energy equations for incompressible �ow are speci�ed as analytical requirements for
a proper set of discretized equations� Existing �nite di�erence schemes in staggered
grid systems are checked for satisfaction of the requirements� Proper higher order
accurate �nite di�erence schemes in a staggered grid system are then proposed�
Plane channel �ow is simulated using the proposed fourth order accurate �nite
di�erence scheme and the results compared with those of the second order accurate
Harlow and Welch ���	�� algorithm�

� Permanent address� Nagoya Institute of Technology� Japan
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�� Accomplishments

��� Analytical requirements

The continuity and momentum equations describe the motion of incompressible
�ow� For convenience later in the analysis
 these equations are written symbolically
as

�Cont�� � � ���

�vi
�t

� �Conv��i � �Pres��i � �V isc��i � � ���

where

�Cont�� �
�vi
�xi

� �Pres��i �
�p

�xi
� �V isc��i �

��ij
�xj

���� ���� ���

Here
 vi is velocity component
 p is pressure divided by density
 and �ij is viscous
stress� Henceforth
 p will be referred to as pressure�
The conservation properties of Eqs� ��� and ��� will now be established� Note

that Eq� ��� is in the following form�

��

�t
�� Q� �� Q� �� Q� � � � � � � �	�

The term kQ� is conservative if it can be written in divergence form

kQ� � r � �kF�� �
��kFj

�
�

�xj
���

To see that the divergence form is conservative
 integrate Eq� �	� over the volume
and make use of Gauss�s theorem for the �ux terms k � �� �� � � �
 all of which are
assumed to satisfy Eq� ���

�

�t

Z Z Z
V

� dV � �

Z Z
S

��F� �� F� �� F� � � � � � � dS ��

From Eq� ��
 we notice that the time derivative of the sum of � in a volume V
equals the sum of the �ux kF� on the surface S of the volume� In particular
 the
sum of � never changes in periodic �eld if kQ� is conservative for all k�
Note that the pressure �Pres��i and viscous terms �V isc��i are conservative a

priori in the momentum equation since they appear in divergence form� The con�
vective term is also conservative a priori if it is cast in divergence form� This is
not always the case
 however
 and we shall investigate alternative formulations� To
perform the analysis
 we regard �Conv��i as a generic form of the convective term
in the momentum equation� At least four types of convective forms have been used
traditionally in analytical or numerical studies� These forms are de�ned as follows�

�Div��i �
�vjvi
�xj

���
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�Adv��i � vj
�vi
�xj

����

�Skew��i �
�

�

�vjvi
�xj

�
�

�
vj
�vi
�xj

����

�Rot��i � vj

�
�vi
�xj

�
�vj
�xi

�
�

�

�

�vjvj
�xi

����

As mentioned above
 the divergence form
 �Div��
 is conservative a priori� �Adv��i

�Skew��i
 and �Rot��i are referred to as advective
 skew�symmetric
 and rotational
forms respectively� The four forms are connected with each other through following
relations�

�Adv��i � �Div��i � vi � �Cont�� ����

�Skew��i �
�

�
�Div��i �

�

�
�Adv��i ����

�Rot��i � �Adv��i ����

We notice that there are only two independent convective forms
 and the two are
equivalent if �Cont�� � � is satis�ed� It is also apparent that the advective
 skew�
symmetric
 and rotational forms are conservative as long as the continuity equation
is satis�ed�
The transport equation of the square of a velocity component
 v����
 is v� times

i � � component of Eq� ����

�v�
���

�t
� v� � �Conv��� � v� � �Pres��� � v� � �V isc��� � � ��	�

In the above equation
 the convective term can be modi�ed into the following forms
corresponding to those in the momentum equation�

v� � �Div��� �
�vjv�

���

�xj
�

�

�
v�

� � �Cont�� ����

v� � �Adv��� �
�vjv�

���

�xj
�

�

�
v�

� � �Cont�� ���

v� � �Skew��� �
�vjv�

���

�xj
����

Note that the skew�symmetric form is conservative a priori in the velocity square
equation� Since the rotational form is equivalent to advective form
 the four con�
vective forms are conservative if �Cont�� � � is satis�ed�
The terms involving pressure and viscous stress in Eq� ��	� can be modi�ed into

following forms�

v� � �Pres��� �
�pv�
�x�

� p
�v�
�x�

����
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Terms
in Momentum Eq�

�Div��
�Adv�� � �Rot��

�Skew��
�Pres��
�V isc��

TransportEquations

vi v�
�
�� KJ
� �

� � �

�
J JJ
� �J
� �

Table �� Conservative properties of convective
 pressure
 and viscous terms in
the vi
 v����
 and K equations�

J
is conservative a priori
 � is conservative if

�Cont�� � � is satis�ed
 and � is not conservative�

v� � �V isc��� �
���jv�
�xj

� ��j
�v�
�xj

����

These terms are not conservative since they involve the pressure�strain and the
viscous dissipation�
We can determine the conservative properties of v�

��� and v�
��� in the same

manner as for v�����
The transport equation of kinetic energy
 K � vivi��
 is vi times i component of

Eq� ��� with summation over i�

�K

�t
� vi � �Conv��i � vi � �Pres��i � vi � �V isc��i � � ����

In Eq� ����
 the conservation property of the convective term is determined in the
same manner as for v����� In addition
 the terms involving pressure and viscous
stress in Eq� ���� can be modi�ed into following forms�

vi � �Pres��i �
�pvi
�xi

� p � �Cont�� ����

vi � �V isc��i �
��ijvi
�xj

� �ij
�vi
�xj

����

The pressure term in Eq� ���� is conservative if �Cont�� � � is satis�ed� The viscous
stress term in Eq� ���� is not conservative because the second term on the right�hand
side of Eq� ���� is the energy dissipation�
Table � provides a summary of conservative properties of convective
 pressure

and viscous terms in the transport equations of vi
 v���� and K for incompressible
�ow� The �nal goal of this work is to derive higher order accurate �nite di�erence
schemes that satisfy these conservative properties in a discretized sense�

��� Discretized operators

Before starting the main discussion
 discretized operators need to be de�ned� In
this report
 the discussion of the discretized equations will be limited to uniform
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Figure �� Staggered grid system in x� � x� plane�

grid systems� The widths of the numerical grid in each direction
 h�
 h�
 h�
 are
constant� The grid system shown in Fig� � will be referred to as a staggered grid
system� In the staggered grid system
 the velocity components Ui �i � �� �� ��
are distributed around the pressure points� The continuity equation is discretized
centered at pressure points� The momentum equation corresponding to each velocity
component is centered at the respective velocity point�
Let the �nite di�erence operator acting on � with respect to x� and with stencil

n be de�ned as follows�

�n�

�nx�

����
x�� x�� x�

�
��x� � nh���� x�� x�� � ��x� � nh���� x�� x��

nh�
����

Also
 de�ne an interpolation operator acting on � in the x� direction with stencil n
as follows�

�
nx�
���
x�� x�� x�

�
��x� � nh���� x�� x�� � ��x� � nh���� x�� x��

�
��	�

In addition
 de�ne a special interpolation operator of the product between � and �
in the x� direction with stencil n�

f��nx�
���
x�� x�� x�

�
�

�
��x� � nh���� x�� x�� ��x� � nh���� x�� x��

�
�

�
��x� � nh���� x�� x�� ��x� � nh���� x�� x��

����

Equations ���� and ��	� are second order accurate approximations to �rst deriva�
tive and interpolation
 respectively� Combinations of the discretized operators can
be used to make higher order accurate approximations to the �rst derivative and
interpolation� For example
 fourth order accurate approximations are as follows�

�
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�
�x�

�
�


�
�x�

� ��
�

��

���

�x��
h�

� � � � � ����

Discretized operators in the x� and x� directions are de�ned in the same way as for
the x� direction�
We de�ne two types of conservative forms in the discretized systems� kQ� in

Eq� �	� is �locally� conservative if the term can be written as

kQ� �
���kF

��
j �

��xj
�
���kF

��
j �

��xj
�
���kF

��
j �

��xj
� � � � � ����

This de�nition corresponds to the analytical conservative form of Eq� ���� kQ� is
globally conservative if the following relation holds in a periodic �eld�X

x�

X
x�

X
x�

kQ� �V � � ����

The sum that appears in Eq� ���� is taken over the period of respective direction�
�V �� h�h�h�� is a constant in a uniform grid system� The de�nition of global
conservation corresponds to the conservation property of Eq� �� in a periodic �eld�
The condition for �local� conservation satis�es the condition for global conservation�

��� Continuity and pressure term in a staggered grid system

Now we are ready to consider our main problem� First of all
 let�s examine the
conservative property of the pressure term� As we have observed
 the pressure term
should be conservative in the transport equations of momentum and kinetic energy�
In the staggered grid system
 de�ne the discretized continuity and pressure term

as follows�

�Cont�� S�� �
��Ui

��xi
� � ����

�Pres� � S��i �
��p

��xi
����

The �S� denotes that the above approximations are second order accurate in space�
Fourth order approximations for the continuity and pressure term in the staggered
grid system are

�Cont�� S�� �
�



��Ui

��xi
�

�



��Ui

��xi
� �� ����

�Pres� � S��i �
�



��p

��xi
�

�



��p

��xi
� ����

Local kinetic energy can not be de�ned uniquely in staggered grid systems since the
velocity components are de�ned on staggered grid points� Some sort of interpolation
must be used in order to obtain the three components of the kinetic energy at the
same point� The required interpolations for the pressure terms in the v�� and K
equations are

Ui

��p

��xi

�xi

�
��Uip

�xi

��xi
� p � �Cont� S��� ��	�
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FD Schemes
for Momentum Eq�

�Pres� � S��
�Pres� � S��

TransportEquations

Ui U�

�
�� KJ
� ��J
� ��

Table �� Conservative properties of �nite di�erence schemes for the pressure term
in a staggered grid system�

J
is conservative a priori
 �� is globally conservative

if �Cont� � S�� � � is satis�ed
 �� is globally conservative if �Cont�� S�� � � is
satis�ed
 and � is not conservative�

�


Ui

��p

��xi

�xi

�
�


Ui

��p

��xi

�xi

�
�



��Uip
�xi

��xi
�

�



��Uip
�xi

��xi
� p � �Cont� S��� ����

The following relations can be used to show global conservation unambiguously�

X
x�

X
x�

X
x�

Ui

��p

��xi

�xi

�
X
x�

X
x�

X
x�

Ui � �Pres� � S��i ���

X
x�

X
x�

X
x�

�
�


Ui

��p

��xi

�xi

�
�


Ui

��p

��xi

�xi
�
�
X
x�

X
x�

X
x�

Ui � �Pres� � S��i ����

Therefore
 Eqs� ���� and ���� are globally conservative if the corresponding dis�
cretized continuity equations are satis�ed�
Table � shows the summary of the conservative property of the discretized pres�

sure terms in a staggered grid system�

��� Convective schemes in a staggered grid system

As we have already mentioned
 local kinetic energy K �� UiUi��� can not be
de�ned uniquely in a staggered grid system� Let us assume that a term is �locally�
conservative in the transport equation ofK if the term is �locally� conservative in the
transport equations of U�

���
 U�

��� and U�

���� Since the conservative properties of
U�

��� and U�

��� are estimated in the same manner as for U�

���
 only conservative
properties of convective schemes in the momentum and U�

��� equations need to be
considered�

����� Proper second order accurate convective schemes

De�ne second order accurate convective schemes in a staggered grid system as
follows�

�Div� � S��i �
�� Uj

�xi
Ui

�xj

��xj
����

�Adv�� S��i � Uj
�xi ��Ui

��xj

�xj

����

�Skew�� S��i �
�

�
�Div� � S��i �

�

�
�Adv� � S��i ����
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FD Schemes
for Momentum Eq�

�Div� � S��
�Adv� � S��
�Skew�� S��

TransportEquations

Ui U�

�
�� KJ
� �

� � �

�
J J

Table �� Conservative properties of proper second order accurate convective schemes
in a staggered grid system�

J
is conservative a priori and � is conservative if

�Cont�� S�� � � is satis�ed�

�Adv�� S��i is connected with �Div� � S��i through the following relation�

�Adv� � S��i � �Div � S��i �Ui � �Cont�� S��
�xi

����

�Div��S��i is the standard divergence form in a staggered grid system �Harlow �
Welch ��	��� �Adv� � S��i was proposed by Kajishima ������� �Skew� � S��i is
equivalent to the scheme that was proposed by Piacsek � Williams ������� �Div��
S��i is conservative a priori in the momentum equation� The product between U�

and �Skew�� S��� can be rewritten as

U� � �Skew�� S��� �
�� Uj

�x� gU�U�

�xj

��

��xj
� ����

Therefore
 �Skew��S��� is conservative a priori in the transport equation of U�

����
By using Eq� ����
 conservative properties of the various schemes are determined�
Table � shows the conservative properties of �Div��S��i
 �Adv��S��i and �Skew��
S��i� These schemes are seen to be conservative provided continuity is satis�ed� In
addition
 the rotational form is also conservative in light of Eq� �����

����� Proposal of proper higher order accurate convective schemes

It is of interest to derive a proper fourth order accurate convective scheme for
a staggered grid system� Existing fourth order accurate convective schemes for
staggered grid systems � A�Domis ���
 Kajishima ����� do not conserve kinetic
energy� Here
 we propose the following set of fourth order accurate convective
schemes in a staggered grid system�

�Div� � S��i �
�



��
��xj

��
�


Uj

�xi
�

�


Uj

�xi

�
Ui

�xj

�
�
�



��
��xj

��
�


Uj

�xi
�

�


Uj

�xi

�
Ui

�xj

� ����

�Adv�� S��i �
�



�
�


Uj

�xi
�

�


Uj

�xi

�
��Ui

��xj

�xj

�
�



�
�


Uj

�xi
�

�


Uj

�xi

�
��Ui

��xj
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FD Schemes
for Momentum Eq�

�Div� � S��
�Adv� � S��
�Skew�� S��

TransportEquations

Ui U�

�
�� KJ
� �

� � �

�
J J

Table �� Conservative properties of proper fourth order accurate convective schemes
in a staggered grid system�

J
is conservative a priori and � is conservative if

�Cont�� S�� � � is satis�ed�

�Skew�� S��i �
�

�
�Div� � S��i �

�

�
�Adv� � S��i ����

�Div� � S��i is conservative a priori in the momentum equation� The product
between U� and �Skew�� S��� can be rewritten as follows�

U� � �Skew�� S��� �
�



��
��xj

��
�


Uj

�x�
�

�


Uj

�x�

� gU�U�

�

�xj
�

�
�



��
��xj

��
�


Uj

�x�
�
�


Uj

�x�

� gU�U�

�

�xj
� ���

Thus
 �Skew� � S��i is conservative a priori in the transport equation of U�

����
The relation between �Adv�� S��i and �Div� � S��i is the following�

�Adv�� S��i � �Div� � S��i � Ui �

�
�


�Cont�� S��

�xi

�
�


�Cont�� S��

�xi

�
����

This equation is a proper discrete analog Eq� ����
 and �Adv��S��i
 �Div�� S��i

and �Skew��S��i are equivalent if �Cont��S�� � � is satis�ed� Using this relation

the conservative properties of the present schemes are determined� Table � shows
the conservative properties of the present schemes� Comparing Table � with Table
�
 we see that the present schemes are a proper set of convective schemes provided
that the continuity equation is satis�ed�
Proper higher order accurate �nite di�erence schemes in a staggered grid system

can be constructed in the same way as for the fourth order schemes�

��� Channel �ow simulation

Numerical tests of the schemes described above are performed using plane channel
�ow� The continuity and momentum equations for incompressible viscous �ow are
solved using the proper second and fourth order accurate �nite di�erence schemes
in a staggered grid system using the dynamic subgrid scale model �Germano et al�
������ The �ow is drived by a streamwise pressure gradient� A semi�implicit time
marching algorithm is used where the di�usion terms in the wall normal direction
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Figure �� LES of plane channel �ow at Re��� by proper second and fourth order
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 Kim
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are treated implicitly with the Crank�Nicolson scheme and a third order Runge�
Kutta scheme �Wray ��	� is used for all other terms� The fractional step method
�Dukowicz � Dvinsky ����� is used in conjunction with the Van Kan ���	� type
of pressure term and wall boundary treatment� Periodic boundary conditions are
imposed in the streamwise and spanwise directions�
The subgrid�scale model is the dynamic model �Germano et al� ����� with the

least square technique �Lilly ������ Averaging in homogeneous directions is used�
Filtering is performed in the spanwise and streamwise directions�
The spatial discretization of the second order scheme is a usual one� �Div��S��

for the convective term
 �Pres� � S�� for the pressure term
 and �Cont� � S�� for
the continuity� The corresponding Poisson�s equation of pressure is solved using a
tri�diagonal matrix algorithm in wall normal direction with fast Fourier transforms
�FFT� in the periodic directions� The second order accurate control volume type
discretization is used for the viscous term�
The spacial discretization of the fourth order scheme is as follows� The convec�

tive term
 the pressure term
 and the continuity are discretized by �Div� � S��

�Pres� � S��
 and �Cont� � S��
 respectively� The corresponding Poisson�s equa�
tion of pressure is solved using a septa�diagonal matrix algorithm in wall normal
direction with FFT in the periodic directions� A fourth order accurate control vol�
ume type discretization is used for the viscous term� The subgrid scale terms are
estimated with second order �nite di�erences� The wall boundary condition of the
fourth order scheme is designed to conserve mass and momentum in the wall normal
direction in a discretized sense�
The Reynolds number based on channel half width and wall friction velocity
 Re


is ��� The computational box is �� � �� �

�
�
 and the mesh contains ��� 	�� ��

points �streamwise
 wall�normal
 and spanwise respectively��
Figure � shows the pro�les of mean streamwise velocity and velocity �uctuations

from the proper second and fourth order schemes� Filtered DNS data �Kim et al�
���� are plotted as a reference in the �gures� The mean streamwise velocity pro�le
from the second order scheme is shifted up in the logarithmic region� This defect of
the second order scheme is usually observed in coarse LES �Cabot ������ Another
defect of the second order scheme in coarse LES is the peak value of streamwise
velocity �uctuation is too high �Cabot ������ These defects are improved by using
the fourth order scheme� The computational cost of the fourth order method is
about ��� times that for the second order method�

�� Future plans

The fourth order scheme will be tested in high Reynolds number channel �ow
to see if it has a greater advantage when the velocity �uctuations have a relatively
larger fraction of energy near the cuto� wavenumber�
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