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Lewis number effects on partially premixed flames
By G. R. Ruetsch AND J. Ferziger

1. Motivation and objectives

Combustion is generally categorized as either premixed, where flames propagate
into homogeneous mixtures of reactants, or as nonpremixed, where initially sep-
arated reactants diffuse into the reaction zones. Although these approaches are
applicable to many combustion devices, there are cases not in either of these two
limiting regimes. Under such circumstances, one must consider partially premixed
combustion.

In partially premixed combustion, mechanisms from both premixed and non-
premixed regimes coexist and, as a result, some interesting phenomena arise. One
such phenomenon is flame stabilization in laminar mixing layers by triple flames.
These flames were first observed by Phillips (1965) in a methane mixing layer. Ad-
ditional studies of triple flames are contained in Kioni et al. (1993), Dold (1989),
Dold et al. (1991), Hartley and Dold 1991, Miiller et al. (1994), and Ruetsch et
al. (1995).

Triple flames may be thought of as an approach to partially premixed combustion
from the nonpremixed limit. We can also approach the regime of partially premixed
combustion from the premixed limit, where we consider inhomogeneously premixed
flames. This regime has been addressed in Ruetsch and Broadwell (1995), where
premixed flames were subjected to weak perturbations in mixture fraction.

One interesting feature of both triple and inhomogeneously premixed flames is
the high curvature they possess. It is important to distinguish this type of curvature
from that which arises from velocity fluctuations in the premixed case. Curvature of
a flame due to velocity fluctuations is limited by various mechanisms which damp
small wavenumber disturbances. In the partially premixed case, however, flame
curvature is a consequence of the mixture fraction gradient which can be arbitrarily
large. Aside from these geometrical aspects, this curvature plays a significant role
in flame propagation. As an example, triple flames have propagation speeds that
exceed the premixed flame speed by a factor of the square root of the density
ratio. When the flames are confined laterally, as in the case of the inhomogeneously
premixed flames, this mechanism for enhanced propagation speed due to heat release
effects is greatly inhibited.

Another aspect of flame speed dependence on curvature is through the Lewis
number, the ratio of thermal to mass diffusivities. This dependence of flame speed
on the Lewis number relates to the thermal-diffusive instability, which has been ex-
tensively studied in the premixed case. Partially premixed combustion differs from
the premixed case since the curvature in partially premixed cases can become very
large and can be maintained by fixing the gradients in the approaching reactant
field. This suggests that the partially premixed case provides a unique opportunity
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to study Lewis number effects on flame speed. To this date, the topic of partially
premixed combustion coupled with nonunity Lewis numbers has not been investi-
gated. The present study addresses this issue.

We begin by reviewing the thermal-diffusive instability in premixed combustion
and then discuss the configuration for studying similar behavior in the partially
premixed case. This is followed by results of the numerical solutions and then by
a set of model equations developed to evaluate and analyze the processes occurring
in the simulations.

1.1 Thermal-diffusive instability

The thermal-diffusive instability is well documented for premixed flames (Williams
1986). Although we are considering partially premixed combustion, we expect and
observe similarities with the premixed case. This thermal-diffusive mechanism relies
on the strong influence of the temperature in the burnt gases on the reaction rate,
and hence burning velocity. In turn, the temperature in the burnt gases increases
with enhanced diffusion of reactant species into the flame and reduced diffusion of
heat into the approaching flow. These diffusion rates are affected by the gradients
in the species and temperature fields and by the values of the mass and thermal dif-
fusivities. The ratio of the mass and thermal diffusivities is the Lewis number; the
gradients in the profiles are modified by the differential diffusion of thermal energy
and species. As a planar flame is perturbed slightly, the gradients of the reactant
and temperature fields steepen or broaden. For unity Lewis number, the changes in
mass and heat diffusion offset one another and the temperature in the burnt gases
remains unchanged, as does the burning velocity. For Lewis numbers larger than
unity, where the thermal diffusivity exceeds the mass diffusivity, the heat transfer
out of the flame is dominant in the forward sections of the flame where the gra-
dients are steeper. Likewise, the mass diffusion into the flame is dominant in the
trough. This results in a stabilizing effect due to the temperature and burning ve-
locity decreasing in the forward sections of the flame and increasing in the troughs.
The opposite is true for Lewis numbers less than unity, where the flame becomes
unstable to small perturbations.

1.2 Numerical simulation and flow configuration

We use direct numerical simulations to solve the fully compressible Navier-Stokes
equations. The simulation uses a two-dimensional version of the code developed by
Trouvé (1991). This code uses the high-order compact finite difference scheme of
Lele (1992) for spatial differentiation, the third order Runge-Kutta scheme of Wray
for time advancement, and the Navier-Stokes characteristic boundary conditions of
Poinsot and Lele (1992). Below we summarize some of the important features and
assumptions of the code relevant to this work; for further details on the numerical
method readers are referred to Lele (1992) and Poinsot and Lele (1992).

The chemical scheme we consider is represented by a one-step global reaction
between a fuel and oxidizer:

F+0—P
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where we have assumed unity stoichiometric coefficients for simplicity. The reaction
rate follows the Arrhenius form:

T(ZC
w = KpYrpYoexp (— T )

where p is the density, T, is the activation temperature, K is the pre-exponential
factor, and Yp and Yo are the fuel and oxidizer mass fractions. Following Williams
(1986), we write this reaction rate as

w = ApYppYo exp (— pa —6) )

1—a(l-26)

where the reduced pre-exponential factor (A), heat release parameter («), Zel’dovich
number (), and reduced temperature (6) are defined by:

Ty Ty

Ty ,_ T-Ty
Ty

T, ' 7 Ty —T,

A=Kexp(—f/a); « =

with Ty being the adiabatic flame temperature and Tj taken in the ambient flow. In
this study we hold the Zel’dovich number constant at § = 8 and use a heat release
parameter of o = 0.75.

The transport coefficients in the simulations are temperature dependent. This
temperature dependence is expressed through the molecular viscosity, p, given by:

= po {7

with a = 0.76. The temperature dependence of the thermal conductivity, A, and
the mass diffusivities, Dy, is obtained by requiring the Lewis, Prandtl, and Schmidt
numbers to be constant:
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where k = F, O refers to the fuel or oxidizer species. Although we are concerned
with variations in the Lewis number, we do not want to consider differential diffu-
sion in this study. Therefore, we allow the Lewis number to vary from simulation to
simulation, but require that all species have equal Lewis numbers. We modify the
Lewis number by changing the mass diffusivity, or Schmidt number, while main-
taining a constant thermal diffusivity in the cold gases. We also maintain constant
planar premixed laminar flame speed by modifying the pre-exponential factor A.
We solve the compressible Navier-Stokes equations in the two-dimensional domain
depicted in Fig. 1. At the boundaries in the horizontal direction we use an inflow
boundary condition on the left and nearly-perfect reflective boundary conditions,
required to avoid pressure drift, at the outflow. In the lateral direction, we use
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FiGure 1. Computational domain used in the simulations. The left boundary is
the inlet where the flow is uniform and the mixture fraction variation is given on the
left. The lateral boundaries are periodic and represent the effects of confinement
on the flame. The streamlines and reaction rate are shown within the domain. The
inlet velocity, although always uniform, is adjusted to stabilize the flame within the
domain.

periodic boundary conditions. This is in contrast to previous work on triple flames,
which used nonreflecting boundary conditions in the lateral direction.

Within this domain we initialize the flow as a planar premixed flame, in which
the mixture fraction, defined as

7 1+Yr Yo 7
2
is everywhere equal to its stoichiometric value, Zgpr = 0.5. The incoming flow is
uniform and set equal to the premixed laminar flame speed, S9. Also associated
with the flame is the premixed flame thickness, &9 .
After the flow and flame are initialized, a sinusoidal perturbation is added to the
uniform stoichiometric mixture fraction, specified by:

AZ
7 =Zsr + - cos(2my/Laz)

where Ly is the height of the domain in Fig. 1. In all cases, we maintain stoi-
chiometric conditions on average. It should be noted that we are not dealing with
a stability problem, in which a small perturbation is either damped or amplified.
Rather, we introduce a finite disturbance in one field which produces finite changes
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FIGURE 2. Streamline patterns for unconfined (left) and confined (right) flames.
A redirection of the velocity vectors is observed across the flame front due to heat
release effects. This redirection occurs upstream of the flame in the unconfined case,
causing a divergence of the streamlines thus decelerating the horizontal velocity
before the flame. As a result the propagation or upstream speed increases in order
to maintain the premixed flames speed locally. In the confined case, the redirection
of velocity vectors occurs both in front of and behind the flame. The increase in
flame speed is much smaller in the confined cases and may be negligible for small
wavelengths of lateral perturbations.

in the other fields. As this perturbation reaches the flame, the flame shape and
propagation speed change, so the inlet velocity must be adjusted in order to achieve
a steady-state solution. Because the variation in mixture fraction at the inlet has
two stoichiometric points, two leading-edge flames occur. The range of mixture
fraction is small enough, with AZ = 0.2, that the diffusion flame is weak and is not
apparent in the figure. In addition to the reaction rate, streamlines are also shown
in the figure. Although we do observe streamline divergence in front of the flame,
the propagation speed of the flame in Fig. 1, where Le = 1, remains equal to the
planar premixed flame speed, S9.

The use of periodic or confined rather than free lateral boundaries greatly affects
the flame’s propagation. For unconfined unity Lewis number flames, it has been
shown that the ratio of the propagation speed relative to the plane laminar premixed
flame varies with the square root of the density ratio across the flame. Depending
on the wavelength of the mixture fraction perturbation in the confined case, this
effect may be absent. A schematic representation of why this occurs presented in
Fig. 2. In both cases, there is a redirection of velocity vectors across the flame front
resulting from heat release effects. However, in the unconfined case this redirection
occurs in front of the flame resulting in a strong divergence of streamlines in the
unburnt region of the flow field. This divergence in streamlines results in a decrease
in horizontal velocity prior to the flame. As a result, in order for the local flame
speed to maintain a velocity equal to the premixed flame speed, the upstream or
propagation speed must increase. In the confined case, the redirection of velocity
vectors across the flame occurs both in front of and behind the flame, hence the
increase in propagation speed is smaller than that of the unconfined case.
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FIGURE 3. Reaction rate and streamlines for different Lewis number cases: Le =
1.2 top left, Le = 1.0 top right, Le = 0.8 center left, Le = 0.6 center right, and
Le = 0.4 bottom. Flame surface area increases as the Lewis number becomes
smaller. For the Le = 0.4 case, the flame trough opens due to leakage of reactants,
similar to the case of a Bunsen flame.

2. Accomplishments

In this section we present results from simulations of nonunity Lewis number
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FIGURE 4. Flame speed as a function of Lewis number (left) and inverse Lewis
number (right) Due to the strong confinement effects, the flame speed of the unity
Lewis number case is that of the premixed flame speed. The flame speed increases
with decreasing Lewis number, consistent with the thermal diffusive mechanism.
Flame speeds are normalized by the planar premixed flame speed at stoichiometric
conditions for the various Lewis numbers.

flames, followed by a discussion of a set of model equations used to analyze the
flame’s behavior. We start by discussing how the thermal-diffusive instability, in
the context of partially premixed flames, modifies the flame shape.

The thermal-diffusive instability has been discussed thus far in terms of pre-
mixed flames. We now apply these concepts to our partially premixed case. The
fundamental ideas mentioned above hold for the partially premixed case. In par-
tially premixed combustion, however, the reaction rate is not constant along the
flame front as in the premixed case. It is this gradient in reaction rate along the
flame front that creates the perturbation in flame shape: the sections of the flame
with mixture fractions closest to stoichiometry burn the fastest. Thus, to some de-
gree the flame shape is determined by the approaching mixture fraction field. The
thermal-diffusive mechanism then modifies this basic shape.

The modification of the basic flame shape due to the thermal diffusive mechanism
is apparent from the flames in Fig. 3, where the reaction rate and streamlines are
displayed for flames with Lewis numbers ranging from 0.4 to 1.2. Consistent with
the thermal-diffusive mechanism, we observe that as the Lewis number decreases,
the surface area of the flame increases. We should emphasize that the flame shapes
in Fig. 3 are converged steady-state solutions. Although the thermal-diffusive in-
stability accentuates the perturbation due to the variable mixture fraction field for
Lewis numbers less than unity, the flame does reach a steady condition as nonlinear
effects come into play (Williams 1996).

In addition to the modification of flame shape with Lewis number, we also ob-
serve an increase in flame speed, as shown in Fig. 4. The flame speed increases
dramatically when the Lewis number drops below unity. We observe a flame speed
more than twice the planar flame speed for Le = 0.4, which is larger than any flame
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FIGURE 5. Flame surface (bold line), determined by maximum reaction rate on
horizontal lines through the flame, and isocontours (thin line) of 7' and ¢ for Le = 0.4
flames. Isovalues are T and ¢ are chosen from the values along the flame surface at
the leading edge (LE) and trough (TR). Although both fields have isocontours that
track the flame surface reasonable well, the variable ¢ is more reliable and is used
as the progress variable.

speed observed in the unconfined configuration for Le = 1 flames (Ruetsch et al.
1995). One must also keep in mind that the mixture fraction range is 0.4 < Z < 0.6
at the inlet and decreases before the mixture reaches the flame. Since the uncon-
fined case has a much larger range in mixture fraction, 0 < Z < 1, but produces a
smaller increase in flame speed, it is evident that the Lewis number plays a strong
role in the propagation characteristics of partially premixed flames. Also depicted
in Fig. 4, we observe a good linear correlation of flame speed with the inverse of the
Lewis number.

2.1 Progress variable

A necessary ingredient for further analysis of flame behavior is a definition of
a progress variable which indicates the mixture’s degree of reactedness. Together
with the mixture fraction, the progress variable replaces the fuel and oxidizer mass
fractions as independent variables. In premixed combustion, the progress variable
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FIGURE 6. Flame surface (bold line) and various isovalue contours of the progress
variable ¢. Before the premixed portion of the flame, the curvature of ¢ and the
flame surface are comparable. After the premixed flame, the radii of curvature of
the ¢ contours more closely resemble the thickness of the trailing diffusion flame.

can either be the reactant species mass fraction or the temperature. In partially
premixed combustion, the issue is more complicated. We would like an isopleth
of the progress variable to coincide with the flame surface. In partially premixed
combustion, we define the flame surface as the curve connecting the horizontal
extrema of the reaction rate. This curve is plotted in Fig. 5 for the Le = 0.4 flame
along with temperature contours and the variable ¢ given by:

c=1-Yr —Y0o,

which is also the product mass fraction. The values of T and ¢ used to obtain the
isocontours are chosen to coincide with the flame surface at both the leading edge
and trough.

From Fig. 5 we see that both quantities track the flame surface reasonably well.
However, ¢ follows the contour more closely, especially in the trough. We should
point out that ¢ reaches a value of unity only when neither fuel nor oxidizer are
present. Therefore, in regions not at stoichiometric conditions, it is possible to burn
one reactant completely and not have ¢ = 1. In this respect, ¢ does not have the
traditional property of being unity when no further burning is possible. In spite of
this shortcoming, we choose ¢ as our progress variable for its ability to track the
flame front and its linear dependence on the mass fractions of the reactant species.

The characteristics of ¢ change considerably as we cross the flame surface, as indi-
cated in Fig. 6. Prior to reaching the flame, the radius of curvature of ¢ isocontours
scale with the lateral thickness, La 7. After passing through the flame surface, the
radius of curvature scales with the thickness of the trailing diffusion flame. This
has a large effect on the flame stretch, K, defined as

IC:VT-U—I—SL(Z)KL
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FiGure 7. Control volumes for the one dimensional equation formulation. The
control volume is bounded laterally by streamlines and by isotherms in the flow
direction. The areas Ap and Ay are used to define leakage of heat and species
through the streamtube.

where V7 is the tangential gradient operator and x = V¢ - np is the curvature.
Profiles of flame stretch through the flame surface indicate that stretch is dominated
by curvature effects as expected and that no reasonable value can be assigned to
the stretch as the change in the curvature through the flame is quite dramatic.

The inability to define a single value for curvature and thus flame stretch does not
invalidate the use of ¢ as a progress variable. One must remember that the concept
of a progress variable strictly applies only to a premixed combustion. The fact that
this quantity behaves differently in a region undergoing nonpremixed combustion
does not invalidate its usefulness.

Because of the inability to define flame stretch accurately, the analysis of these
partially premixed flames must proceed along an alternative path, which we discuss
in the next section.

2.2 Model equations for partially premized combustion

We now discuss a set of one-dimensional equations for analyzing the behavior of
curved partially premixed flames. This method is based on the work of Echekki
(1992) and Echekki (1996) for premixed combustion, which was used in analysis
of the laminar flame tip by Poinsot et al. (1992). This approach reduces the
Navier-Stokes equations to a set of one-dimensional equations while maintaining
aspects of the flame’s multidimensional nature through terms representing various
isopleth curvatures. This approach differs from conventional models that handle
the geometrical aspects exactly, while the physical processes are approximated.
In our case, the terms representing the physical processes remain intact, and the
geometrical aspects are approximated.

We begin by examining the control volume of Fig. 7, which is bounded laterally
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FIGURE 8.  Fuel mass fraction (left), oxidizer mass fraction (center), and tem-
perature (right) contour plots for Le = 1 case. For this partially premixed case,
the need to account for a difference between the normals of the individual species
and temperature fields is evident. The differences become stronger as one considers
nonunity Lewis numbers and larger perturbations to the mixture fraction.

by streamlines and by isotherms in the streamwise direction. We define normals
pointing in the flow direction for the temperature and various scalar fields as:

VT . VYp VYo Ve
|vTY) IVYp|’

nr Ny, =
The distance between the two isotherms along the normal nr is 6. We use the area
of the first isotherm A as the base area, and define three surfaces along the second
isotherm: the streamtube area, Ag; the area between the intersection of the two
isotherm normals emanating from the boundaries of A with the second isotherm
surface, Ar; and the area between the intersection of the two isoscalar normals,
ny,, emanating from the boundaries of A with the second isotherm surface, Ay.
These latter two areas are used to account for the cross-stream diffusion of species
and heat. The distance along ny, between the two isotherm surfaces is given by:
ox
(Sxynyi = ———Ny;.
nyi N7

This control volume differs from the one used by Echekki (1992) in that the
normals to the isotherms and isopleths are not colinear. This is a necessity for
partially premixed combustion, as demonstrated in Fig. 8, where contours of the fuel
and oxidizer mass fractions, along with the temperature, are shown. It is desirable
to use the progress variable ¢ in place of the individual reactant species, and a
transport equation for ¢ is developed later in this paper. It suffices to mention here
that n, and np are not necessarily colinear, even for unity Lewis number. Figure 9
shows this clearly; n. - ny deviates from unity in the flame trough.

2.2.1 Area relations

In this section we develop relations between the reference areas A and Ag, used
in defining our control volume, and the auxiliary areas A7 and Ay;, used in our
analysis to account for cross-stream diffusion. A useful relation in obtaining such
relations is the identity from Chung and Law (1988) in their integral analysis of
stretched premixed flames:

A2 :A1(1—|—VT3_)
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FIGURE 9. Alignment of progress variable and temperature normals for Le = 0.4
case. The reaction rate is shown in grey, and the dark contours show levels of
1—n.-np, thus departures from alignment. The greatest departure from alignment
occurs in the trailing diffusion flame, but there are regions near the flame trough
where the alignment of n. and ny is not preserved.

where a is any vector from a point on A4; to A, and the gradient operator Vo
represents the divergence on the plane tangent to Aj:

Vr-a=V-a—nrnr:Va
According to this relation we have:

AT:A[l—I—(vaT-nT],
Ay, :A[1—|—6:1;VT- (“7‘”)]
ny, - Nt

and we express the streamtube area as
As = A+ 6A.

The term V- -nr is the curvature of the isotherm. The similar term in the equation
for Ay, reduces to the isotherm curvature only if ny = ny;, in which case A7 = Ay,.
We also define the differences between these areas as

(SATS = AT — AS = A(SJ}VT Ny — 0A
and

§Ayv.s = Ay — Ag = AbaVr - (“7‘”) Y
ny, - N



Lewns number effects on flames 79

L eakage through
side boundaries
\\
At
A
— ——streamline
7

isotherm

FIGURE 10. Lateral diffusion of heat through the streamtube. This leakage can be
accounted for by measuring the flux through the expanded area in the downstream
isotherm. (This diagram demonstrates the method used to account for thermal
leakage, but the same concept applies to mass leakage through the streamtube.)

where in the limit of small éx we obtain:

dArs dA
dv AV o = dx
and dA dA
dvis _ yg, (M) 44
dz ny, - Nt dz

These relations provide a crucial link between the basic governing equations and
our model equations. Since we are developing a set of one-dimensional equations,
we need to include information regarding the other spatial dimensions. It is the
behavior of the normal terms in these area relations that provide the multidimen-
sional information required for adequate representation of the geometrical aspects
of the problem.

2.2.2 Governing equations

With the area relations defined, we now consider conservation laws applied to the
control volume. Since our control volume is bounded by streamlines, continuity is
simply:

6[m] =0

where m is the mass flow rate in the streamtube. The difference between values at
the outlet and inlet isotherms is denoted as 6[] = []s462 —[]z. The species equation
1s:

(5[mYZ + MZ] + fi(SAYiS = dJYi(Sl‘A
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where M; = —pAD;dY;/dx, F; = —pD;dY;/dz, and wy, are the diffusive flow rate,
diffusive flux, and rate of production of species :. The term F;0Ay,s represents
the leakage of species ¢ across the streamtube, which is equivalent to the heat that
crosses the area 0 Ay, s as indicated in Fig. 10. In the limit of small 6z this becomes:

4y, dM, . dA .
Mi vy () A e s
dx dx ny, - nr dx ‘

or by substituting for M; and F;:

dy; d dy; ny, dA] dY; .
AD, Dy AV () 42 — oy A (1
e T dx (’0 dx ) P [ vr (nyi-nT> d:z;] de Y (1)

The first and second terms in this equation represent the convection and diffu-
sion processes across the isotherms. The term in square brackets, representing the
leakage of reactants across the streamtube, contains information about the multi-
dimensional nature of the flame.

Equation (1) can be used for each species so that, although this study uses a sim-
ple chemical scheme, the method can be applied to complex reaction mechanisms.
In our case, we are more interested in the progress variable ¢ and the mixture frac-
tion Z than the mass fractions. We can obtain these equations by combining the
equations for the individual species and substituting for e:

dc d dc dA dc
i de ('OADd ) TP
dY dY,
—I—,ODA[VT-< ny, > F-I-VT-< ny, > O]:dch
Ny, - Nt dz ny, - nr dz
where w, = —(Wwy, + Wy, ). To eliminate Y7 and Yo from the equations, we use the

relations .

&
Ye=Z—2 Yo=1—-2--<
F 2; O 2

and obtain:

dc d de dA de dz ny, ny,
— — — [ pAD— D |— A— r &
d:z; dx (,0 d:z;) te [d:z; dx + dx V- (nyF ‘N7 Ny, -nT>

d
RS Y . R = 0. A
2 dx ny, -ny Ny, -nr

(2)

In a similar fashion, we can develop an equation for Z:

dz d dz 1 dA dZ dz
m— — — | pAD— | + pD 2— + A—Vr- nYr + Yo
dz dz dl‘ dz Ny, - Nt ny, - nr

_lAﬁvT.< Wy MY >]:0

Ny -0 ny, -nr

(3)
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FiGUurE 11. Alignment of progress variable and mixture fraction. Progress variable
¢ (dark lines) and mixture fraction Z (grey scale) isopleths are shown for the Le =
0.4 case. Along the line through the leading edge n. and nyz are orthogonal; however,
this is not the case as one moves from this line of symmetry.

Equation (2) clearly shows the effect of partial premixing on the evolution of
the progress variable. To contrast Eq. (2) with the premixed case, we can write
the evolution equation for ¢ in premixed combustion for which ny, = ny, = nr,
giving:

dc d de de |dA
— — — | pAD D — — AV = w:A, 4
" 0 dx<'0 d>+pd[ T“T] < (4)

dz
which is identical to the species equation of Echekki (1992). Equation (2) shows an
explicit dependence on mixture fraction through the dZ/dxz term, which modifies
the equation when the isopleths of the fuel and oxidizer differ.
We have eliminated Yr and Yo in Egs. (2) and (3), except for their implicit
occurrence in the normal vectors. We can replace these by forming the normal
vectors from our transformation equations:

sVe-VZ iVe+VZ

2 - 7 -2 - = 5
Ne—vz] 0T [ive+ vz (5)

HYF

Substitution of these quantities into Eqs. (2) and (3), in general, leads to compli-
cated expressions but there are cases where simplifying assumptions can be made.
These cases occur when the gradients of the progress variable and mixture fraction
are either colinear or orthogonal.

In general, as demonstrated by Fig. 11, we cannot make assumptions about the
alignment of n, and ny. However, along the line through the leading edge we find
that n.-nz = 0. It is not sufficient that these normal vectors are orthogonal along
this line of symmetry. Due to the V1 operator, we must also require that these
normal vectors remain orthogonal as we move laterally. In cases where a substantial
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region with n.-nyz ~ 0 exists, the expressions in Eq. (5) simplify greatly. When n,
and np are collinear and ny and np are orthogonal, we can write:

ny,  3Ve—=VZ ny, iVe+VZ

= ; =
ny, - nr %vc -nr ny, -nr %Vc - nr

Furthermore, along the leading edge streamtube Z = 0.5, thus dZ/dx = 0, which
upon substitution in the conservation equation for ¢ once again recovers the equation
obtained for a premixed flame, which can be written as:

m@ —A [i (pD§> + pD@VT . nc] = w.A. (6)
dz dz

We can determine the local streamwise velocity by manipulation of Eq. 6 to obtain:

m d de We
~ 2 _p| L (e e
" pA [d:z; . (,0 d:z;) et dec/d:z;}

where kK = V7 - nr 1s the local curvature. The fact that we have a local curvature
in this equation is desirable due to its rapid rate of change. It is instructive to
contrast this equation with the multidimensional equation used in calculating the
propagation velocity (Ruetsch and Broadwell 1995):

1 0 Odc 1
V = — | pD Ve
o Ve O, (p a) oV

The first term in the multidimensional equation corresponds to the first and second
terms in the 1D equation, where the multidimensional diffusion term is broken up
into streamwise and lateral, through curvature, components.

Through examination of Eq. (2) we have learned when partial premixing must
be considered and under what circumstances the problem can be analyzed from
a premixed standpoint: n.-np = 1 and n. - ny = 0 in a neighborhood of the
streamtube. Under weak gradients of the mixture fraction, the leading edges of
partially premixed flames to some degree fall in this category.

Up to this point, the issue of Lewis number effects has not been discussed in
regards to the one-dimensional equations. In order for the Lewis number to come
into play, we need to include both thermal and mass diffusion. Therefore, we look
to energy conservation. The energy equation can be written in differential form as:

5 1) (mYi+ Mihi + Q| + ) 8Ay,sFihi + 6Ars ¢ = w.QcAdw  (7)

7

where Q@ = —ANdT/dx, g = —\dT/dx, and Q). is the heat release from the chemical
reaction per unit change in progress variable. The terms in brackets represent the
flow of enthalpy across the isotherms due to convection and mass diffusion, as well
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as heat conduction across the isotherms. The remaining terms represent the leakage
of energy across the streamtube due to mass diffusion and heat conduction, along
with heat release through chemical reactions. Defining h = ) Y;h; and assuming
h; = h = ¢,T for all © we have, after taking the limit of small éz:

dT d dT dAy,s dY; dA7rsdT Q. .
— —Le— | pPDA— | — pDT Y ————— — LepD — = —wA. (8
" “de (,0 d:z;) P zl: de dx P de da Cp “ (8)

where we have represented all diffusion terms through the mass diffusion coefficient
and use the Lewis number to effectively convert to the thermal diffusivity when
required. After some manipulation, Eq. 8 becomes:

dT d dT dT
m— — Le A [— (pD—) +pD—V - nT]

dx dx dx dx
dz
_pDAT [—VT- ( e Mo ) (9)
dx ny, -ny Ny, -nr

jleg (e L v 1 mvw _Qpa
T n.-nr 2ny,-nr 2ny, -nr Cp

The first line of Eq. 9 contains the convective and thermal diffusion terms. The
last two lines represent the energy change via mass diffusion through the lateral
boundaries and the chemical source.

In the premixed limit, Eq. 9 reduces to:

T d [ _dT dT Q. .

which holds not only in the premixed limit but also for the streamtube passing
through the leading edge under the conditions used to obtain Eq. 6.

3. Future work

Up to this point, efforts have been concentrated on the development of the model
equations described above. Future work will concern applying these equations to
simulation data in order to determine the significance of certain processes and to
obtain scaling behavior regarding flame propagation. In particular, we would like
to recover the linear relation of flame speed with the inverse of the Lewis number
depicted in Fig. 4.

One aspect of flame propagation that can be addressed using these equations is
the process by which the flame trough is stabilized. The weak reaction rate and
convergence of streamlines would suggest that the trough region doesn’t stabilize,
but simulations indicate that the flame does reach a steady state. Leakage of heat
and species 1s evidently important in this region and can be analyzed using the
model equations.

This laminar study allows one to develop an understanding of how fluctuations
in the reactant composition alone affects flame behavior. Once the behavior of
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these flames is understood, data from partially premixed turbulent simulations can
be analyzed, where contributions from both velocity and mixture fraction fields
modify flame behavior.
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