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Analysis of the two�point velocity correlations
in turbulent boundary layer �ows

By M� Oberlack

�� Motivation and objectives

Two�point Rapid Distortion Theory �RDT� has become an important tool in the
theory of homogeneous turbulence� Modelers try to implement appropriate results
from RDT in their statistical turbulence models� for example in the structure based
model developed by Kassinos and Reynolds �������

On the other hand� in non�homogeneous equilibrium �ows the logarithmic law
is one of the cornerstones in statistical turbulence theory� Experimentalists have
found the log�law in a broad variety of di	erent turbulent wall shear �ows� and
statistical models have been made to be consistent with the log�law�

The logarithmic law was 
rst derived by von K�arm�an ����a� ���b� using di�
mensional arguments� Later Millikan ������ derived the law�of�the�wall more for�
mally using the so called �velocity defect law�� also 
rst introduced by von K�arm�an
����b�� Even though the derivation was much more comprehensive from a phys�
ical point of view� the velocity defect law is essentially an empirical observation�
A 
rst derivation of the law�of�the�wall using asymptotic methods in the Navier�
Stokes equations was given by Mellor ������� Mellor needed the viscous sub�layer
to obtain the log�region� and his scaling of the inertial range in the log�region is in
error because it does not give the one�point limit of production equals dissipation�

The general objective of the present work is to explore the use of RDT in analysis
of the two�point statistics of the log�layer� RDT is applicable only to unsteady
�ows where the non�linear turbulence�turbulence interaction can be neglected in
comparison to linear turbulence�mean interactions� Here we propose to use RDT
to examine the structure of the large energy�containing scales and their interaction
with the mean �ow in the log�region�

The contents of the work are twofold� First� two�point analysis methods will
be used to derive the law�of�the�wall for the special case of zero mean pressure
gradient� The basic assumptions needed are one�dimensionality in the mean �ow
and homogeneity of the �uctuations� It will be shown that a formal solution of the
two�point correlation equation can be obtained as a power series in the von K�arm�an
constant� known to be on the order of ���

In the second part� a detailed analysis of the two�point correlation function in the
log�layer will be given� The fundamental set of equations and a functional relation
for the two�point correlation function will be derived� An asymptotic expansion
procedure will be used in the log�layer to match Kolmogorov�s universal range and
the one�point correlations to the inviscid outer region valid for large correlation
distances�
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�� Governing equations of the two�point velocity correlation function

Using the standard Reynolds decomposition Ui � �ui � ui and P � �p � p� the
Reynolds averaged Navier Stokes �RANS� equations read
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and the �uctuation equation� later on referred to as N �equation� is
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The corresponding continuity equations are
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The 
ve two�point correlation tensor functions that appear in the two�point cor�
relation equation ���� further below� are de
ned as

Rij�x� r� t� � ui�x� t�uj�x���� t� �

puj�x� r� t� � p�x� t�uj�x���� t� �
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All tensors in ��� are functions of the physical and the correlation space coordinates
x and r � x��� � x respectively� The double two�point correlation Rij � later on
simply referred to as two�point correlation� converges to the Reynolds stress tensor
uiuj in the limit of zero separation r�
The well known two�point correlation equation �Rotta ������� can be written as
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For both two�point velocity�pressure correlations� uip and puj a Poisson equation
can be derived� The divergence ���xi � ���ri of equation ��� leads to a Poisson
equation for puj�
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ū1(x2)

Figure �� Sketch of the coordinate system and the mean velocity 
eld

�

�

�
��puj
�xk�xk

� �
��puj
�rk�xk

�
��puj
�rk�rk

�
� ��

��uk�x� t�

�xl

�
�Rlj

�xk
�

�Rlj

�rk

�

�

�
��R�kl�j

�xk�xl
� �

��R�kl�j

�xk�rl
�

��R�kl�j

�rk�rl

�
���

and the divergence ���rj leads to the corresponding Poisson equation for uip�
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where the vertical line means that the derivative is taken with respect to x but will
be evaluated at x� r� All of the dependent variables in ������� have to satisfy the
continuity conditions
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For the analysis of the self�similar� two�point correlation equation further be�
low� two identities are important� They can easily be derived from a geometrical
consideration by interchanging the two points x and x��� � x� r

Rij�x� r� � Rji�x� r��r� � uip�x� r� � pui�x� r��r� � ���

The latter identities are the key elements for the derivation of some boundary con�
ditions and for the deeper understanding of the self�similar two�point correlations�
There exists a similar identity for the triple correlation which will not be used here�
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�� The log�law � a self�similar form of the two�point correlation equation

A sketch of the coordinate system and the mean velocity 
eld adopted in the
proceeding paper is given in Fig� �� Within this subsection it will be shown that
the logarithmic part of the law�of�the�wall mean velocity pro
le can be derived
from the two�point correlation equation and hence from the Navier�Stokes equation
if there exists a regime where the following assumptions hold�

� the mean velocity is parallel to the wall�
� the statistics in that domain are independent of viscosity and time�
� the Reynolds number is high�
� no mean pressure acts on the �ow 
eld�

The last assumption can be eliminated� but in this approach it will be focused on
the zero pressure gradient case� Beside the above assumptions no other conditions
are needed in order to determine the log�law mean velocity pro
le and the self�
similarity of the correlation functions�
Inferring the above assumption in the Reynolds averaged Navier�Stokes equations

���� it is easy to con
rm that the gradient of the Reynolds stress tensor on the right
hand side is the only remaining term� Integrated one time we obtain that uiuj is
independent of x� However� this is not necessarily true for the two�point correlation
tensor Rij � It could depend on x if the dependence vanishes in the zero separation
limit� This can only be achieved by having the following dependence on a new
variable

�r � rg�x� ����

where g�x� has to be determined later and no other hidden dependence on x can be
in the correlation functions� Of course� the latter de
nition of �r can be generalized
to di	erent unknown scaling functions for every component of r� but from equation
��� it can be veri
ed that only a single scaling function exists� With the above given
assumptions� de
ning x � �x and using the transformation rules

�

�xi
�

�

��xi
�
�

g

�g

��xi
�rk

�

��rk
�

�

�rk
� g

�

��rk
����

the Rij�equation ��� reduces to

 � �R�j �i�
d�u��x��

dx�
�Ri� �j�

d�u��x��

dx�

����
x��r�

� ��u� �x� � r��� �u� �x��� g
�Rij

��r�

�
�

�

�
�

g

�g

��xi
�rk
�puj
��rk

� g
�puj
��ri

� g
�uip

��rj

�

�
�

g

�g

��xk
�rl
�R�ik�j

��rl
� g

�

��rk

�
R�ik�j �Ri�jk�

�
� ����



Two�point velocity correlations in turbulent boundary layers ���

As mentioned above� there is no hidden x dependence in the correlation function
and therefore all �x derivatives coming from ���a� have been omitted� Obviously�
equation ���� can only have a non�trivial solution� and thus be independent of x� if
all the coe�cients have the same functional dependence on x� Hence� the following
set of di	erential equations determine the �u� and g dependence on x

�
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are additional consistency conditions for �u� and g� The last equation in ���� de�
termines g to depend only on x�� Hence� the equations ���� have two independent
sets of solutions given by
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where the c
�p�
q �s are integration constants or proportionality factors� Obviously� only

the 
rst set of equations correspond to a boundary layer �ow because the solutions
���� de
ne homogeneous shear turbulence which contradicts the assumption to be

independent of time� Both equations ���� require c
���
� �  and c

���
� can be absorbed

in the correlation functions� In common notation we 
nally obtain
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Inserting ���� and ���� into equation ���� and multiplying by the von K�arm�an
constant � the 
nal form of the Rij�equation results�
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The procedure described above can be extended to the three�point triple�corre�

lation equation and any higher order correlation equation if an additional spatial
point is introduced for each additional tensor order� As a result it is easy to verify
that the whole set of equations de
ne an in�nite set of linear tensor equations but
which are far too complex to be solved in general� Nevertheless� it is worthwhile to
analyze some features of the solution�
In principle this in
nite set of equations could be solved by the following pro�

cedure� Beginning with the two�point correlation equation� the triple correlation
can be considered as an inhomogeneous part of the Rij equation� Once the ho�
mogeneous solution is obtained� the inhomogeneous solution can be computed by
standard methods� In the next step� the triple�correlation equation has to be tack�
led and its solution will be substituted in the solution for Rij � and so forth for
higher correlations� In each equation the von K�arm�an constant � only appears as
a factor of the highest order tensor and hence the 
nal solution for Rij is a power
series in �

R�ij �
�X
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a
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a
���
ij represents the solution of the two�point correlation equation after neglecting
the triple�correlations and all higher order terms�
The structure of the formal solution in equation ���� admits the hope that a

truncated series may provide some insight in the log�law statistics� Hence� in the
following the triple�correlations will be neglected� Using the similarity variable in
the poisson and the continuity equations� the puj equation ��� becomes
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the uip equation ��� becomes
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The identities ��� can also be transformed in a similar manner� Introducing the
transformation ���� into the equation ��a�� we obtain the relation Rij�x�� x��r� �
Rji�x��� � �r����x��r�� Because it was previously assumed that all two�point corre�
lation functions are solely functions of �r� only the ratio of the 
rst and the second
parameter can appear in Rij � This argumentation can be extended to the pressure
velocity correlation� Thus� we 
nally obtain
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The latter identity also holds if uip
� and pui

� are interchanged�
These two relations give valuable insight into the structure of the solution� Rela�

tion ���� connects di	erent �r domains to each other and provides boundary condi�
tions in the �r� direction�
One interesting feature of ���� is that it can be considered as a functional equation

for each trace element� It is easy to verify that one solution� but probably not the
most general solution to equation ����� is given by the following form
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where R�	��
 is one of the three trace elements of R
�

ij �

In addition if the solution for any o	�diagonal R�ij element �i �� j� is known� ����
provides the solution for the R�ji� A similar feature for uip

� and pui is given by
relation �����
If boundary conditions have to be satis
ed in in
nity� all correlation functions

decay to zero� Therefore� any solution of equations ���� and ��������� have to obey
the boundary conditions
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Figure �� Sketch of the boundary condition in the x��r� plane�

and

R�ij��r� ��� � pui
���r� ��� � uip
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To better understand the boundary conditions in the wall�normal direction� a
sketch of the x��r� plane is given in Fig� �� Picking any value for x�� the negative
part of r� can not be smaller than x� and hence one bound is on the line x� � �r��
The bound for the physical coordinate is at x� � � Using the de
nition of the
scaled non�dimensional coordinate ����� it is clear from Fig� � that �r� represents the
inverse of the slope given by any straight line through the origin ranging between
the two latter bounds� Hence� the domain for �r� is restricted to �� � �r� � ��
Using ���� and ���� together with ���� one obtains

R�ij��r� � ��� �  ����

and

pui
���r� � ��� � uip

���r� � ��� �  � ����

Obviously� the boundary conditions are all homogeneous and one may expect the
solution to be zero� In section ��� it will be discussed why the equations might have
a non�trivial solution� but a rigorous proof is still outstanding� In the next section
an integral relation coming from the one�point equations will be derived� which
closes the missing information regarding the scaling of the two�point correlations�

�� Kolmogorov�s universal range and one�point correlations

The self�similarity of the correlation functions introduced in section � is only valid
in the limit of large Reynolds number� based on the wall distance and the friction
velocity

Re� �
u�x�
�

����



Two�point velocity correlations in turbulent boundary layers ���

This is also the de
nition of y�� From experiments it is known that the log region
starts at about y� � � and extends to y� � ��U����
The analysis in the previous chapters is inviscid� and hence is not a regular

expansion in Re� � It is not applicable for small correlation distances� as will be
explained in some detail now� An inner viscous layer in correlation space has to
be introduced in order to meet the requirement that viscosity is important for the
dissipation tensor 	ij in the one�point limit�
Comparing the two�point correlation equation ��� in its most general form to the

inviscid version in the log�layer ����� no viscous term has been retained� In contrast
to that� the Reynolds stress transport equation in the log�layer
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and the pressure�strain tensor is de
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The contraction of equation ���� together with u�u� � �u�� determines the scalar
dissipation
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As mentioned above we 
nd from equation ���� that the asymptotic arguments
we have used so far are not valid for correlation distances on the order of the
Kolmogorov length scale l�� The Kolmogorov length and velocity scale are given by
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The only scaling of the independent variables with which the correct balance can
be achieved in the two�point correlation equation is given by
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In line of Kolmogorov�s arguments� the scaling of the dependent variables must be
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Putting ���� and ���� into ���� ��� and ��� the leading order terms in each equation
are given by
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In order to obtain a uniform solution there must an overlapping region that
matches the inner and the outer solution together� From ���a� we see that the limit
� � � in the inner layer of the two�point correlation converges to the Reynolds
stress tensor and the same must be valid for a solution of the equations ���� and
��������� in the outer layer for the limit �r � � Using the same limits for both
regions in the triple� and the pressure�velocity correlations� they both drop to zero
as they should do� As a result� the matching between the inertial subrange and
obviously speci
es the outer solution R�ij at r �  to be uiuj � but the actual
numerical value of Reynolds stress tensor is still unknown�
Note� that the equation corresponding to ���� in Mellor�s paper ������ �his equa�

tion ����� has a serious error� It does not have the production terms which� of
course� are responsible for the energy transfer rate�
As mentioned above the inner layer does not determine the absolute value of

the Reynolds stress tensor because the triple correlations can not be neglected in
���������� Thus an additional assumption is needed to determine the values of uiuj�
In Kolmogorov�s original hypotheses it was suggested that in the limit of large

Reynolds number the dissipation will be isotropic� Saddoughi�s ������ very high
Reynolds number experiment of a turbulent boundary layer in a wind tunnel sup�
ports this idea of isotropy� Hence� we take

	ij �
�

�
�ij	 � ����

Using this� the three trace elements of  ij can be obtained from the Reynolds Stress
tensor equation which in non�dimensional form can be written as
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Note� that the latter result for the pressure�strain correlation holds no matter what
is assumed for the triple�correlations� As a result� all high Reynolds number second�
moment closure models should be consistent with this result� In most second mo�
ment models this could only be ensured by adding wall re�ection terms to the
pressure�strain model�
Because the system ���� and ��������� has homogeneous boundary conditions

on all boundaries� there is nothing that speci
es the amplitude of R�ij or the value
of uiuj

� as mentioned above� In fact� this would also be true if higher correlation
functions would have been taken into account� The de
nition ���� together with
the result ���� can be used to calculate the values for the Reynolds stress tensor�
The term on the right�hand side of ���� can be rewritten as an integral of the

two�point correlation and some boundary integrals� This was necessary because the
limit r �  has to be evaluated within the dissipation range where not enough is
known about the two�point velocity�pressure correlation� It can be found that the
dissipation range� which is of the order of l�� makes a higher order contribution to
the above mentioned integral in the limit of large Reynolds number and thus can
be neglected� After neglecting the triple�correlations we 
nd
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Z
�V
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where �i � j� abbreviates the addition of the previous term with indices inter�
changed� No boundary integral has to be kept due to the homogeneous boundary
conditions for all variables� Once a solution to the equations ���� and ��������� are
computed the scaling of the two�point correlations can be calculated by equating
���� and ����� Using this� the value for uiuj

� can be taken from R�ij at r �  as
has been proven by the matching between the Kolmogorov universal range and the
outer inviscid solution�

	� Future plans

There are basically two outstanding problems within the whole approach of RDT
in the log�layer� The 
rst one is the fact that it has to be proven that the system
����� ��������� has a non�zero solution even though all boundary conditions are
homogeneous� A strong hint towards this character of the equation is gained by
the analysis of the discretised set of equations which� of course� is linear� To see
why the equations may have a non�zero solution� a result from linear algebra may
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be recalled� If in a linear system of the form Ax �  the matrix A has the rank
� and � � n where n is the number of equations� then the system has nontrivial
solutions� In this particular case considering the discretised equations ����� �����
����� A is a quadratic matrix and its rank can only be smaller than n if there is
some redundancy in the equations� In fact� this redundancy is due to the identities
���� and ����� Even though the structure of the discretised system provides some
information� the proof of a corresponding feature in the di	erential equations is still
outstanding� Once the previous problem is solved� a numerical algorithm has to be
coded to solve the discretised equations ���� and ��������� because it is very unlikely
that an analytical solution can be found� In the next step of post�processing the
numerical results� the ability of the asymptotic limits used in the RDT of the log�
layer has to be revised and if necessary enhanced by including higher correlations
in the analysis� Finally� the results of the theory will be compared with DNS data
from the turbulent channel �ow �Kim et al� ������
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