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A new class of finite difference schemes
By K. Mahesh

1. Motivation and objectives

Fluid flows in the transitional and turbulent regimes possess a wide range of
length and time scales. The numerical computation of these flows therefore re-
quires numerical methods that can accurately represent the entire, or at least a
significant portion, of this range of scales. The inaccurate representation of small
scales is inherent to non-spectral schemes. This can be detrimental to computations
where the energy in the small scales is comparable to that in the larger scales, e.g.
large-eddy simulations of high Reynolds number turbulence. The inaccurate nu-
merical representation of the small scales in these large-eddy simulations can result
in the numerical error overwhelming the contribution of the subgrid-scale model
(Kravchenko & Moin 1996).

Recently, Lele (1992) introduced a family of implicit (also called compact) fi-
nite difference schemes for the spatial derivatives. The implicit schemes equate
a weighted sum of the nodal derivatives to a weighted sum of the function, e.g.,
Pl AAF ) = (i —fo) /ey and FI+10f1 1) = 120 Foga—2fit fioi )/
Throughout this paper, f; and fF denote the values of the function and its k!
derivative respectively, at the node © = x;, and h denotes the uniform mesh spac-
ing. These schemes have better small scale accuracy than explicit schemes with the
same stencil width. The most popular of the implicit schemes (also called Padé
schemes due to their earlier derivation from Padé approximants) appear to be the
symmetric fourth and sixth order versions. There have been several recent compu-
tations of compressible flows that have used the Padé schemes. The flows computed,
include transitional boundary layers, turbulent flows and flow-generated noise. The
Padé schemes have been less popular in incompressible computations, presumably
due to the Poisson equation generating sparse matrices when there is more than
one inhomogeneous direction.

This report presents a related family of finite difference schemes for the spa-
tial derivatives. The proposed schemes are more accurate than the standard Padé
schemes, while incurring essentially the same computational cost. The objective of
this report is to present these schemes as an attractive alternative to the standard
Padé schemes.

This work is discussed in detail by Mahesh (1996); this report only summarizes
the more prominent results.

2. Accomplishments

For the same stencil width, the standard Padé schemes are two orders higher in
accuracy and have better spectral representation than the corresponding symmet-
ric, explicit schemes. For example, fi_, +4f; + fi.| = 3(fix1 — fi—1)/h is fourth
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order accurate, while f! = (fiy1 — fi—1)/2h is only second order accurate. The
implicit relation between the derivatives in the Padé schemes yields additional de-
grees of freedom that allow higher accuracy to be achieved. It is therefore to be
expected, that including the second derivatives in the implicit expression would fur-
ther increase the degrees of freedom, and thereby the accuracy that can be obtained.
Additional motivation to solve for the first and second derivatives simultaneously,
is provided by the Navier-Stokes equations requiring both derivatives of most vari-

ables. This suggests a numerical scheme of the form

1
arfiy +aofi +asfiy, +h(by fily +bof] +b2fiy) = E(lei—z +cafica
+ cofi + csfit1 + cafita)- (1)

Hermitian expressions involving functions and their first, and higher derivatives
have been suggested in the literature (see Mahesh, 1996 for references). However,
the development was not completed to a point where the resulting schemes could
be used for solving partial differential equations. The objective of this paper is to
develop this family of schemes, and assess their potential for computations of the
Navier-Stokes equations. The schemes will be referred to as the ‘coupled-derivative’,
or ‘C-D’ schemes to distinguish them from the standard Padé schemes.

2.1 The intertor scheme

Simultaneous solving for f! and f!', implies that the number of unknowns is equal
to 2N. A total of 2N equations are therefore needed to close the system. Equation
1 may be used to derive two linearly independent equations at each node. This
is done as follows. Both sides of Eq. 1 are first expanded in a Taylor series. The
resulting coefficients are then matched, such that Eq. 1 maintains a certain order
of accuracy. Note that Eq. 1 has eleven coefficients, of which one is arbitrary, i.e.,
Eq. 1 may be divided through by one of the constants, without loss of generality. A
convenient choice of the normalizing constant, is either of ag or by. It will be seen
that the equation obtained by setting ay equal to 1, is linearly independent of the
equation obtained when by is set equal to 1. The two equations may therefore be
applied at each node, and the resulting system of 2N equations solved for the nodal
values of the first and second derivative.

The details of this process are discussed by Mahesh (1996) and are not repeated
here. Expressions ranging from second through eighth order may be obtained,
depending upon the choice of coefficients. The sixth order C-D scheme has the
same stencil width as the fourth order Padé scheme, while the eighth order scheme
has the same stencil width as the sixth order Padé scheme. The sixth, and eighth
order C-D schemes are summarized below. Note that the schemes are restricted to
be symmetric. The standard Padé schemes are also presented, for completeness.

T The schemes are developed on uniform meshes. It 1s assumed that computations with non-
uniform grids can define analytical mappings between the non-uniform grid and a corresponding
uniform grid. The metrics of the mapping may then be used to relate the derivatives on the

uniform grid to those on the non-uniform grid.



Finite difference schemes 299

Sizth order C-D scheme (¢ =c4 =10)

7fz 1+16f —I_?fz—l—l—l_h(fz l_filil—l):%(fi-i-l_fi—l)' (2@)

N fir — fio)) = (AL, = 8f" + filh) = 4(fi—l —2fi + fit1). (20)

Fighth order C-D scheme

7 7 — Ji—
S1fi-1 +108f; +51f’+1 +9h(fily filil—l) - %(fi—l—l — fic1) — % (3a)
138(fi1 — fi1) — h(18f/, — 108} + 18f/,,) = — %

‘|‘@(fz+l ‘I’fz 1)_70—2fl (36)

Standard fourth order Padé

fioi va4fi+fi = %(fi—i—l — fi—1). (4a)

fitg 107 + fily = %(fi—l —2fi + fit1). (40)

Standard sixth order Padé

7 i1 — fie
P4 85+ flor = o (fin — fio) + 22222 (50)

2fiL + 11 +2f, = z(fi—l_in‘l‘fi—l—l) 4h2(fz 2 —2fi + fir2).  (5D)

Fourier analysis and the concept of the ‘modified wavenumber’ shows that the
C-D schemes are noticeably more accurate than the standard Padé schemes. Ex-
pressions for the modified wavenumber are given by Mahesh (1996). The modified
wavenumbers for the first derivative are shown in Fig. 1. The C-D schemes are seen
to follow the exact solution more closely than the standard Padé schemes. Recall
that the sixth order C-D scheme has the same stencil width as the fourth order
Padé, while the eighth order C-D scheme has the same stencil width as the sixth
order Padé. In spite of its smaller stencil, the sixth order C-D scheme is seen to have
lower error than the sixth order Padé. Of the different compact schemes considered
by Lele (1992), the only scheme that outperforms the eighth order C-D scheme is
the pentadiagonal tenth order scheme (designated ‘i’ by Lele). The pentadiagonal
scheme, however, has a stencil of five points on the left hand side, and seven on the
right.
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FIGURE 1. The modified wavenumber for the first derivative. The C-D schemes
are compared to the standard Padé schemes. (Exact), =--- (C-D: eighth
order), -------- (C-D: sixth order), —-— ( Padé: sixth order), —-— (Padé: fourth
order).
N =4 N =38
Padé 4 | 451 % | 23x107" %
Padé6 | 0.97 % | 1.2x107%2 %
C-D6 0.36 % | 3.1 x107% %
C-D 8 0.06 % | 1.1 x107* %
TABLE 1. The percentage error in the first derivative, as a function of the number

of points per wave (N). The C-D schemes are compared to the standard Padé

schemes.

The modified wavenumber may be used to determine the error as a function of
the resolution. Consider the case where k = 1; i.e., we have one wave of wavelength
A = 27. The mesh spacing, h is given by h = 27 /N = A/N. kh is therefore equal to
A/N, the reciprocal of the number of points per wavelength. Table 1 documents the
percentage error in the first derivative, for resolutions of 4 and 8 points per wave.
The C-D schemes are seen to represent even four delta waves with an accuracy of
0.4% and 0.06%, respectively.

Modified wavenumbers for the second derivative are shown in Fig. 2. The C-
D schemes are seen to be noticeably more accurate at the higher wavenumbers.
Interestingly, E"*h? for the C-D schemes is greater than the exact solution for
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FIGURE 2. The modified wavenumber for the second derivative. The C-D schemes

are compared to the standard Padé schemes. (Exact), ——-- (C-D: eighth
order), ===+ (C-D: sixth order), —-— (Padé: sixth order ), —-— ( Padé: fourth
order).
N =4 N=28

Padé4 | 273 % | 1.6x107" %

Padé 6 | 0.52 % | 7.41 x107* %

C-D6 0.44 % | 6.16 x 107% %

C-D 8 0.09 % | 2.84 x107* %
TABLE 2.  The percentage error in the second derivative, as a function of the

number of points per wave (N). The C-D schemes are compared to the standard
Padé schemes.

certain wavenumbers. This is in contrast to the standard Padé schemes, whose
modified wavenumber is always less than the exact solution. Table 2 shows the
percentage error in the second derivative, as a function of the resolution. As was
observed for the first derivative, the sixth and eighth order C-D schemes represent
even four-delta waves, to an accuracy of about 0.4% and 0.1% respectively.

2.2 The boundary schemes

Consider a spatial domain that is discretized by using N points (including those
at the boundaries). Equations 2 and 3 show that the sixth order C-D scheme can be
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applied from 5 = 2 to N —1, while the eighth order scheme can be applied from j = 3
to N — 2. For problems with periodic boundary conditions, the periodicity of the
solution may be used to apply the same equations at the boundary nodes. However,
for non-periodic problems, additional expressions are needed at the boundary nodes
to close the system. These expressions are derived below.

Consider j = 1. The following general expression may be written for f{ and f{’:

1
Gof{ + Cl1f£ + h(bof{/ + by él) = E(Clﬁ + cafr +csfs 4+ cafa). (6)

The corresponding equation at j = N would be given by:

1
aof]l\f‘|‘a1f]l\7—1 _h(bOf]l\lf‘l’bl %_1) = —E(leN—l-szN—l +esfn_oteafn_s). (7)

The width of the stencil on the left hand side of the above equation is restricted
to two. This ensures that the number of bands in the left-hand side matrix is still
seven. As was done for the interior scheme, the constants in Eq. 6 may be obtained
by expanding the terms in a Taylor’s series, and matching expressions of the same
order. Recall that we need two independent equations at each node. For the interior
schemes, we saw that by was equal to 0 if ¢y was equal to 1, and vice-versa. This
yvielded the two independent equations. This relationship between a¢ and by for
the interior schemes is a natural consequence of their symmetry. However for the
boundary schemes, it turns out that setting ag to 1 does not imply that by is zero.
The equation obtained when ay = 1, is the same as that obtained when by = 1. The
following procedure is therefore used to obtain two independent equations. When
matching the terms in the Taylor table, (ag, by) is first explicitly set equal to (1,0).
This yields the first equation. Next, (ag, by) is set equal to (0,1), and the terms in
the Taylor table are matched. This yields the second equation.

Expressions of order ranging from three to five were derived, and are outlined by
Mahesh (1996). The boundary expressions were then combined with the interior
scheme, and hyperbolic stability of the complete differencing scheme was examined.
Numerical solutions of the one-dimensional wave equation, and eigenvalue analysis
were used for this purpose. The higher order boundary closures were found to
yield asymptotically unstable schemes. The following boundary closures were found
to yield stable schemes, when combined with both sixth and eight order interior
schemes. Note that the following equations are applied at j = 1. Equation 7 may
be used to obtain the corresponding expressions at j = N. Also, recall that the
sixth order interior scheme may be applied from j = 2 to N — 1, while the eighth
order interior scheme may be applied from j = 3 to N — 2. In this report, the sixth
order scheme is used at j = 2 and N — 1 if the eighth order scheme is used in the
interior. The stable boundary closures are as follows:

(3.4) boundary closure

The third order expression for the first derivative is combined with a fourth order
expression for the second derivative.

h

f{+2fé—§ é':%(fz—fl) (8a)
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1 34

—f1— %fz +10f3 — %ﬁl) (80)

?/ 1 E// _ —

(3.3) boundary closure

The third order expression for the first derivative is combined with a third order
expression for the second derivative.

h
fi+2f—-3 él:%(fZ—fl) (9a)

2

~6f+ B +5f) = 2 (Bfi — 4f2 + f3) (9%)

(3.2) boundary closure

The third order expression for the first derivative is combined with a second order
expression for the second derivative.

h
fi+2f;— =

3
5 él:ﬁ(fz—fl) (10a)

G R 2 = Y o) (100)

2.8 Cost comparison

The computational cost of the C-D schemes is compared to that of the standard
Padé schemes, in this section. The standard Padé schemes and the C-D schemes
are both of the form,

Af=Bf (11)
where f = [... fi_1, fi, fix1,...]7, and A and B are constant matrices that depend
on the scheme. For the standard Padé schemes, the vector fis of length N, and
is either equal to [... fl_1, f!, il—l—l .. .]T, or [...fI" 1, I, Z’iH .. .]T. Also, the matrix
A is tridiagonal with a band-length of N. For the C-D schemes, f is of length 2N,
and is equal to [... fi_,, fi'"\, fi, fi', figis fils - J¥. The matrix A now has seven

bands, each of length equal to 2N.

At first glance, it might appear as if the C-D schemes would be significantly
more expensive. However, this is not the case. When the cost of computing both
derivatives is estimated, the C-D schemes are seen to incur essentially the same cost
as the standard Padé schemes. This is illustrated below.

In using schemes of the form given by Eq. 11, the common practice is to perform
LU decomposition of the matrix A only once, and store the L and U matrices.
Computation of the derivatives therefore involves computing the right-hand side
(B f), followed by forward and back substitution. The operation count associated
with computing the right-hand side, and solving the resulting system of equations
is tabulated in Table 3. When the cost of computing both derivatives is estimated,
the C-D schemes are seen to involve the same number of divides, and add/subtracts
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RHS LU solve Total

Padé 4: 15¢ der. 1+14+0=2 24+2+1=5 3+3+1=7
Padé 4: 2" der. 24240=4 24241=5 44441=9
Padé 6: 15¢ der. 2+3+0=5 24241=5 44+5+1=10
Padé 6: 2" der. 4454+0=9 24241=5 64+74+1=14
Padé 4: both ders. | 3+34+0=6 4+4+2=10 T+7+2=16
Padé 6: both ders. | 64+84+0=14 4+44+2=10 104+1242=24

C-D6 3+34+0=6 | 12+44+2=18 | 154+7+2=24

C-D 8 3+7+0=10 | 12+44+2=18 | 154+ 11+2=28

TABLE 3. The operation count per node to compute the first and second derivative.
The entries are of the form, ‘number of multiplies + adds/subtracts + divides =
total’. The overall cost is obtained by multiplying the entries by the total number
of points, N.

as the standard Padé schemes with the same stencil width. The only increase in the
number of operations involves the number of multiplies: the eighth order scheme
has 1.5 times the number of multiplies as the sixth order Padé, while the sixth order
scheme has twice the number of multiplies as the fourth order Padé. A numerical
evaluation of the derivatives (Mahesh, 1996) shows this increase in the number of
multiplies is not very significant.

3. Conclusions

A new class of finite difference schemes for the first and second derivatives of
smooth functions was proposed. The schemes are Hermitian, symmetric, and solve
for the first and second derivatives simultaneously. They are two orders higher in
accuracy than the standard Padé schemes with the same stencil width, and have
noticeably better spectral representation. The computational cost of computing
both derivatives is essentially the same as the Padé schemes. The proposed schemes
are attractive alternatives to the Padé schemes, for Navier-Stokes computations.
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