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Some progress in large�eddy simulation
using the ��D vortex particle method

By G� S� Winckelmans

�� Summary of motivation� accomplishments� and future plans

This two�month visit at CTR was devoted to investigating possibilities in LES
modeling in the context of the ��D vortex particle method ��vortex element method�
VEM� for unbounded �ows� A dedicated code was developed for that purpose� Al�
though O�N�� and thus slow� it o�ers the advantage that it can easily be modi	ed
to try out many ideas on problems involving up to N � 
�� particles� Energy
spectrums �which require O�N�� operations per wavenumber� are also computed�
Progress was realized in the following areas� particle redistribution schemes� relax�
ation schemes to maintain the solenoidal condition on the particle vorticity 	eld�
simple LES models and their VEM extension� possible new avenues in LES� Model
problems that involve strong interaction between vortex tubes were computed� to�
gether with diagnostics� total vorticity� linear and angular impulse� energy and
energy spectrum� enstrophy� More work is needed� however� especially regarding
relaxation schemes and further validation and development of LES models for VEM�
Finally� what works well will eventually have to be incorporated into the fast parallel
tree code�

�� The ��D VEM method

We use the ��D regularized vortex particle method ��vortex element method�
VEM� as in Winckelmans  Leonard �
����� The particle representation of the
vorticity 	eld is then taken as
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with �s�t� � �s�t� vols the particle strength� � the regularization function� and �
the core size� All particles have the same core size� and it remains constant in
time� Particles usually have the same volume of �uid� vol� associated with them
�e�g�� vol � h� for particles initially on an h � h � h lattice�� Sometimes however�
the discretization of an initial condition �such as a torus for discretizing a vortex
ring� leads to particle volumes that are not quite identical� see e�g�� Winckelmans
 Leonard �
����� Since the �ow is incompressible� the particle volume remains
constant in time� We also de	ne the singular �delta�function� particle representation
of the vorticity 	eld as

���x� t� �
X
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� �x � xs�t�� �s�t� � ���
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The velocity 	eld� u�� is computed from the particle representation of the vorticity
	eld as the curl of the vector potential� ���� which solves r� ��� � ����� Hence it is
divergence�free�

Vortex elements are convected by the local velocity

d

dt
xq�t� � u��xq�t�� t� � ���

and their strength is subjected to ��D stretching by the local velocity gradient� The
general mixed scheme is obtained as �Winckelmans 
���� Winckelmans  Leonard

���� 
���� 
�����

d
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�ru��xq�t�� t� � �
 � �� �ru��xq�t�� t��T

�
� �q�t� � ���

Three di�erent cases are� � � 
 for the classical scheme� � � � for the transpose
scheme� and � � ��� for the symmetric scheme�

For the present version of the VEM code� Gaussian smoothing is used �Leonard

���� Winckelmans 
���� Winckelmans  Leonard 
�����

��	� �

�



�


����

e�
��

� � ��a�

G�	� �



�
 	
erf

�
	p
�

�
� ��b�

K�	� �



	�
�G�	�� ��	�� � ��c�

F �	� �



	�
��K�	�� ��	�� � ��d�

with � the vorticity smoothing function� G the Green�s function for the vector
potential �� streamfunction�� K the Biot�Savart function for the velocity evaluation�
F a function used in evaluating the velocity gradient� and 	 � r�� the dimensionless
distance� This choice leads to a second order method� provided � � h�� � 
�

The error function erf�x� is computed using e�x
�

and Eq� ��
��� in Abramowitz
and Stegun �
����� For small 	� Taylor series expansions are used to evaluate G� K�
and F � Notice that� in general� switching from f � fa if x � x� to f � fb if x � x�
is programmed without an �if� statement by making use of a Heaviside function�

f � fa � �fb � fa�
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With the particle strength exchange scheme for viscous di�usion �Mas�Gallic

���� Degond  Mas�Gallic 
����� we have�
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where ��	� � ��
�

d
d���	�� Note that the Gaussian smoothing is the only one for which

��	� � ��	�� �It is also the natural kernel for the di�usion equation �Winckelmans
 Leonard 
������ For non�uniform di�usion coe�cients �such as in LES�� the
formulation simply becomes�
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��� Particle redistribution schemes

One needs to maintain the condition that particle cores overlap� In some cases�
this calls for a particle redistribution scheme� The high order �� scheme used by
Koumoutsakos �
���� and Koumoutsakos  Leonard �
���� 
���� was adopted�
It consists of replacing the whole set of vortex particles by a new set� The new
particles are located on an h � h � h lattice �hence all particles have vol � h���
Consider 	rst the normalized 
�D problem with unit spacing� Then� in the ���x�
scheme� an old particle located at ��

� � x � �
� gives ��

�x�
 � x� of its strength to
the new particle located at �
� �
 � x��
 � x� of its strength to the new particle
located at �� and �

�
x�
 � x� to the new particle located at 
� This scheme is such

that�
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for n � �� 
� �� In ��D� one applies the scheme as ���x� ���y� ���z�� This scheme
then conserves exactly total vorticity� � �

R
V
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P
s �

s� linear impulse� I �
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s � �s� and angular impulse� A � �
�

R
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�
�

P
s x

s � �xs � �s�� It usually performs very well on energy conservation and well
on enstrophy conservation�

Notice that a simpler scheme is the �� scheme� in that case� an old particle
located at ��

� � x � �
� gives �

� � x of its strength to the new particle located at
��

� � and �
� � x to the new particle located at �
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for n � �� 
� Again� in ��D� one applies the scheme as ���x� ���y� ���z�� This
scheme then conserves exactly total vorticity and linear impulse� It does not con�
serve angular impulse� It usually performs poorly on energy conservation and very
poorly on enstrophy conservation� We do not recommend its use�

The �� scheme has been incorporated in the fast ��D parallel tree code as well
�Winckelmans et al� 
����� Particle redistribution is programmed using the tree
code data structure� It runs very e�ciently� Its cost is much less than the cost
associated with the 	eld evaluation�
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��� Relaxation schemes for the particle vorticity �eld

The particle representation of the vorticity 	eld� ���� does not constitute a gener�
ally divergence�free basis �Sa�man  Meiron 
���� Winckelmans  Leonard 
����

����� Thus� although the initial particle discretization of a vorticity 	eld can be
made very near divergence�free� this condition does not necessarily remain satis	ed
in long time computations� A relaxation scheme can be applied� if and when neces�
sary� which ensures that the particle 	eld� ���� remains a good representation of the
true divergence�free vorticity 	eld� �� � r� u�� Di�erent approaches have been
proposed �Winckelmans 
���� Pedrizzetti 
���� Winckelmans  Leonard 
�����

Notice 	rst that� once computed� the velocity gradient tensor� ru�� contains
all the necessary components to evaluate the true vorticity 	eld at the particle
locations� This vorticity 	eld is then used in both relaxation schemes considered
here� Notice also that �� � r�u� � r��r� ���� � �r� ����r�r� ����� Recalling
that r� ��� � ����� it follows that r�r � ���� � �� � ����

The P�relaxation scheme �Pedrizzetti 
���� was developed in the framework of
singular vortex particles� It is modi	ed to be used in the context of regularized
vortex particles� At every time step� the particle strength vector is modi	ed using
the 	ltering�

�qnew � �
 � f �t� �q � f �t
���xq�

k���xq�kk�
qk �

�

where ���xq� is the true local vorticity 	eld and where f is a frequency factor� The
time scale 
�f must be �tuned� with respect to the time scale�s� of the physical
phenomena under study to give satisfactory results� This relaxation scheme basi�
cally acts as a �spring� that tries to maintain the particle strength vector aligned
with the true vorticity vector� This simple scheme is such that� �
� It doesn�t do
anything to the particle strength vector if that vector is aligned with the vorticity
vector� ��� It is a simple local operation on the particle strength vector� No system
of linear equations involving neighbor particles needs to be solved�

The W�relaxation scheme �Winckelmans 
���� Winckelmans  Leonard 
���� is
based on the functional representation of the vorticity 	eld� one requires that� at
particle locations� the particle vorticity 	eld be equal to the true vorticity 	eld�
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��

This scheme is best applied after the particle redistribution scheme � The fact that
the particles are then well�aligned on a regular lattice greatly favors the reconstruc�
tion of a smooth function from the particle strengths�

It is also best to use Gaussian smoothing as this smoothing permits a �good�
quality� reconstruction of a smooth function from the particle strengths in the
whole range of core overlapping� � � h�� � 
�� � With other smoothings� the
window of acceptable h�� is much narrower�

The W�scheme amounts to solving a system of linear equations involving only
near neighbors� This is done using an iterative method such as Relaxed�Jacobi �in
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the tree code� or Relaxed Gauss�Seidel� Notice that the matrix is not diagonally
dominant� Actually� with Gaussian smoothing and particles on a regular lattice in

d�dimension� the diagonal dominance is violated as soon as
��

�
��

���� h
�

�d
� �

�
� In


�D� this means h�� � 
���� In ��D� h�� � 
���� and in ��D� h�� � 
���� Thus� �
�
The higher the dimension� the worse the non�diagonal dominance� ��� The smaller
h��� the worse the non�diagonal dominance� Since we operate here in ��D� and at
h�� � ����� 
�� or so �to satisfy the core overlapping condition�� we de	nitely do
not have diagonal dominance�

At this point� the e�cient iterative solution of this system is still a subject of
active research �A� Leonard� private communication�� There appears to be an �op�
erating window� of h�� where� although not diagonally dominant� all eigenvalues of
the matrix are still real and positive� In that case� iterative solvers �with or without
preconditioning� can be developed� For instance� it is known that the Gauss�Seidel
iteration converges for any symmetric� positive de	nite matrix �Golub and Van
Loan 
����� The matrix here is symmetric� It is also positive�de	nite as long as all
eigenvalues remain real and positive�

��� Time integration

For time integration� the O
�
��t��

�
Adams�Bashforth scheme �AB�� is used�

Since this scheme is not self�starting� an O
�
��t��

�
Runge�Kutta scheme �RK��

is used for the 	rst time step �after the initial condition or after each use of the
particle redistribution scheme�� This approach allows one to maintain second order
accuracy� Numerical experiments have indeed shown that an O ��t� Euler scheme
for the start�up step is simply not acceptable� The RK� scheme is e�ciently pro�
grammed as follows� Euler predictor� Trapezoidal�rule corrector�

�� Energy� enstrophy� and their spectrum

A formulation developed by Leonard �
��� unpublished� private communication�
�see also Leonard 
���� Shari� et al� 
����� is used to compute the energy spec�
trum� Although developed in the context of vortex 	lament methods �for which
the 	lament vorticity 	eld is� by construction� equal to the true vorticity 	eld�� the
formulation also applies to vortex particle methods as long as the particle vorticity
	eld� ���� remains a good representation of the true vorticity 	eld� ��� If this con�
dition is violated� then the evaluation of the energy and of its spectrum becomes
very complex� see e�g�� Winckelmans �
����� Winckelmans  Leonard �
����� Kiya
�
�����

With Gaussian smoothing� the energy spectrum is 	nally obtained as
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and the total energy as �Winckelmans  Leonard 
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The enstrophy spectrum is E�k� � k�E�k� and the total enstrophy is �Winckelmans
 Leonard 
����
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Notice that the cost associated with evaluating the energy spectrum is O�N�� for
each k�

A special case is the vortex ring of circulation � and radius R �Leonard 
�����
In that case we obtain for the energy spectrum of the in	nitely thin vortex ring�
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This complements a result presented in Leonard �
�����
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The spectrum� computed using a particle discretization of the vortex ring� is

presented in Fig� 
� For small kR� �E�k� � �kR��

� � For large kR� �E�k� asymptotes to
�kR���

� �Leonard 
����� The fact that �E � �kR�� for small kR is a consequence of
the non�zero linear impulse associated with the vortex ring� e�g�� see Phillips �
�����
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Figure �� Energy spectrum of a singular vortex ring� � �kR����� �
�kR������ �

It is found numerically that for a given wavenumber� k� the spacing� h� between
the particles used to discretize a ring only needs to satisfy kh � � or so in order for
the discrete sum� Eq� �
��� to correctly capture the exact integral� Eq� �
��� This
is very surprising �and not understood at this time� because the integrand varies

quite a bit from one particle to the next �
 versus roughly sin�kh�
kh ��

For comparison with the single vortex ring� the spectrum of two opposite rings is
shown in Fig� ��

In that case� the linear impulse is zero and one 	nds that �E � �kR��� Actually�
with su�cient symmetry� one can even create a system with �E � �kR�	� This
was obtained by considering six vortex rings on the surface of a cube� see Fig� ��
Finally� we 	nd that all vortex loop con	gurations considered lead to a spectrum
�E�k� � k�� for large k and that this appears to remain so when they evolve in time
using VEM� inviscid or viscous �including LES�� see Section ��

�� LES and the possible extension to vortex methods

We consider turbulent �ows away from solid boundaries� We also consider the
general vorticity formulation �Winckelmans 
���� Winckelmans  Leonard 
�����
together with an LES formulation which conserves the zero vorticity divergence
�Mansour et al� 
�����
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Figure �� Energy spectrum of two opposite singular vortex rings with spacing
S�R � 
���� � �kR��� � �kR���� �
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Figure �� Energy spectrum of six singular vortex rings on the surface of a cube
of size S�R � 
���� � �kR�	� � �kR���� �
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for any �� The symmetric case � � 
�� leads to Sij�j for the ��D stretching� with
Sij the rate�of�strain tensor�

In the basic LES Smagorinsky�s model� the turbulence eddy�viscosity is taken as

turb � �Cs h�� ��SijSij�
��� �
��

with SijSij � S� � �� Typically� Cs lies in the range ��
 � ���� �Rogallo  Moin

���� Lesieur et al� 
����� Consider the eigenvalues ��� ��� and �� of the rate�of�
strain tensor� with �� � �� � �� � Sii � r � u � �� The model then produces an
eddy�viscosity

turb � �Cs h��
�
�
�
��� � ��� � ���

�����
� ����

We certainly agree with Lesieur et al� �
���� that �this simple eddy�viscosity hy�
pothesis is extremely arbitrary� and substantial progress in LES might be achieved
by relaxing this assumption�� For the time being� however� a simple extension
to particle methods of this eddy�viscosity LES model is considered� Since our ��
regularization of the vortex particle method is basically a Gaussian 	lter� it appears
natural to replace the usual Eulerian grid 	lter h by the particle core size � �Recall
that h�� � O�
�� and to take�

turb � �Cs ��� ��SijSij�
���

� ��
�

Other simple ways of constructing an LES eddy�viscosity have been proposed�
e�g�� the model based on local enstrophy of Mansour et al� �
�����

turb � �Cv h�� ��i�i�
�
� ����

with �i�i � �� � � and Cv � Cs �Cv � ��� in Mansour et al� 
����� If we recall
the vector identity�

S� �



�
�� �r � �r � �uu�� ����

together with the Euler equations�

�u

�t
�r � �uu� � �rP � ����

it appears that� to 	rst order� the two models di�er by �
��

� � S� � r�P � This is
an interesting result as it could be used to explain the di�erences in the behavior
of these two models depending on the pressure�s Laplacian� Indeed� although �

��
�

and S� are both positive�de	nite� their di�erence� r�P � can have any sign�
A third model based on the relative rate of change of local enstrophy due to ��D

stretching of vortex lines�
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could also be constructed� e�g��

turb � �Cw h�� �
�iSij�j
�i�i

����

This model has the property that it �selects� the eigenvalues used to compute the
eddy�viscosity according to the relative orientation between the vorticity vector� ��
and the principal axes �eigen vectors� of the rate�of�strain tensor� Indeed� writing
the components of the vorticity vector in the system of principal axes as ���� ��� ����
this model becomes

turb � �Cw h�� �

�
���

�
� � ���

�
� � ���

�
�

��
� � ��

� � ��
�

�
� ����

Hence a vorticity�weighted average of the eigenvalues is used to produce the eddy�
viscosity� This model produces a negative eddy�viscosity in regions where enstrophy
is decreasing �i�e�� where vorticity is compressed�� Since this is undesirable� one
should use j�iSij�j j �version 
� or max ��� �iSij�j� �version �� instead of �iSij�j
�version ���

In axisymmetric strain ��� � �� � ���� and �� � ��� the classical LES model

gives �Cs h��
p

� j�j� regardless of the orientation of the vorticity vector� If vorticity
is aligned with the direction of highest rate�of�strain� the �selective� model �ver�

sion 
� gives �Cw h�� � j�j� If vorticity is perpendicular to that direction� it gives

�Cw h�� j�j� Since 
 � p
� � �� this result also suggests that using Cw � Cs as a

	rst �calibration� for the selective model is a fairly good choice�
In DNS of the Euler equations� the emergence of �at pancake�like structures

��potato chips�� that shrink exponentially in time is also observed� e�g�� Brachet
et al� �
����� In that case� two eigenvalues become exponentially large� �� �
�
���

�
� et�T

�
� �� � �

���
�

� et�T
�
� while the intermediate eigenvalue� �� � ��

remains roughly constant� During this self�similar collapse� it is observed that
the vorticity tends to remain aligned with the eigenvector corresponding to the
intermediate eigenvalue� Instabilities similar to those leading to streamwise vortices
in the context of free shear layers are expected to subsequently concentrate the
vorticity and produce isolated vortex 	laments� Modeling such �ows with LES� a
classical model would produce� during the collapse phase� an exponentially large
eddy�viscosity �hence kill the collapse phase in its early stages by dissipating the
energy rapidly� while the selective model would produce a fairly constant eddy�
viscosity �hence dissipate the energy at the end of the collapse phase�� Thus� the
two models would behave quite di�erently�

Finally� mixed�schemes that are a judicious combination of the above models
could also be considered� Whatever the choice� they would have to be validated
somehow �e�g�� using DNS data�� including the determination of the �constants��

One interesting question is whether one of the simple models above �or a suitable
mix of them� can produce better results than what is so far obtained with the
classical Smagorinsky�s model�
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Note that the vortex method also has potential for the development of a dynamic
LES model� in the same spirit as in Germano et al� �
��
�� Ghosal et al� �
�����
Moin  Jiminez �
����� Ghosal  Moin �
����� Moin et al� �
����� Ghosal et al�
�
����� For instance� one could compute the velocity 	elds and derivatives from
the particle locations and strengths by using Gaussian smoothing at two levels�
e�g�� a 	lter of width � and a 	lter of width ��� This information could then be
used to �compute� Cs in a way similar to what is done so far with dynamic LES
in grid methods� One must recall� however� that the vortex method with Gaussian
smoothing is a second�order method� If dynamic LES requires higher order methods
�as it may � � � � Ghosal� private communication�� it might not be feasible in the
context of VEM�

	� Fast and slow VEM codes

A fast parallel oct�tree code� originally developed for three�dimensional N�body
gravitational problems �Salmon 
���� Salmon  Warren 
���� Warren  Salmon

���� has been modi	ed into a fast N�vortex code for vortex �ow computations using
the vortex particle method combined with the particle strength exchange scheme
for viscous di�usion� with the �� particle redistribution scheme� and with both P�
and W�relaxation schemes �Salmon� Warren  Winckelmans 
���� Winckelmans et
al� 
���a�b�c�d��

Gravitation� VEM� etc� are all O�N�� in complexity� for each of the N elements�
	nd the derivatives of the 	eld induced by all N elements� This is the expensive
part of the computation� The other tasks �particle strength exchange scheme� par�
ticle redistribution� etc�� are all fairly local operations and are not computationally
expensive� The use of fast tree codes in ��D and ��D reduces the computing cost
associated with all evaluations from O�N�� to something much more tractable�
O�N logN�� or O�N�
�� with � �� 
� or even O�N�� depending on the complex�
ity of the implementation� The �big�O� notation can� however� be misleading for
practical values of N and desired level of accuracy� In our implementations of the
VEM� multipole expansions of order p � � are used �i�e�� monopole � dipole �
quadrupole�� Particular attention is given to ensuring that the error introduced by
the use of multipole expansion approximations remains below a desired level for all
evaluations� A run�time parameter� etol� determines the maximum allowed error
bound for any particular multipole evaluation�

The tree code is written entirely in ANSI C and has been ported to several
parallel and sequential platforms� Problems with N � O�
���
��� and beyond are
computed on parallel supercomputers� Problems with N � O�
�� � 
��� are also
computed on the �degenerate� parallel case of single processor workstations�

For the present two�month �exploratory� work at CTR� it was decided to stick
with a slow O�N�� VEM code� �Actually� an all�new VEM code was written for that
purpose�� Recall that computing an energy spectrum is also an O�N�� operation
for each wavenumber k anyway� Although this O�N�� code sets a limit of N � 
��

on the number of particles �even on a CRAY C���� it provides for an easy and
convenient way of experimenting with many ideas� di�erent LES models� di�erent
particle redistribution schemes� di�erent relaxation schemes� etc�
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� Some computational results

��� Twelve rings compact vortex system

We consider a �compact� vortex system which� by construction� has the following
desirable properties� zero vorticity �as always in ��D�� zero linear impulse� zero
angular impulse� and zero helicity� H � �

�

R
V
u� � �� dx� Initially� it is formed of

twelve circular vortex rings� each of circulation � � 
� six rings of radiusR � ��� ���
sections per ring� with � particles per section �
 in the center with circulation ����
and � around the center� at a distance rc � ��
�� and with circulation ��
�� laid on
the surface of an outer cube of size S � 
 and with self�induced velocity directing
them towards the cube�s center� and six rings of radius R � ��� �
� sections per
ring� again with � particles per section� laid on the surface of an inner cube of size
S � ��� and with self�induced velocity directing them away from the cube�s center�
The total number of particles is N � ����� The spacing between particles along the
ring is h � ��
�� The two cubes share the same center� The outer cube is directed
along �ex � �
� �� ��� �ey � ��� �� 
� and �ez � ex � ey � To break the symmetry�

the inner cube is arbitrarily oriented along �ex� �ey � �ez� with �ex �
�
�
� �
p
�
� ���

�

�
�

�e�y �
�

��
p
�
�
� �
�

�
� ez � �ex � �e�y� �ez � ez�kezk and �ey � �ez � �ex �

To ensure core overlapping for a long time� a large value of � � ���� is used �hence
h�� � ����� The time step is �t � ����� The symmetric stretching scheme is used�
� � ���� The LES model of Eq� ��
� is used� with Cs � ��
� The W�relaxation
scheme is used every 
� time steps �with �� Gauss�Seidel iterations��

Initially� the energy is E � 
���� and the enstrophy E � ����
� Following classical
de	nition of �isotropic� turbulence� the integral length scale is obtained as

L �
�


�

R�
� k��E�k� dk

E
� ����� ����

and the Taylor microscale as

� �

�
�
E

E
����

� ����� � ����

At 	rst� a run without particle redistribution is conducted up to t � �� Contour
plots are presented in Fig� �� The histograms of energy and enstrophy are provided
in Fig� ��

The energy decays due to LES di�usion� Due to vortex stretching� the enstrophy
	rst increases� It then decreases due to vortex reconnection by viscous di�usion�
Notice that two enstrophy curves are presented� The E�curve refers to enstrophy as
de	ned by Eq� �
��� The Eb�curve refers to enstrophy de	ned as

Eb �



�

Z
V

�� � �� dx � ����

As long as the particle vorticity 	eld� ���� remains a good representation of the
divergence�free 	eld� ��� the two curves remain identical� Their di�erence is thus a
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Figure �� Twelve rings interaction� ��D contour plots of �� � ��� at t � ��� and
��� �
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Figure �� Twelve rings interaction� � without redistribution� E and E� � �
Eb� � � � with �� redistribution� E and E� �inverted�� Eb� � �

lo
g

� E
�
��
S
��

�

log�kS�

lo
g

� E
�
��
S
��

�

log�kS�

Figure �� Twelve rings interaction� Energy spectrums� t � �� � t � 
�
� t � �� � t � �� � t � �� � k	� k�� k�� k�� k��� k�����
�

global indication of problems with ��� �� ��� In the present case� it is seen that the
W�relaxation scheme does a fairly good job at keeping ��� � �� up to t � � or so�

Energy spectrums are provided in Fig� �� It is seen that the high end of the
spectrum starts 	lling up at t � � or so� This is also indicative of problems with
��� �� ��� This is con	rmed by a close look� for all particles� at the amplitude of
��� and �� and at their relative orientation� It is also seen that the low end of the
spectrum does not remain well�behaved as time evolves� The behavior is physically
acceptable as long as it remains above �kS��� The fact that it evolves to �kS��

indicates that spurious creation of linear impulse has occurred� This is con	rmed
by a close look at the histogram of I�t�� Finally� total vorticity� ��t�� also does not
remain zero as it should� This could be somewhat improved by using the transpose
scheme� � � �� instead of the symmetric scheme �Winckelmans 
���� Winckelmans
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Figure �� Twelve rings interaction� Un	ltered energy spectrums� t � �� �
t � 
� � t � �� � t � �� � t � �� � k	� k�� k�� k�� k���

�

 Leonard 
����� The W�relaxation scheme� however� does not conserve �� Again�
all the above �symptoms� are indicative of problems with ��� �� ���

For comparison� a run with �� particle redistribution every �� time steps �and
with h � ��
�� is also carried out� From N � ���� at t � �� this leads to N � ����
at t � 
� and to N � 


�� at t � �� Because of the O�N�� code� the computation
cannot be carried out much further than t � �� and is ended at t � ���� Histograms
of energy and enstrophy are provided in Fig� �� The conclusion is that the ��

scheme is de	nitely not acceptable� it dissipates too much energy and enstrophy�
In particular� it totally overshadows the amount of energy dissipated by the LES
model� Another interesting result is that the correspondence ��� � �� is better
maintained with particle redistribution than without� This con	rms that the W�
scheme is indeed best applied when combined with redistribution� Energy spectrums
are also provided in Fig� �� This time� the high end of the spectrum is still 	ne
at t � �� So far� the low end of the spectrum also behaves 	ne� Although the ��

scheme exactly conserves � and I� it is likely that spurious creation of � and I
will also occur eventually due to the W�relaxation scheme and to the symmetric
stretching scheme�

One conclusion so far is the following� If one is to do controlled LES with the
VEM� it must be that the energy dissipation due to redistribution or relaxation is
less than the one due to LES� A good run might be to use the �� scheme every 
�
or �� steps� �This scheme indeed conserves much better energy and enstrophy� see
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below�� This could not be done with the present O�N�� code� however� due to the
large increase in the number of particles required�

Another conclusion is that the W�scheme does not conserve � and I� �Neither
does the P�scheme�� One further improvement would be to develop a relaxation
scheme which conserves � �and� if possible� also conserves I��

One question arises regarding the �inertial� range of such vortex tubes interac�
tions� Is there a �kS����� Kolmogorov range that develops! In Kiya �
����� it
is argued that yes� there is� We claim that no� there is not� In considering the
	ltered energy spectrum� E�kS�� of Fig� �� it is hard to tell whether there is a Kol�
mogorov range or not� One 	nds the answer by considering instead the un	ltered
energy spectrum� �E�kS�� of Fig� �� Then� there is a clear indication that �
� the
computation blows up �see comments above�� and ��� as long as it doesn�t blow
up� the spectrum remains as �kS���� This point will become clearer below� on a
computation that replicates the one presented in Kiya�

��� Six rings compact vortex system

We consider next another compact vortex system with zero vorticity� zero linear
impulse� zero angular impulse� and zero helicity� Initially� it is formed of six vortex
rings� each of circulation � � 
 and of radius R � ��� ��� sections per ring� with �
particles per section �
 in the center with circulation ���� and � around the center�
at a distance rc � ��
�� and with circulation ��
�� laid on the surface of an outer
cube of size S � 
 and with self�induced velocity directing them towards the cube�s
center� The rings are elliptical �in order to break the symmetry� with ab � R�

and a�b � 
��� �top�� ���� �left�� 
��� �bottom�� ���� �right�� ���� �front� and ����
�back�� The total number of particles is N � ����� The spacing between particles
along the ring is h � ��
��

A value of � � ��
�
�� � p
�h is used �hence h�� � ������� The time step is

�t � ����� and the computations are carried out up to t � �� The symmetric
scheme is used� � � ���� The LES model of Eq� ��
� is used� with Cs � ���� The
W�relaxation scheme is used every 
� time steps �with �� Gauss�Seidel iterations��

Initially� the energy is E � 
���� and the enstrophy E � ����� �hence � � �������
Notice that the application of the �� scheme to that perfectly 	ne initial condition
leads to E � 
���� �loss of �"� and E � ����
 �loss of 

"� � For comparison the
application of the �� scheme leads to E � 
���
 �loss of ����"� and E � ����� �loss
of ����"�� This illustrates the superiority of the �� scheme over the �� scheme�
regardless of the time evolution of the vortex system�

Three runs were done� one without particle redistribution� one with �� redistri�
bution at t � �� and one with �� redistribution at t � �� Contour plots for the 	rst
run are presented in Fig� ��

The histograms of energy and enstrophy are provided in Fig� �� Again� the
energy decays due to LES di�usion� Due to vortex stretching� the enstrophy 	rst
increases� It then decreases due to vortex reconnection by viscous di�usion� As
long as ��� remains close to �� �here up to t � ��� the two curves� E and Eb remain
identical� The �� scheme is again clearly unacceptable� The �� scheme performs
much better� However� it is believed that it should have been used more often �i�e��
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Figure �� Six rings interaction� ��D contour plots of �� � ��� at t � ���� ��� and
��� �
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Figure 	� Six rings interaction� � without redistribution� E and E� � � Eb�
� � � with �� redistribution� E and E� �inverted�� Eb� � � � with ��

redistribution� E and E� � Eb� � �
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Figure �
� Six rings interaction� Energy spectrums� t � �� � t � 
� �
t � �� � t � �� � t � �� � k	� k�� k�� k��� k����� �

every 
� or �� steps instead of every �� steps� to give a better performance� Again�
this could not be done� due to the O�N�� computational cost of the code� Finally�
the correspondence ��� � �� �and hence E � Eb� is again better maintained with
redistribution than without�

The energy spectrums are provided in Fig� 
�� The high end of the spectrum
starts 	lling up at t � �� This is again indicative of problems with ��� �� �� and is
con	rmed by a close look at both ��� and �� for all particles� The low end of the
spectrum remains well�behaved as time evolves� with very little spurious creation
of linear impulse and of total vorticity� The six rings interaction here constitutes a
�gentler� problem than the previous twelve rings interaction�

Again� regarding the �inertial� range of these vortex tubes interactions� it is
again closer to a �kS��� behavior �	ltered by the Gaussian� than to a �kS�����
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Kolmogorov behavior�

��� Six thin rings inviscid vortex system

To settle the issue� a run that replicates Kiya �
���� is also done� In that case�
six circular rings of radius R � 
 and of circulation � � 
 are laid on the surface
of the cube of size S � 
���� Each ring is discretized using a single line of ���
particles �hence h � ������� In Kiya� the high order algebraic smoothing is used�
with �� � ��
�� Recalling that the self�induced velocity of such a ring is obtained
as �Leonard 
���� Winckelmans 
����

U �
�

�
R

�
ln

�
�R

��

�
� 


�

�
��
�

whereas the velocity of the ring with Gaussian smoothing is �Leonard 
���� Winck�
elmans 
����

U �
�

�
R

�
ln

�
�R

�

�
� 
����

�
� ����

the proper scaling requires that our computation be done with � � �������� Thus�
these are much thinner rings than before� Hence a wider �inertial� range is expected�

The computation is carried up to t � 
��� with �t � ���
� Again� the symmetric
scheme is used� � � ���� This is also a simple VEM computation� Hence� no relax�
ation scheme� and no redistribution scheme� Finally� this is an inviscid computation�
Hence� no LES�

The energy spectrums are provided in Fig� 

� As claimed by Kiya� the 	ltered
spectrum� E�kR� suggests a �kR����� behavior� This is purely due to the 	lter�
however� Indeed� from examining the un	ltered spectrums� �E�kR�� it is clear that
�
� the behavior remains as �kR��� for a long time �forever!�� and ��� the compu�
tation eventually blows up �as was the case in Kiya�� The histograms of energy and
enstrophy are provided in Fig� 
�� From the di�erence between the curves E and
Eb� it appears that the computation blows up at t � 
���

In conclusion� it appears that interactions involving only vortex tubes lead to a
k�� behavior� It may require the interaction between both vortex tubes and vortex
sheets to obtain a Kolmogorov�like spectrum� A model involving spiral vortices
�i�e�� rolled�up vortex sheets� is presented in Lundgren �
�����

��� DNS of two rings fusion using the fast parallel tree code

This work was not done while at CTR� It was done in collaboration with Salmon�
Warren and Leonard �Winckelmans et al� 
���d�� It is also presented here in order
to illustrate the capabilities of the fast parallel VEM code� We consider a high
resolution DNS of the fusion of two vortex rings� radius R � 
� circulation � � 
�
Gaussian vorticity distribution with �R � ��
�� spacing of the two rings center to
center S � ����� angle of each ring w�r�t� vertical � �� degs� Each ring is discretized
with 
�� sections and ��� particles per section �i�e�� � layers� see Winckelmans 
Leonard 
����� The inter�particle spacing is then h � ����� The computations were
run with �t � ����� � � ������� � � ��  � ������ �i�e�� Re � �� � ���� on
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Figure ��� Six thin rings inviscid interaction� Filtered and un	ltered energy
spectrums� t � �� � t � ���� � t � 
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Figure ��� Six thin rings inviscid interaction� � without redistribution� E
and E� � � Eb� � �

both �� nodes of the NAS IBM�SP� and �� nodes of the Caltech Intel Paragon�
Initially� there were ������ particles �
� CPU secs per step on SP���� and �� on
Paragon����� The �� particle redistribution scheme with h � ���� was used every

� time steps� At the end of the run� there were �
����� particles ��� CPU secs per
step on SP���� and ��� on Paragon����� The velocity error was roughly ������ for
the mean over all elements� and ������ for the max�

It is seen in Fig� 
� that the di�usion scheme� when combined with the high
order particle redistribution scheme� correctly captures the fusion process� First� the
energy and enstrophy losses associated with the �� scheme are small enough that
they cannot be seen in the histograms� �They can only slightly be seen when they
are di�erentiated numerically�� Second� the normalized energy decay rate remains
�almost� equal to the enstrophy� as it should� For comparison� a run without particle
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Figure ��� Fusion of two vortex rings� ��D view of the particle strengths at
t � ���� ���� ���� Histogram of linear impulse� Iz� of energy� E� of enstrophy� E� and
of � �

�
dE
dt �
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redistribution was also done� see histograms in Fig� 
�� In that case� the energy
decay rate is clearly incorrect� Finally� the conservation of linear impulse is also
much improved by the use of the redistribution scheme� Yet� even with particle
redistribution� linear impulse starts decreasing at t � �� It is believed that ��� is
then beginning to deviate from ���

At this point� we are also experimenting with the two relaxation schemes when
used in conjunction with the redistribution scheme� Results obtained so far are
encouraging� yet too preliminary to be reported�

�� Conclusions

The VEM method has gone a long way since its early stages� accurate viscous dif�
fusion� particle redistribution schemes� relaxation schemes for the particle vorticity
	eld� fast and accurate 	eld evaluation on both sequential and parallel platforms�
This work is still in progress� The time has come to start developing LES models
suitable to VEM� During this two�month visit at CTR� a dedicated O�N�� LES�
VEM code was developed� Although slow� this code could be modi	ed rapidly in
order to experiment with many di�erent schemes and ideas� Energy spectrums
could also be computed� Some progress was accomplished in the following areas�
�
� LES models and how to incorporate them into VEM� ��� energy spectrums and
how to compute them� ��� particle redistribution schemes� ��� relaxation schemes�
More work is needed� however� especially regarding �
� relaxation schemes and ���
further validation and development of LES models for VEM �which also requires
that they eventually be incorporated into the fast parallel tree code��

It is believed that� when combined with recent developments in vortex techniques
for wall�bounded �ows �P#epin 
���� Koumoutsakos 
���� Koumoutsakos  Leonard

���� 
���� Koumoutsakos et al� 
����� a matured and well�developed methodology
will permit the simulation of ��D unsteady problems of engineering interest� �ow
past airfoils including vortex wake� and �ow past blu� bodies including vortex wake�
These body$wake computations will require the merging of the VEM code with a
Boundary Element Method �BEM� in order to determine� at each time step� the
vorticity �ux required at solid boundaries in order to satisfy no�slip�
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