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A new class of �nite di�erence schemes

By K� Mahesh

�� Motivation and objectives

Fluid �ows in the transitional and turbulent regimes possess a wide range of
length and time scales� The numerical computation of these �ows therefore re�
quires numerical methods that can accurately represent the entire� or at least a
signi�cant portion� of this range of scales� The inaccurate representation of small
scales is inherent to non�spectral schemes� This can be detrimental to computations
where the energy in the small scales is comparable to that in the larger scales� e�g�
large�eddy simulations of high Reynolds number turbulence� The inaccurate nu�
merical representation of the small scales in these large�eddy simulations can result
in the numerical error overwhelming the contribution of the subgrid�scale model
�Kravchenko � Moin ���	
�
Recently� Lele �����
 introduced a family of implicit �also called compact
 ��

nite di�erence schemes for the spatial derivatives� The implicit schemes equate
a weighted sum of the nodal derivatives to a weighted sum of the function� e�g��
f �
i���f

�

i
f �

i�� � ��fi���fi��
�h� and f ��i����f
��

i
f ��

i�� � ���fi����fifi��
�h��
Throughout this paper� fi and fk

i
denote the values of the function and its kth

derivative respectively� at the node x � xi� and h denotes the uniform mesh spac�
ing� These schemes have better small scale accuracy than explicit schemes with the
same stencil width� The most popular of the implicit schemes �also called Pad�e
schemes due to their earlier derivation from Pad�e approximants
 appear to be the
symmetric fourth and sixth order versions� There have been several recent compu�
tations of compressible �ows that have used the Pad�e schemes� The �ows computed�
include transitional boundary layers� turbulent �ows and �ow�generated noise� The
Pad�e schemes have been less popular in incompressible computations� presumably
due to the Poisson equation generating sparse matrices when there is more than
one inhomogeneous direction�
This report presents a related family of �nite di�erence schemes for the spa�

tial derivatives� The proposed schemes are more accurate than the standard Pad�e
schemes� while incurring essentially the same computational cost� The objective of
this report is to present these schemes as an attractive alternative to the standard
Pad�e schemes�
This work is discussed in detail by Mahesh ����	
� this report only summarizes

the more prominent results�

�� Accomplishments

For the same stencil width� the standard Pad�e schemes are two orders higher in
accuracy and have better spectral representation than the corresponding symmet�
ric� explicit schemes� For example� f �

i��  �f �
i
 f �

i�� � ��fi�� � fi��
�h is fourth
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order accurate� while f �
i
� �fi�� � fi��
��h is only second order accurate� The

implicit relation between the derivatives in the Pad�e schemes yields additional de�
grees of freedom that allow higher accuracy to be achieved� It is therefore to be
expected� that including the second derivatives in the implicit expression would fur�
ther increase the degrees of freedom� and thereby the accuracy that can be obtained�
Additional motivation to solve for the �rst and second derivatives simultaneously�
is provided by the Navier�Stokes equations requiring both derivatives of most vari�

ables� This suggests a numerical scheme of the formy �
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Hermitian expressions involving functions and their �rst� and higher derivatives
have been suggested in the literature �see Mahesh� ���	 for references
� However�
the development was not completed to a point where the resulting schemes could
be used for solving partial di�erential equations� The objective of this paper is to
develop this family of schemes� and assess their potential for computations of the
Navier�Stokes equations� The schemes will be referred to as the �coupled�derivative��
or �C�D� schemes to distinguish them from the standard Pad�e schemes�

��� The interior scheme

Simultaneous solving for f �
i
and f ��

i
� implies that the number of unknowns is equal

to �N � A total of �N equations are therefore needed to close the system� Equation
� may be used to derive two linearly independent equations at each node� This
is done as follows� Both sides of Eq� � are �rst expanded in a Taylor series� The
resulting coe�cients are then matched� such that Eq� � maintains a certain order
of accuracy� Note that Eq� � has eleven coe�cients� of which one is arbitrary� i�e��
Eq� � may be divided through by one of the constants� without loss of generality� A
convenient choice of the normalizing constant� is either of a� or b�� It will be seen
that the equation obtained by setting a� equal to �� is linearly independent of the
equation obtained when b� is set equal to �� The two equations may therefore be
applied at each node� and the resulting system of �N equations solved for the nodal
values of the �rst and second derivative�
The details of this process are discussed by Mahesh ����	
 and are not repeated

here� Expressions ranging from second through eighth order may be obtained�
depending upon the choice of coe�cients� The sixth order C�D scheme has the
same stencil width as the fourth order Pad�e scheme� while the eighth order scheme
has the same stencil width as the sixth order Pad�e scheme� The sixth� and eighth
order C�D schemes are summarized below� Note that the schemes are restricted to
be symmetric� The standard Pad�e schemes are also presented� for completeness�

y The schemes are developed on uniform meshes� It is assumed that computations with non�

uniform grids can de�ne analytical mappings between the non�uniform grid and a corresponding

uniform grid� The metrics of the mapping may then be used to relate the derivatives on the

uniform grid to those on the non�uniform grid�
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Eighth order C�D scheme
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Standard fourth order Pad�e
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Standard sixth order Pad�e
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Fourier analysis and the concept of the �modi�ed wavenumber� shows that the
C�D schemes are noticeably more accurate than the standard Pad�e schemes� Ex�
pressions for the modi�ed wavenumber are given by Mahesh ����	
� The modi�ed
wavenumbers for the �rst derivative are shown in Fig� �� The C�D schemes are seen
to follow the exact solution more closely than the standard Pad�e schemes� Recall
that the sixth order C�D scheme has the same stencil width as the fourth order
Pad�e� while the eighth order C�D scheme has the same stencil width as the sixth
order Pad�e� In spite of its smaller stencil� the sixth order C�D scheme is seen to have
lower error than the sixth order Pad�e� Of the di�erent compact schemes considered
by Lele �����
� the only scheme that outperforms the eighth order C�D scheme is
the pentadiagonal tenth order scheme �designated �i� by Lele
� The pentadiagonal
scheme� however� has a stencil of �ve points on the left hand side� and seven on the
right�
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Figure �� The modi�ed wavenumber for the �rst derivative� The C�D schemes
are compared to the standard Pad�e schemes� �Exact
� �C�D� eighth
order
� �C�D� sixth order
� � Pad�e� sixth order
� �Pad�e� fourth
order
�

N � � N � �

Pad�e � ���� � ���� ���� �

Pad�e 	 ���� � ���� ���� �

C�D 	 ���	 � ���� ���� �

C�D � ���	 � ���� ���� �

Table �� The percentage error in the �rst derivative� as a function of the number
of points per wave �N
� The C�D schemes are compared to the standard Pad�e
schemes�

The modi�ed wavenumber may be used to determine the error as a function of
the resolution� Consider the case where k � �� i�e�� we have one wave of wavelength
� � ��� The mesh spacing� h is given by h � ���N � ��N � kh is therefore equal to
��N � the reciprocal of the number of points per wavelength� Table � documents the
percentage error in the �rst derivative� for resolutions of � and � points per wave�
The C�D schemes are seen to represent even four delta waves with an accuracy of
���� and ���	�� respectively�
Modi�ed wavenumbers for the second derivative are shown in Fig� �� The C�

D schemes are seen to be noticeably more accurate at the higher wavenumbers�
Interestingly� k���h� for the C�D schemes is greater than the exact solution for
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Figure �� The modi�ed wavenumber for the second derivative� The C�D schemes
are compared to the standard Pad�e schemes� �Exact
� �C�D� eighth
order
� �C�D� sixth order
� �Pad�e� sixth order 
� � Pad�e� fourth
order
�

N � � N � �

Pad�e � ���� � ��	� ���� �

Pad�e 	 ���� � ����� ���� �

C�D 	 ���� � 	��	� ���� �

C�D � ���� � ����� ���� �

Table �� The percentage error in the second derivative� as a function of the
number of points per wave �N
� The C�D schemes are compared to the standard
Pad�e schemes�

certain wavenumbers� This is in contrast to the standard Pad�e schemes� whose
modi�ed wavenumber is always less than the exact solution� Table � shows the
percentage error in the second derivative� as a function of the resolution� As was
observed for the �rst derivative� the sixth and eighth order C�D schemes represent
even four�delta waves� to an accuracy of about ���� and ���� respectively�

��� The boundary schemes

Consider a spatial domain that is discretized by using N points �including those
at the boundaries
� Equations � and � show that the sixth order C�D scheme can be
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applied from j � � toN��� while the eighth order scheme can be applied from j � �
to N � �� For problems with periodic boundary conditions� the periodicity of the
solution may be used to apply the same equations at the boundary nodes� However�
for non�periodic problems� additional expressions are needed at the boundary nodes
to close the system� These expressions are derived below�
Consider j � �� The following general expression may be written for f �� and f ��� �

a�f
�
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�

�  h�b�f
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The corresponding equation at j � N would be given by�

a�f
�

N a�f
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N b�f
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h
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The width of the stencil on the left hand side of the above equation is restricted
to two� This ensures that the number of bands in the left�hand side matrix is still
seven� As was done for the interior scheme� the constants in Eq� 	 may be obtained
by expanding the terms in a Taylor�s series� and matching expressions of the same
order� Recall that we need two independent equations at each node� For the interior
schemes� we saw that b� was equal to � if a� was equal to �� and vice�versa� This
yielded the two independent equations� This relationship between a� and b� for
the interior schemes is a natural consequence of their symmetry� However for the
boundary schemes� it turns out that setting a� to � does not imply that b� is zero�
The equation obtained when a� � �� is the same as that obtained when b� � �� The
following procedure is therefore used to obtain two independent equations� When
matching the terms in the Taylor table� �a�� b�
 is �rst explicitly set equal to ��� �
�
This yields the �rst equation� Next� �a�� b�
 is set equal to ��� �
� and the terms in
the Taylor table are matched� This yields the second equation�
Expressions of order ranging from three to �ve were derived� and are outlined by

Mahesh ����	
� The boundary expressions were then combined with the interior
scheme� and hyperbolic stability of the complete di�erencing scheme was examined�
Numerical solutions of the one�dimensional wave equation� and eigenvalue analysis
were used for this purpose� The higher order boundary closures were found to
yield asymptotically unstable schemes� The following boundary closures were found
to yield stable schemes� when combined with both sixth and eight order interior
schemes� Note that the following equations are applied at j � �� Equation � may
be used to obtain the corresponding expressions at j � N � Also� recall that the
sixth order interior scheme may be applied from j � � to N � �� while the eighth
order interior scheme may be applied from j � � to N � �� In this report� the sixth
order scheme is used at j � � and N � � if the eighth order scheme is used in the
interior� The stable boundary closures are as follows�

��� �
 boundary closure

The third order expression for the �rst derivative is combined with a fourth order
expression for the second derivative�

f ��  �f �� �
h
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��� �
 boundary closure

The third order expression for the �rst derivative is combined with a third order
expression for the second derivative�
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��� �
 boundary closure

The third order expression for the �rst derivative is combined with a second order
expression for the second derivative�
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��� Cost comparison

The computational cost of the C�D schemes is compared to that of the standard
Pad�e schemes� in this section� The standard Pad�e schemes and the C�D schemes
are both of the form�

A ef � B f ���


where f � �� � � fi��� fi� fi��� � � ��T � and A and B are constant matrices that depend

on the scheme� For the standard Pad�e schemes� the vector ef is of length N � and
is either equal to �� � � f �

i��� f
�

i
� f �

i�� � � ��
T � or �� � � f ��

i��� f
��

i
� f ��

i�� � � ��
T � Also� the matrix

A is tridiagonal with a band�length of N � For the C�D schemes� ef is of length �N �
and is equal to �� � � f �

i��� f
��

i��� f
�

i
� f ��

i
� f �

i��� f
��

i��� � � ��
T � The matrix A now has seven

bands� each of length equal to �N �
At �rst glance� it might appear as if the C�D schemes would be signi�cantly

more expensive� However� this is not the case� When the cost of computing both
derivatives is estimated� the C�D schemes are seen to incur essentially the same cost
as the standard Pad�e schemes� This is illustrated below�
In using schemes of the form given by Eq� ��� the common practice is to perform

LU decomposition of the matrix A only once� and store the L and U matrices�
Computation of the derivatives therefore involves computing the right�hand side
�B f
� followed by forward and back substitution� The operation count associated
with computing the right�hand side� and solving the resulting system of equations
is tabulated in Table �� When the cost of computing both derivatives is estimated�
the C�D schemes are seen to involve the same number of divides� and add�subtracts
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RHS LU solve Total

Pad�e �� �st der� �  �  � � � �  �  � � � �  �  � � �

Pad�e �� �nd der� �  �  � � � �  �  � � � �  �  � � �

Pad�e 	� �st der� �  �  � � � �  �  � � � �  �  � � ��

Pad�e 	� �nd der� �  �  � � � �  �  � � � 	  �  � � ��

Pad�e �� both ders� �  �  � � 	 �  �  � � �� �  �  � � �	

Pad�e 	� both ders� 	  �  � � �� �  �  � � �� ��  ��  � � ��

C�D 	 �  �  � � 	 ��  �  � � �� ��  �  � � ��

C�D � �  �  � � �� ��  �  � � �� ��  ��  � � ��

Table �� The operation count per node to compute the �rst and second derivative�
The entries are of the form� �number of multiplies  adds�subtracts  divides �
total�� The overall cost is obtained by multiplying the entries by the total number
of points� N �

as the standard Pad�e schemes with the same stencil width� The only increase in the
number of operations involves the number of multiplies� the eighth order scheme
has ��� times the number of multiplies as the sixth order Pad�e� while the sixth order
scheme has twice the number of multiplies as the fourth order Pad�e� A numerical
evaluation of the derivatives �Mahesh� ���	
 shows this increase in the number of
multiplies is not very signi�cant�

�� Conclusions

A new class of �nite di�erence schemes for the �rst and second derivatives of
smooth functions was proposed� The schemes are Hermitian� symmetric� and solve
for the �rst and second derivatives simultaneously� They are two orders higher in
accuracy than the standard Pad�e schemes with the same stencil width� and have
noticeably better spectral representation� The computational cost of computing
both derivatives is essentially the same as the Pad�e schemes� The proposed schemes
are attractive alternatives to the Pad�e schemes� for Navier�Stokes computations�
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