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Lewis number e�ects on partially premixed �ames

By G� R� Ruetsch AND J� Ferziger

�� Motivation and objectives

Combustion is generally categorized as either premixed� where �ames propagate
into homogeneous mixtures of reactants� or as nonpremixed� where initially sep�
arated reactants di�use into the reaction zones� Although these approaches are
applicable to many combustion devices� there are cases not in either of these two
limiting regimes� Under such circumstances� one must consider partially premixed
combustion�
In partially premixed combustion� mechanisms from both premixed and non�

premixed regimes coexist and� as a result� some interesting phenomena arise� One
such phenomenon is �ame stabilization in laminar mixing layers by triple �ames�
These �ames were �rst observed by Phillips ���	
� in a methane mixing layer� Ad�
ditional studies of triple �ames are contained in Kioni et al� ������� Dold ������
Dold et al� ������� Hartley and Dold ����� M�uller et al� ������� and Ruetsch et

al� ����
��
Triple �ames may be thought of as an approach to partially premixed combustion

from the nonpremixed limit� We can also approach the regime of partially premixed
combustion from the premixed limit� where we consider inhomogeneously premixed
�ames� This regime has been addressed in Ruetsch and Broadwell ����
�� where
premixed �ames were subjected to weak perturbations in mixture fraction�

One interesting feature of both triple and inhomogeneously premixed �ames is
the high curvature they possess� It is important to distinguish this type of curvature
from that which arises from velocity �uctuations in the premixed case� Curvature of
a �ame due to velocity �uctuations is limited by various mechanisms which damp
small wavenumber disturbances� In the partially premixed case� however� �ame
curvature is a consequence of the mixture fraction gradient which can be arbitrarily
large� Aside from these geometrical aspects� this curvature plays a signi�cant role
in �ame propagation� As an example� triple �ames have propagation speeds that
exceed the premixed �ame speed by a factor of the square root of the density
ratio� When the �ames are con�ned laterally� as in the case of the inhomogeneously
premixed �ames� this mechanism for enhanced propagation speed due to heat release
e�ects is greatly inhibited�

Another aspect of �ame speed dependence on curvature is through the Lewis
number� the ratio of thermal to mass di�usivities� This dependence of �ame speed
on the Lewis number relates to the thermal�di�usive instability� which has been ex�
tensively studied in the premixed case� Partially premixed combustion di�ers from
the premixed case since the curvature in partially premixed cases can become very
large and can be maintained by �xing the gradients in the approaching reactant
�eld� This suggests that the partially premixed case provides a unique opportunity
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to study Lewis number e�ects on �ame speed� To this date� the topic of partially
premixed combustion coupled with nonunity Lewis numbers has not been investi�
gated� The present study addresses this issue�

We begin by reviewing the thermal�di�usive instability in premixed combustion
and then discuss the con�guration for studying similar behavior in the partially
premixed case� This is followed by results of the numerical solutions and then by
a set of model equations developed to evaluate and analyze the processes occurring
in the simulations�

��� Thermal�di�usive instability

The thermal�di�usive instability is well documented for premixed �ames �Williams
��	�� Although we are considering partially premixed combustion� we expect and
observe similarities with the premixed case� This thermal�di�usive mechanism relies
on the strong in�uence of the temperature in the burnt gases on the reaction rate�
and hence burning velocity� In turn� the temperature in the burnt gases increases
with enhanced di�usion of reactant species into the �ame and reduced di�usion of
heat into the approaching �ow� These di�usion rates are a�ected by the gradients
in the species and temperature �elds and by the values of the mass and thermal dif�
fusivities� The ratio of the mass and thermal di�usivities is the Lewis number� the
gradients in the pro�les are modi�ed by the di�erential di�usion of thermal energy
and species� As a planar �ame is perturbed slightly� the gradients of the reactant
and temperature �elds steepen or broaden� For unity Lewis number� the changes in
mass and heat di�usion o�set one another and the temperature in the burnt gases
remains unchanged� as does the burning velocity� For Lewis numbers larger than
unity� where the thermal di�usivity exceeds the mass di�usivity� the heat transfer
out of the �ame is dominant in the forward sections of the �ame where the gra�
dients are steeper� Likewise� the mass di�usion into the �ame is dominant in the
trough� This results in a stabilizing e�ect due to the temperature and burning ve�
locity decreasing in the forward sections of the �ame and increasing in the troughs�
The opposite is true for Lewis numbers less than unity� where the �ame becomes
unstable to small perturbations�

��� Numerical simulation and �ow con�guration

We use direct numerical simulations to solve the fully compressible Navier�Stokes
equations� The simulation uses a two�dimensional version of the code developed by
Trouv�e ������� This code uses the high�order compact �nite di�erence scheme of
Lele ������ for spatial di�erentiation� the third order Runge�Kutta scheme of Wray
for time advancement� and the Navier�Stokes characteristic boundary conditions of
Poinsot and Lele ������� Below we summarize some of the important features and
assumptions of the code relevant to this work� for further details on the numerical
method readers are referred to Lele ������ and Poinsot and Lele �������

The chemical scheme we consider is represented by a one�step global reaction
between a fuel and oxidizer�

F �O �� P
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where we have assumed unity stoichiometric coe�cients for simplicity� The reaction
rate follows the Arrhenius form�

�� � K�YF�YO exp

�
�
Tac
T

�

where � is the density� Tac is the activation temperature� K is the pre�exponential
factor� and YF and YO are the fuel and oxidizer mass fractions� Following Williams
���	�� we write this reaction rate as

�� � ��YF �YO exp

�
�

���� ��

�� ���� ��

�

where the reduced pre�exponential factor ���� heat release parameter ���� Zel�dovich
number ���� and reduced temperature ��� are de�ned by�

� � K exp������� � �
Tf � T�
Tf

� � �
�Tac
Tf

� � �
T � T�
Tf � T�

with Tf being the adiabatic �ame temperature and T� taken in the ambient �ow� In
this study we hold the Zel�dovich number constant at � �  and use a heat release
parameter of � � ���
�
The transport coe�cients in the simulations are temperature dependent� This

temperature dependence is expressed through the molecular viscosity� �� given by�

� � ��

�
T

T�

�a

with a � ���	� The temperature dependence of the thermal conductivity� �� and
the mass di�usivities� Dk� is obtained by requiring the Lewis� Prandtl� and Schmidt
numbers to be constant�

Lek �
�

�Dkcp
	 P r �

�cp
�

	 Sck �
�

�Dk

where k � F	O refers to the fuel or oxidizer species� Although we are concerned
with variations in the Lewis number� we do not want to consider di�erential di�u�
sion in this study� Therefore� we allow the Lewis number to vary from simulation to
simulation� but require that all species have equal Lewis numbers� We modify the
Lewis number by changing the mass di�usivity� or Schmidt number� while main�
taining a constant thermal di�usivity in the cold gases� We also maintain constant
planar premixed laminar �ame speed by modifying the pre�exponential factor ��

We solve the compressible Navier�Stokes equations in the two�dimensional domain
depicted in Fig� �� At the boundaries in the horizontal direction we use an in�ow
boundary condition on the left and nearly�perfect re�ective boundary conditions�
required to avoid pressure drift� at the out�ow� In the lateral direction� we use
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Figure �� Computational domain used in the simulations� The left boundary is
the inlet where the �ow is uniform and the mixture fraction variation is given on the
left� The lateral boundaries are periodic and represent the e�ects of con�nement
on the �ame� The streamlines and reaction rate are shown within the domain� The
inlet velocity� although always uniform� is adjusted to stabilize the �ame within the
domain�

periodic boundary conditions� This is in contrast to previous work on triple �ames�
which used nonre�ecting boundary conditions in the lateral direction�
Within this domain we initialize the �ow as a planar premixed �ame� in which

the mixture fraction� de�ned as

Z �
� � YF � YO

�
	

is everywhere equal to its stoichiometric value� ZST � ��
� The incoming �ow is
uniform and set equal to the premixed laminar �ame speed� S�L� Also associated
with the �ame is the premixed �ame thickness� 
�L�

After the �ow and �ame are initialized� a sinusoidal perturbation is added to the
uniform stoichiometric mixture fraction� speci�ed by�

Z � ZST �
�Z

�
cos���y�L�Z�

where L�Z is the height of the domain in Fig� �� In all cases� we maintain stoi�
chiometric conditions on average� It should be noted that we are not dealing with
a stability problem� in which a small perturbation is either damped or ampli�ed�
Rather� we introduce a �nite disturbance in one �eld which produces �nite changes
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Figure �� Streamline patterns for uncon�ned �left� and con�ned �right� �ames�
A redirection of the velocity vectors is observed across the �ame front due to heat
release e�ects� This redirection occurs upstream of the �ame in the uncon�ned case�
causing a divergence of the streamlines thus decelerating the horizontal velocity
before the �ame� As a result the propagation or upstream speed increases in order
to maintain the premixed �ames speed locally� In the con�ned case� the redirection
of velocity vectors occurs both in front of and behind the �ame� The increase in
�ame speed is much smaller in the con�ned cases and may be negligible for small
wavelengths of lateral perturbations�

in the other �elds� As this perturbation reaches the �ame� the �ame shape and
propagation speed change� so the inlet velocity must be adjusted in order to achieve
a steady�state solution� Because the variation in mixture fraction at the inlet has
two stoichiometric points� two leading�edge �ames occur� The range of mixture
fraction is small enough� with �Z � ���� that the di�usion �ame is weak and is not
apparent in the �gure� In addition to the reaction rate� streamlines are also shown
in the �gure� Although we do observe streamline divergence in front of the �ame�
the propagation speed of the �ame in Fig� �� where Le � �� remains equal to the
planar premixed �ame speed� S�L�

The use of periodic or con�ned rather than free lateral boundaries greatly a�ects
the �ame�s propagation� For uncon�ned unity Lewis number �ames� it has been
shown that the ratio of the propagation speed relative to the plane laminar premixed
�ame varies with the square root of the density ratio across the �ame� Depending
on the wavelength of the mixture fraction perturbation in the con�ned case� this
e�ect may be absent� A schematic representation of why this occurs presented in
Fig� �� In both cases� there is a redirection of velocity vectors across the �ame front
resulting from heat release e�ects� However� in the uncon�ned case this redirection
occurs in front of the �ame resulting in a strong divergence of streamlines in the
unburnt region of the �ow �eld� This divergence in streamlines results in a decrease
in horizontal velocity prior to the �ame� As a result� in order for the local �ame
speed to maintain a velocity equal to the premixed �ame speed� the upstream or
propagation speed must increase� In the con�ned case� the redirection of velocity
vectors across the �ame occurs both in front of and behind the �ame� hence the
increase in propagation speed is smaller than that of the uncon�ned case�
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Figure �� Reaction rate and streamlines for di�erent Lewis number cases� Le �
��� top left� Le � ��� top right� Le � �� center left� Le � ��	 center right� and
Le � ��� bottom� Flame surface area increases as the Lewis number becomes
smaller� For the Le � ��� case� the �ame trough opens due to leakage of reactants�
similar to the case of a Bunsen �ame�

�� Accomplishments

In this section we present results from simulations of nonunity Lewis number
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Figure �� Flame speed as a function of Lewis number �left� and inverse Lewis
number �right� Due to the strong con�nement e�ects� the �ame speed of the unity
Lewis number case is that of the premixed �ame speed� The �ame speed increases
with decreasing Lewis number� consistent with the thermal di�usive mechanism�
Flame speeds are normalized by the planar premixed �ame speed at stoichiometric
conditions for the various Lewis numbers�

�ames� followed by a discussion of a set of model equations used to analyze the
�ame�s behavior� We start by discussing how the thermal�di�usive instability� in
the context of partially premixed �ames� modi�es the �ame shape�

The thermal�di�usive instability has been discussed thus far in terms of pre�
mixed �ames� We now apply these concepts to our partially premixed case� The
fundamental ideas mentioned above hold for the partially premixed case� In par�
tially premixed combustion� however� the reaction rate is not constant along the
�ame front as in the premixed case� It is this gradient in reaction rate along the
�ame front that creates the perturbation in �ame shape� the sections of the �ame
with mixture fractions closest to stoichiometry burn the fastest� Thus� to some de�
gree the �ame shape is determined by the approaching mixture fraction �eld� The
thermal�di�usive mechanism then modi�es this basic shape�

The modi�cation of the basic �ame shape due to the thermal di�usive mechanism
is apparent from the �ames in Fig� �� where the reaction rate and streamlines are
displayed for �ames with Lewis numbers ranging from ��� to ���� Consistent with
the thermal�di�usive mechanism� we observe that as the Lewis number decreases�
the surface area of the �ame increases� We should emphasize that the �ame shapes
in Fig� � are converged steady�state solutions� Although the thermal�di�usive in�
stability accentuates the perturbation due to the variable mixture fraction �eld for
Lewis numbers less than unity� the �ame does reach a steady condition as nonlinear
e�ects come into play �Williams ���	��

In addition to the modi�cation of �ame shape with Lewis number� we also ob�
serve an increase in �ame speed� as shown in Fig� �� The �ame speed increases
dramatically when the Lewis number drops below unity� We observe a �ame speed
more than twice the planar �ame speed for Le � ���� which is larger than any �ame
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Figure �� Flame surface �bold line�� determined by maximum reaction rate on
horizontal lines through the �ame� and isocontours �thin line� of T and c for Le � ���
�ames� Isovalues are T and c are chosen from the values along the �ame surface at
the leading edge �LE� and trough �TR�� Although both �elds have isocontours that
track the �ame surface reasonable well� the variable c is more reliable and is used
as the progress variable�

speed observed in the uncon�ned con�guration for Le � � �ames �Ruetsch et al�

���
�� One must also keep in mind that the mixture fraction range is ��� � Z � ��	
at the inlet and decreases before the mixture reaches the �ame� Since the uncon�
�ned case has a much larger range in mixture fraction� � � Z � �� but produces a
smaller increase in �ame speed� it is evident that the Lewis number plays a strong
role in the propagation characteristics of partially premixed �ames� Also depicted
in Fig� �� we observe a good linear correlation of �ame speed with the inverse of the
Lewis number�

��� Progress variable

A necessary ingredient for further analysis of �ame behavior is a de�nition of
a progress variable which indicates the mixture�s degree of reactedness� Together
with the mixture fraction� the progress variable replaces the fuel and oxidizer mass
fractions as independent variables� In premixed combustion� the progress variable
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Figure �� Flame surface �bold line� and various isovalue contours of the progress
variable c� Before the premixed portion of the �ame� the curvature of c and the
�ame surface are comparable� After the premixed �ame� the radii of curvature of
the c contours more closely resemble the thickness of the trailing di�usion �ame�

can either be the reactant species mass fraction or the temperature� In partially
premixed combustion� the issue is more complicated� We would like an isopleth
of the progress variable to coincide with the �ame surface� In partially premixed
combustion� we de�ne the �ame surface as the curve connecting the horizontal
extrema of the reaction rate� This curve is plotted in Fig� 
 for the Le � ��� �ame
along with temperature contours and the variable c given by�

c � �� YF � YO	

which is also the product mass fraction� The values of T and c used to obtain the
isocontours are chosen to coincide with the �ame surface at both the leading edge
and trough�

From Fig� 
 we see that both quantities track the �ame surface reasonably well�
However� c follows the contour more closely� especially in the trough� We should
point out that c reaches a value of unity only when neither fuel nor oxidizer are
present� Therefore� in regions not at stoichiometric conditions� it is possible to burn
one reactant completely and not have c � �� In this respect� c does not have the
traditional property of being unity when no further burning is possible� In spite of
this shortcoming� we choose c as our progress variable for its ability to track the
�ame front and its linear dependence on the mass fractions of the reactant species�
The characteristics of c change considerably as we cross the �ame surface� as indi�

cated in Fig� 	� Prior to reaching the �ame� the radius of curvature of c isocontours
scale with the lateral thickness� L�Z� After passing through the �ame surface� the
radius of curvature scales with the thickness of the trailing di�usion �ame� This
has a large e�ect on the �ame stretch� K� de�ned as

K � rT � u� SL�Z�
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Figure �� Control volumes for the one dimensional equation formulation� The
control volume is bounded laterally by streamlines and by isotherms in the �ow
direction� The areas AT and AY are used to de�ne leakage of heat and species
through the streamtube�

where rT is the tangential gradient operator and  � rT � nT is the curvature�
Pro�les of �ame stretch through the �ame surface indicate that stretch is dominated
by curvature e�ects as expected and that no reasonable value can be assigned to
the stretch as the change in the curvature through the �ame is quite dramatic�
The inability to de�ne a single value for curvature and thus �ame stretch does not

invalidate the use of c as a progress variable� One must remember that the concept
of a progress variable strictly applies only to a premixed combustion� The fact that
this quantity behaves di�erently in a region undergoing nonpremixed combustion
does not invalidate its usefulness�

Because of the inability to de�ne �ame stretch accurately� the analysis of these
partially premixed �ames must proceed along an alternative path� which we discuss
in the next section�

��� Model equations for partially premixed combustion

We now discuss a set of one�dimensional equations for analyzing the behavior of
curved partially premixed �ames� This method is based on the work of Echekki
������ and Echekki ����	� for premixed combustion� which was used in analysis
of the laminar �ame tip by Poinsot et al� ������� This approach reduces the
Navier�Stokes equations to a set of one�dimensional equations while maintaining
aspects of the �ame�s multidimensional nature through terms representing various
isopleth curvatures� This approach di�ers from conventional models that handle
the geometrical aspects exactly� while the physical processes are approximated�
In our case� the terms representing the physical processes remain intact� and the
geometrical aspects are approximated�
We begin by examining the control volume of Fig� �� which is bounded laterally
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Figure �� Fuel mass fraction �left�� oxidizer mass fraction �center�� and tem�
perature �right� contour plots for Le � � case� For this partially premixed case�
the need to account for a di�erence between the normals of the individual species
and temperature �elds is evident� The di�erences become stronger as one considers
nonunity Lewis numbers and larger perturbations to the mixture fraction�

by streamlines and by isotherms in the streamwise direction� We de�ne normals
pointing in the �ow direction for the temperature and various scalar �elds as�

nT �
rT

jrT j
� nYF � �

rYF
jrYF j

� nYO � �
rYO
jrYOj

� nc �
rc

jrcj

The distance between the two isotherms along the normal nT is 
x� We use the area
of the �rst isotherm A as the base area� and de�ne three surfaces along the second
isotherm� the streamtube area� AS � the area between the intersection of the two
isotherm normals emanating from the boundaries of A with the second isotherm
surface� AT � and the area between the intersection of the two isoscalar normals�
nYi � emanating from the boundaries of A with the second isotherm surface� AY �
These latter two areas are used to account for the cross�stream di�usion of species
and heat� The distance along nYi between the two isotherm surfaces is given by�


xY nYi �

x

nYi � nT
nYi �

This control volume di�ers from the one used by Echekki ������ in that the
normals to the isotherms and isopleths are not colinear� This is a necessity for
partially premixed combustion� as demonstrated in Fig� � where contours of the fuel
and oxidizer mass fractions� along with the temperature� are shown� It is desirable
to use the progress variable c in place of the individual reactant species� and a
transport equation for c is developed later in this paper� It su�ces to mention here
that nc and nT are not necessarily colinear� even for unity Lewis number� Figure �
shows this clearly� nc � nT deviates from unity in the �ame trough�

����� Area relations

In this section we develop relations between the reference areas A and AS � used
in de�ning our control volume� and the auxiliary areas AT and AYi � used in our
analysis to account for cross�stream di�usion� A useful relation in obtaining such
relations is the identity from Chung and Law ���� in their integral analysis of
stretched premixed �ames�

A� � A��� �rT � a�
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Figure 	� Alignment of progress variable and temperature normals for Le � ���
case� The reaction rate is shown in grey� and the dark contours show levels of
��nc �nT � thus departures from alignment� The greatest departure from alignment
occurs in the trailing di�usion �ame� but there are regions near the �ame trough
where the alignment of nc and nT is not preserved�

where a is any vector from a point on A� to A� and the gradient operator rT

represents the divergence on the plane tangent to A��

rT � a � r � a� nTnT � ra

According to this relation we have�

AT � A �� � 
xrT � nT � 	

AYi � A

�
� � 
xrT �

�
nYi

nYi � nT

��
	

and we express the streamtube area as

AS � A� 
A�

The term rT �nT is the curvature of the isotherm� The similar term in the equation
for AYi reduces to the isotherm curvature only if nT � nYi � in which case AT � AYi �
We also de�ne the di�erences between these areas as


ATS � AT �AS � A
xrT � nT � 
A

and


AYiS � AY �AS � A
xrT �

�
nYi

nYi � nT

�
� 
A
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Figure �
� Lateral di�usion of heat through the streamtube� This leakage can be
accounted for by measuring the �ux through the expanded area in the downstream
isotherm� �This diagram demonstrates the method used to account for thermal
leakage� but the same concept applies to mass leakage through the streamtube��

where in the limit of small 
x we obtain�

dATS

dx
� ArT � nT �

dA

dx

and
dAYiS

dx
� ArT �

�
nYi

nYi � nT

�
�
dA

dx
�

These relations provide a crucial link between the basic governing equations and
our model equations� Since we are developing a set of one�dimensional equations�
we need to include information regarding the other spatial dimensions� It is the
behavior of the normal terms in these area relations that provide the multidimen�
sional information required for adequate representation of the geometrical aspects
of the problem�

����� Governing equations

With the area relations de�ned� we now consider conservation laws applied to the
control volume� Since our control volume is bounded by streamlines� continuity is
simply�


�m� � �

where m is the mass �ow rate in the streamtube� The di�erence between values at
the outlet and inlet isotherms is denoted as 
� � � � �x��x� � �x� The species equation
is�


�mYi �Mi� � Fi
AYiS � ��Yi
xA
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where Mi � ��ADidYi�dx� Fi � ��DidYi�dx� and ��Yi are the di�usive �ow rate�
di�usive �ux� and rate of production of species i� The term Fi
AYiS represents
the leakage of species i across the streamtube� which is equivalent to the heat that
crosses the area 
AYiS as indicated in Fig� ��� In the limit of small 
x this becomes�

m
dYi
dx

�
dMi

dx
�

�
ArT �

�
nYi

nYi � nT

�
�
dA

dx

�
Fi � ��YiA

or by substituting for Mi and Fi�

m
dYi
dx

�
d

dx

�
�ADi

dYi
dx

�
� �Di

�
ArT �

�
nYi

nYi � nT

�
�
dA

dx

�
dYi
dx

� ��YiA ���

The �rst and second terms in this equation represent the convection and di�u�
sion processes across the isotherms� The term in square brackets� representing the
leakage of reactants across the streamtube� contains information about the multi�
dimensional nature of the �ame�
Equation ��� can be used for each species so that� although this study uses a sim�

ple chemical scheme� the method can be applied to complex reaction mechanisms�
In our case� we are more interested in the progress variable c and the mixture frac�
tion Z than the mass fractions� We can obtain these equations by combining the
equations for the individual species and substituting for c�

m
dc

dx
�

d

dx

�
�AD

dc

dx

�
� �D

dA

dx

dc

dx

� �DA

�
rT �

�
nYF

nYF � nT

�
dYF
dx

�rT �

�
nYO

nYO � nT

�
dYO
dx

�
� ��cA

where ��c � �� ��YF � ��YO �� To eliminate YF and YO from the equations� we use the
relations

YF � Z �
c

�
� YO � �� Z �

c

�

and obtain�

m
dc

dx
�

d

dx

�
�AD

dc

dx

�
� �D

�
dA

dx

dc

dx
�A

dZ

dx
rT �

�
nYF

nYF � nT
�

nYO
nYO � nT

�

�
�

�
A
dc

dx
rT �

�
nYF

nYF � nT
�

nYO
nYO � nT

��
� ��cA�

���

In a similar fashion� we can develop an equation for Z�

m
dZ

dx
�

d

dx

�
�AD

dZ

dx

�
�

�

�
�D

�
�
dA

dx

dZ

dx
�A

dZ

dx
rT �

�
nYF

nYF � nT
�

nYO
nYO � nT

�

�
�

�
A
dc

dx
rT �

�
nYF

nYF � nT
�

nYO
nYO � nT

��
� �

���
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Figure ��� Alignment of progress variable and mixture fraction� Progress variable
c �dark lines� and mixture fraction Z �grey scale� isopleths are shown for the Le �
��� case� Along the line through the leading edge nc and nZ are orthogonal� however�
this is not the case as one moves from this line of symmetry�

Equation ��� clearly shows the e�ect of partial premixing on the evolution of
the progress variable� To contrast Eq� ��� with the premixed case� we can write
the evolution equation for c in premixed combustion for which nYF � nYO � nT �
giving�

m
dc

dx
�

d

dx

�
�AD

dc

dx

�
� �D

dc

dx

�
dA

dx
�ArT � nT

�
� ��cA	 ���

which is identical to the species equation of Echekki ������� Equation ��� shows an
explicit dependence on mixture fraction through the dZ�dx term� which modi�es
the equation when the isopleths of the fuel and oxidizer di�er�

We have eliminated YF and YO in Eqs� ��� and ���� except for their implicit
occurrence in the normal vectors� We can replace these by forming the normal
vectors from our transformation equations�

nYF �
�

�
rc�rZ

j�
�
rc�rZj

� nYO �
�

�
rc�rZ

j�
�
rc�rZj

�
�

Substitution of these quantities into Eqs� ��� and ���� in general� leads to compli�
cated expressions but there are cases where simplifying assumptions can be made�
These cases occur when the gradients of the progress variable and mixture fraction
are either colinear or orthogonal�

In general� as demonstrated by Fig� ��� we cannot make assumptions about the
alignment of nc and nZ � However� along the line through the leading edge we �nd
that nc �nZ � �� It is not su�cient that these normal vectors are orthogonal along
this line of symmetry� Due to the rT operator� we must also require that these
normal vectors remain orthogonal as we move laterally� In cases where a substantial
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region with nc �nZ � � exists� the expressions in Eq� �
� simplify greatly� When nc
and nT are collinear and nZ and nT are orthogonal� we can write�

nYF
nYF � nT

�
�

�
rc�rZ
�

�
rc � nT

�
nYO

nYO � nT
�

�

�
rc�rZ
�

�
rc � nT

Furthermore� along the leading edge streamtube Z � ��
� thus dZ�dx � �� which
upon substitution in the conservation equation for c once again recovers the equation
obtained for a premixed �ame� which can be written as�

m
dc

dx
�A

�
d

dx

�
�D

dc

dx

�
� �D

dc

dx
rT � nc

�
� ��cA� �	�

We can determine the local streamwise velocity by manipulation of Eq� 	 to obtain�

u �
m

�A
� D

�
d

dx
ln

�
�D

dc

dx

�
� �

��c
�Ddc�dx

�

where  � rT � nT is the local curvature� The fact that we have a local curvature
in this equation is desirable due to its rapid rate of change� It is instructive to
contrast this equation with the multidimensional equation used in calculating the
propagation velocity �Ruetsch and Broadwell ���
��

V �
�

� jrcj

�

�xi

�
�D

�c

�xi

�
�

�

� jrcj
��c�

The �rst term in the multidimensional equation corresponds to the �rst and second
terms in the �D equation� where the multidimensional di�usion term is broken up
into streamwise and lateral� through curvature� components�
Through examination of Eq� ��� we have learned when partial premixing must

be considered and under what circumstances the problem can be analyzed from
a premixed standpoint� nc � nT � � and nc � nZ � � in a neighborhood of the
streamtube� Under weak gradients of the mixture fraction� the leading edges of
partially premixed �ames to some degree fall in this category�
Up to this point� the issue of Lewis number e�ects has not been discussed in

regards to the one�dimensional equations� In order for the Lewis number to come
into play� we need to include both thermal and mass di�usion� Therefore� we look
to energy conservation� The energy equation can be written in di�erential form as�




�X
i

�mYi �Mi�hi �Q

�
�
X
i


AYiSFihi � 
ATS q � ��cQcA
x ���

where Q � �A�dT�dx� q � ��dT�dx� and Qc is the heat release from the chemical
reaction per unit change in progress variable� The terms in brackets represent the
�ow of enthalpy across the isotherms due to convection and mass di�usion� as well
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as heat conduction across the isotherms� The remaining terms represent the leakage
of energy across the streamtube due to mass di�usion and heat conduction� along
with heat release through chemical reactions� De�ning h �

P
Yihi and assuming

hi � h � cpT for all i we have� after taking the limit of small 
x�

m
dT

dx
� Le

d

dx

�
�DA

dT

dx

�
� �DT

X
i

dAYiS

dx

dYi
dx

� Le�D
dATS

dx

dT

dx
�

Qc

cp
��cA� ��

where we have represented all di�usion terms through the mass di�usion coe�cient
and use the Lewis number to e�ectively convert to the thermal di�usivity when
required� After some manipulation� Eq�  becomes�

m
dT

dx
� LeA

�
d

dx

�
�D

dT

dx

�
� �D

dT

dx
rT � nT

�

��DAT

�
dZ

dx
rT �

�
nYF

nYF � nT
�

nYO
nYO � nT

�

�
dc

dx
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�
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nc � nT
�

�

�

nYF
nYF � nT

�
�

�

nYO
nYO � nT

��
�

Qc

cp
��cA�

���

The �rst line of Eq� � contains the convective and thermal di�usion terms� The
last two lines represent the energy change via mass di�usion through the lateral
boundaries and the chemical source�

In the premixed limit� Eq� � reduces to�

m
dT

dx
� LeA

�
d

dx

�
�D

dT

dx

�
� �D

dT

dx
rT � nT

�
�

Qc

cp
��cA	

which holds not only in the premixed limit but also for the streamtube passing
through the leading edge under the conditions used to obtain Eq� 	�

�� Future work

Up to this point� e�orts have been concentrated on the development of the model
equations described above� Future work will concern applying these equations to
simulation data in order to determine the signi�cance of certain processes and to
obtain scaling behavior regarding �ame propagation� In particular� we would like
to recover the linear relation of �ame speed with the inverse of the Lewis number
depicted in Fig� ��

One aspect of �ame propagation that can be addressed using these equations is
the process by which the �ame trough is stabilized� The weak reaction rate and
convergence of streamlines would suggest that the trough region doesn�t stabilize�
but simulations indicate that the �ame does reach a steady state� Leakage of heat
and species is evidently important in this region and can be analyzed using the
model equations�

This laminar study allows one to develop an understanding of how �uctuations
in the reactant composition alone a�ects �ame behavior� Once the behavior of
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these �ames is understood� data from partially premixed turbulent simulations can
be analyzed� where contributions from both velocity and mixture fraction �elds
modify �ame behavior�
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