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�� Motivation and objectives

Since the derivation of the Smagorinsky model �Smagorinsky ������ much re�
search has been dedicated to developing more reliable and physically plausible
large�eddy models for turbulence� Speziale ���	
� made the �rst attempt to de�
rive realizable large�eddy models� He argued that any subgrid�scale �SGS� model
in large�eddy simulation �LES� of turbulence should be Galilean invariant� a funda�
mental invariance property �also called symmetry� of the Navier�Stokes equations�
In his investigation he found that many models violate this symmetry� The most
widely used model� the Smagorinsky model� is Galilean invariant�
However� Galilean invariance is only one of several symmetries of the Navier�

stokes equations� It will be seen later that several of the symmetries are violated by
common SGS models� the bulk of which contain the local grid size of the computa�
tion as a length scale� From a theoretical point of view� having an external length
scale in the turbulent model which is not related to any turbulent quantity violates
certain symmetries of Navier�Stokes equations� This has serious implications for the
overall performance of the model� which will be pointed out below� In particular�
certain scaling laws cannot be realized by the modeled equations in wall�bounded
�ows �see Appendix A��
A dierential equation admits a symmetry if a transformation can be obtained

which leaves the equation unchanged in the new variables� It is said the equation
is invariant under the transformation� Symmetries or invariant transformations are
properties of the equations and not of the boundary conditions� which are usually
not invariant� Symmetries and their consequences form some of the most fundamen�
tal properties of partial dierential equations and illustrate many important features
of the underlying physics� The Navier�Stokes equations admit several symmetries�
each of them re�ecting axiomatic properties of classical mechanics� time invariance�
rotation invariance� re�ection invariance� two scaling invariances� pressure invari�
ance� material indierence� and generalized Galilean invariance� which encompasses
frame invariance with respect to �nite translation and classical Galilean invariance�
Each of these symmetries is explained in Section ��
For example� all known similarity solutions of the Euler and the Navier�Stokes

equations for laminar �ows can be derived from symmetries �see Pukhnachev ������
Turbulent �ows admit a wide variety of solutions derivable from symmetries� Some
of them� like jets and wakes� have global character �see e�g� Townsend ����� Cantwell
��	�� others only apply locally� e�g� in wall�bounded �ows� Recently several new
scaling laws for turbulent wall�bounded �ows were derived in Oberlack �����a�b�
using symmetry methods� and all of these are local self�similar regions� A well
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known example� which is also among Oberlack�s results� is the logarithmic law of
the wall which has a restricted validity near the wall region but can be found in
many geometrically dierent �ows� All the known local and global turbulent scaling
laws can be derived from symmetries�
In order to reproduce all global and local self�similar turbulent solutions with

an SGS model in LES of turbulence� it is a necessary condition that all the above
mentioned invariance properties of the Navier�Stokes equations should be built into
the SGS model� This implies certain restrictions for the functional form of the
model�
In LES of turbulence not only the SGS model is constrained by symmetries� but

so also is the �ler function� Vreman� Geurts � Kuerten ������ investigated whether
certain �lter functions preserve the classical realizability constraint by Schumann
������� The key result in their analysis is that the �lter kernel has to be positive in
order to ensure positive turbulent subgrid kinetic energy� They concluded that the
spectral cut�o �lter is not suitable for LES since the kernel is negative for certain
values of its argument� Symmetries of the Navier�Stokes equations imply further
constraints for the �lter function to be derived below� Moreover� it will be shown
that the form of �lter function is consistent with the �nding of Vreman et al��
The paper is organized as follows� In Section �� all the known symmetries of the

Navier�Stokes equations are discussed� In Section � the concept of spatial averaging
is reexamined� and its implications for the SGS model and the �lter function are
derived� In Section � several examples of proposed SGS models will be investigated
as to whether they obey or violate certain symmetries of the Navier�Stokes equa�
tions� Section 
 gives a summary and conclusions of the paper� In Appendix A
the eect on near�wall scaling laws will be investigated for the case when the SGS
model does not satisfy the proper scaling symmetries�

�� Symmetries of the Navier�Stokes equations

The Navier�Stokes and the continuity equations for an incompressible �uid writ�
ten in primitive variables in a Cartesian coordinate system are
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where x� t� u� p� and � are� respectively� the spatial coordinate� time� the ve�
locity vector� the pressure normalized by the density and the kinematic viscosity�
Equations ��� admit several symmetries� each re�ecting fundamental properties of
classical mechanics� In the following a list of all known symmetry transformations
will be given which preserve the functional form of ��� written in the new variables�
subsequently denoted by ����

I� Time invariance

An arbitrary time shift of the amount a

t� � t� a� x� � x� u� � u� p� � p� �� � � ���
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has no eect on the functional form of ����

II� Rotation invariance

Rotating the coordinate system and the velocity vector

t� � t� x�i � Aijxj � u�i � Aijuj� p� � p� �� � � ���

by a �nite but arbitrary angle in space� where A is the rotation matrix withAAT �
ATA � I and jAj � �� preserves the form of Eq� ��� in the new variables after
multiplying the momentum equation with A� The superscripts T � I� and j�j denote�
respectively� the transpose of a matrix� the unit tensor� and the determinant�

III� Re�ection invariance

The re�ection symmetry in any direction x� is given by

t� � t� x�� � �x�� u�� � �u��

x�� � x� � u�� � u� with � �� �� p� � p� �� � �� ���

where the index � can be any of �� �� and �� and � refers to the remaining two�

IV� Generalized Galilean invariance

Substituting

u� � u�
d�x

dt
� p� � p� x �

d��x

dt�
and �� � � �
�

into ���� where �x�t� is any twice dierentiable time dependent vector�function� does
not alter the functional form of ���� �
� covers two classical symmetries� �i� Invari�
ance with respect to �nite translation in space is obtained for �x�t� � b� where b is
a constant and �ii� the classical Galilean invariance is recovered if �x�t� is a linear
function in time�
All symmetries �����
� are also admitted by the incompressible Euler equations�

V� Scaling invariance

Considering � � �� the two�parameter transformation

t� � �t� x� � �x� u� �
�

�
u� p� �

�
�

�

��

p ���

is an invariant transformation of Eqs� ���� where � and � are arbitrary positive
real numbers� If � �� � and � is considered a parameter� then ��� is only a scaling
invariance provided �� � ��
Considering � as an additional independent variable� the full two�parameter scal�

ing invariance ��� for � �� � is recovered if � is scaled as

�� �
��

�
�� ���
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The two scaling groups corresponding to � and � refer to the fact that in classical
mechanics time and space can be measured arbitrarily� Hence� scaling symmetries
are equivalent to dimensional analysis�

VI� Pressure invariance

An arbitrary time variation of the background pressure� here denoted by ��t��
does not aect an incompressible �ow� The corresponding symmetry transformation
is given by

t� � t� x� � x� u� � u� p� � p� ��t�� �� � �� �	�

VII� Material indi�erence

Consider the Navier�Stokes equations in a constantly rotating frame with a rota�
tion rate �� about the x� direction and where all velocities only depend on x�� x��
and t� The particular choice of the axis of rotation is not restrictive because of the
transformations ��� and ���� The transformation which leaves ��� form�invariant is
given by

t� � t� x�i � Bij�t�xj � u�i � Bij�t�uj � �Bik�t�xk �

p� � p� ���

Z
Q

�u�dx� � u�dx�� �
�

�
����x

�
� � x���� �� � � ���

where B�t� is the rotation matrix with BBT � BTB � I� jBj � �� �BikBjk �
	�ij�� and �� is a constant� The line integral along the arbitrary curve Q in the
pressure transformation represents the usual two�dimensional stream�function� The
property of material indierence can be reversed if turbulence undergoes rotation�
like advection� This can be accomplished either by system rotation or stream�line
curvature� In this case turbulence tends to become two�dimensional with the axis
of independence aligned with the axis of rotation�
All the symmetry transformations have been obtained by group analysis� ex�

cept for the re�ection symmetry ���� which does not form a continuous group�
Pukhnachev ������ computed the �rst complete list of all continuous point symme�
tries ���� ���� �
�� ���� and �	� by Lie group methods �see e�g� Ibragimov ��������
��
�Unal ������ added the scaling of viscosity ���� The transformation ��� is a well
known property of two�dimensional �ows �see e�g� Batchelor ������ From group
theoretical methods� it was �rst derived by Cantwell ����	�� He computed it us�
ing Lie group analysis applied to the scalar stream�function equation of the two�
dimensional Navier�Stokes equations� In this approach the symmetry ��� is a clas�
sical point symmetry while in primitive variables it is a non�local symmetry� A
corresponding symmetry in three dimensions may not exist� In Oberlack �����c�
it was shown that the three�dimensional Navier�Stokes equations in vector�stream�
function formulation admit only those symmetries which can be derived from the
Navier�Stokes equations in primitive variables� Recently� additional non�classical
symmetries have been obtained by Ludlow � Clarkson ������� However� these
symmetries are not invariant transformations in the classical sense but instead can
only be used to obtain self�similar solutions of the Navier�Stokes equations�
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�� Invariant modeling and 	ltering

In contrast to the classical Reynolds averaging� in large�eddy simulation of tur�
bulence the averaging procedure is a spatial �ltering de�ned as

L����x� �

Z
V

G�x�y�����y�d�y� ����

The kernel G is normalized as Z
V

G�x�y�d�y � � ����

and G is assumed to be su ciently smooth and decays rapidly enough for large
distances y so that the integrals converge�
In the present context f represents the instantaneous variables u and p� f is

decomposed as
f � !f � f � ����

where
!f � L�f ��x�� ����

Introducing the decomposition ���� for both the velocity and pressure into Eqs� ���
and applying the �lter ���� leads to the equation of motion for the large�eddies
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The SGS stress 
ik is given by


ik � Lik �Cik �Rik� ��
�

where

Lik � !ui!uk � !ui!uk� ����

Cik � u�i!uk � !uiu
�

k� ����

Rik � u�iu
�

k� ��	�

Lik� Cik� and Rik are� respectively� referred to as the Leonard stress� the subgrid�
scale cross�stress� and the subgrid�scale Reynolds stress� If explicit �ltering is em�
ployed� the Leonard stress may be computed from the �ow �eld� and closure models
only need to be introduced for Cik and Rik� Though the decomposition of � is ar�
bitrary� �������	� is a very common notation in LES� A dierent decomposition has
been proposed by Germano ���	�� because it was found by Speziale ���	
� that
both Lik and Cik are not Galilean invariant as discussed below�
The principal assertion of this work is given by the following statement� To

derive a physically consistent large�eddy model for turbulence the �ltered Navier�
Stokes equations ���� with the SGS closure model must admit the same symmetries
as the Navier�Stokes equations �as given in section ���
This has certain implications for the form of the model for �������	� and puts

restrictions on the �lter kernel G in ���� to be derived in the next two sub�sections�
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��� Implications for the subgrid�scale stresses

Suppose the �lter ���� preserves the invariance properties of Navier�Stokes equa�
tions� then one can deduce from ���� and ��
� that
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where

�ik � L�ik �C�

ik �R�

ik� ����
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L�ik � !u
�

i !u
�

k � !u
�

i !u
�

k� ����

C�

ik � u��i !u
�

k � !u
�

i u
��

k� ����

R�

ik � u��iu
��

k� ����

and ��� refers to any of the symmetry transformation variables in Section �� The
following is a list of all constraints for the SGS model to properly reproduce all
symmetries of the equations of motion�

I� Time invariance

From ��� it can be deduced that the resolved and the unresolved quantities trans�
form as

t� � t� a� x� � x� !u� � !u� u�� � u�� !p� � !p� p�
� � p�� �� � �� ����

which leads to the transformation rule for the stresses

� � � � or L� � L� C� � C and R� � R� ��
�

Any model which is autonomous in time complies with this restriction� This is
almost always guaranteed since common models are expressed as functionals of x
and !u only�

II� Rotation invariance

From ��� one can conclude that the rotation invariance for the large scale and
small scale quantities are given by

t� � t� x�i � Aijxj � !u
�

i � Aij !uj� u�i
�
� Aiju

�

j � !p
� � !p� p�

�
� p�� �� � �� ����

As a consequence� the stress tensor ��
� and its components �������	� need to
transform as


�ik � AimAkn
mn�

L�ik � AimAknLmn� C�

ik � AimAknCmn and R�

ik � AimAknRmn� ����
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This is always guaranteed if the model is formulated in a �tensorially correct�
manner� The author is unaware of any existing model that violates this property�

III� Re�ection invariance

Considering re�ection in the x��direction� one can infer from ��� that the �ltered
and subgrid quantities transform as

t� � t� x�� � �x�� !u
�

� � �!u�� u��
�
� �u���

x�� � x� � !u�� � !u� � u��
�
� u�� with � �� �� p� � p� �� � �� ��	�

where � and � are de�ned according to the de�nitions below ���� Hence� the
re�ection symmetry is preserved if


�ik � �
ik� where

�
� � �� for i � � � k � � � i �� k
� � � else

� ����

Similarly� one has the additional restrictions

L�ik � �Lik�
C�

ik � �Cik�
R�

ik � �Rik

where

�
� � �� for i � � � k � � � i �� k
� � � else

� ����

It appears that all common SGS models comply with re�ection symmetry�

IV� Generalized Galilean invariance

Generalizing Speziale ���	
�� �
� and ���� are used to obtain

t� � t� x� � x��x�t�� !u� � !u�
d�x

dt
� u�

� � u�� !p� � !p�x�
d��x

dt�
� p�

�
� p�� �� � ��

����
From the latter result and ����� one can verify that

�� � � � ����

As pointed out by Speziale ���	
�� a corresponding simple transformation does not
exist for �������	�� Using ���� in ���������� we �nd

L�ik � Lik �
d�xi
dt

u�k � u�i
d�xk
dt

����

C�

ik � Cik �
d�xi
dt

u�k � u�i
d�xk
dt

����

R�

ik � Rik� ��
�

Hence� Lik andCik are not form�invariant� but their sum is� Germano ���	�� tackled
the latter problem by rede�ning the turbulent stresses� He introduced modi�ed
de�nitions for the quantities L� C� and R where each separate term is Galilean
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invariant� Since the decomposition is not unique� it appears to be preferable to test
the entire SGS model for � for Galilean invariance�
The requirement of Galilean invariance has nicely been demonstrated by H�artel

� Kleiser ������� who have compared Galilean and non�Galilean invariant models
and dierent �lter functions� The most striking result of their computation was a
negative dissipation if the model was not Galilean invariant�

V� Scaling invariance

From ���� ��� and ���� one �nds

t� � �t� x� � �x� !u� �
�
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Applying these results to ���� yields
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Similarly one can deduce from ��������� that

L� �
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L� C� �

�
�

�
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C and R� �

�
�

�

��

R ��	�

has to be valid for any SGS model� It will be shown later that ���� is violated by
the classical Smagorinsky model� In Appendix A it will be demonstrated by inves�
tigating the two�point correlation equations that this symmetry breaking produces
incorrect statistical results� particularly in the near�wall region�

VI� Pressure invariance

The pressure invariance �	� should also be observed by the �ltered quantities
which leads to

t� � t� x� � x� !u� � !u� u�� � u�� !p� � !p� ��t�� p�
� � p�� �� � �� ����

Since SGS models are usually modeled in terms of velocities� the pressure invariance
does not give any restrictions on the stresses L� C� R and � �

VII� Material indi�erence

From ��� and ���� one can conclude that

t� � t� x�i � Bij�t�xj � !u�i � Bij�t�!uj � �Bij�t�xj � u�i
� � Bij�t�u�j �

!p� � !p� ���
R
Q �!u�dx� � !u�dx���

�
��

�
��x

�
� � x����

p�
� � p� � ���

R
Q
�u��dx� � u��dx�� � �� � ��

����
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where B�t� obeys the de�nitions given below ���� Using the above relations in �����
one �nds that an SGS model captures material indierence if


�ik � BimBkn
mn� ����

As in �������
�� the separated stresses �������	� are not form invariant� Using ����
in ��������� it can be concluded that the separated stresses Lik and Cik are not
form invariant under constant rotation rate and hence

L�ik � BimBknLmn �Bimu�m
�Bknxn � �BimxmBknu�n� ����

C�

ik � BimBknCmn �Bimu�m
�Bknxn � �BimxmBknu�n� ����

R�

ik � BimBknRmn� ����

However� the sum of Lik and Cik is invariant� Employing the modi�ed de�nition of
the stresses as introduced by Germano ���	�� leads to form invariant stresses under
constant rotation rate in the sense that the last two terms on the right�hand side
of ���� and ���� disappear�

��� Implications for the �lter kernel G

In order to incorporate the symmetries of the Navier�Stokes equations in the
large�eddy model� one needs to show that the transformation properties of u and
p are preserved for the �ltered quantities !u and !p� This restricts the form of the
�lter kernel as will be shown subsequently�
Time invariance ��� is always preserved no matter which �lter kernel is chosen in

���� because t does not explicitly appear in G�
Generalized Galilean invariance �
� implies a restriction on the form of the �lter

kernel� Consider the Galilean invariance of the �ltered velocities !u� � !u � d�x�dt
given in ����� Employing the de�nition of the �lter ����� one obtainsZ

V �

G�x��y��u��y��d�y� �

Z
V

G�x�y�u�y�d�y �
d�x

dt
� ��
�

Since the instantaneous un�ltered velocities admit the generalized Galilean invari�
ance� �
� can be substituted into the left�hand side� This yieldsZ

V

G�x� �x�y � �x�

�
u�y� �

d�x

dt

�
d�y �

Z
V

G�x�y�u�y�d�y �
d�x

dt
� ����

Because of ����� d�x�dt cancels on both sides� and hence for arbitrary u the integrals
are equal� provided

G�x� �x�y � �x� � G�x�y�� ����

This functional equation can be transformed by dierentiating with respect to �x�
The resulting �rst order partial dierential equation has the unique solution

G � G�x � y�� ��	�



�� M� Oberlack

An additional restriction on G is given due to frame invariance with respect to
a �xed rotation� From the rotation invariance of the �ltered velocities !u�i � Aij !uj
given in ���� and the de�nition of the �lter� one can deduce thatZ

V �

G�x� � y��u�i �y
��d�y� � Aij

Z
V

G�x � y�uj�y�d
�y� ����

Employing ���� which results in d�y� � d�y� the two integrals are equal except for
the �lter kernel� Hence� in order for ���� to hold for arbitrary ui� the condition

G�A�x� y�� � G�x � y� �
��

must be satis�ed� For arbitrary A� the latter functional equation has the unique
solution

G � G�jx� yj�� �
��

This corresponds to a known result from tensor invariant theory �see e�g� Spencer
������ a scalar function depending on vectors or tensors can only depend on their
scalar invariants� Tensor invariant theory is widely used in Reynolds averaged
modeling� e�g� the scalar coe cient in the pressure�strain model depend only on
scalar invariants� In �
�� G depends only on the magnitude of the separation vector�
which is the only invariant of a single vector� An additional consequence of �
�� is
that the averaging volume V in ���� is restricted to a sphere with center x�
The last restriction on G follows from scaling invariance ����� For the present

purpose the �lter function G is not normalized� denoted by the superscript �u��
Using ���� one can conclude from ���� thatR

V �
Gu�jx� � y�j�u��y��d�y�R
V �

Gu�jx� � y�j�d�y�
�

�

�

R
V
Gu�jx� yj�u�y�d�yR
V Gu�jx� yj�d�y

�
��

and a corresponding relation for the pressure� not shown here� needs to hold� Using
��� the spatial scaling factor � remains in the argument of Gu on the left�hand side
of �
��� As a result� � can only cancel out for arbitrary u if Gu has the following
form

Gu�jx� yj� � Ajx� yj� �
��

where A and � are arbitrary constants� Using ����� the �nal form of the �lter G is
obtained

L����x� �
�� �

�l���

Z
Rl

jx� yj�����y�d�y� �
��

where Rl refers to a sphere with center x and radius l� �
�� preserves all the
symmetries in section �� If the integration argument is su ciently smooth� the
integral converges for all � � ���
The time invariance� the re�ection invariance� the pressure invariance� and the

material indierence� even though not explicitly considered during the derivation�
are consistent with �
���
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The constraint for the �lter function needs to hold for any �lter operation used
in LES� However� in practice it is only relevant for schemes that utilize an explicit
�lter� e�g� in the test �lter used in Germano et al� ������� In some LES models the
actual form of the �lter kernel does not appear explicitly in the computation� and
the constraints for the �lter derived above are irrelevant�
The restrictions on the �lter kernel derived in this sub�section are rarely met by

the �ltering procedures used in practical applications� For computational conve�
nience� explicit �ltering at a given location is often performed by averaging values
from adjacent grid points� As a result� in many applications� such as near�wall
shear �ows� the grid is highly anisotropic� and condition ���� is violated� To inves�
tigate this matter of grid dependence in LES� some empirical tests were performed
by Scotti et al� ������ to determine whether anisotropic meshes have an eect on
isotropic turbulence� They show that on an anisotropic pencil�like grid� isotropic
turbulence was severely in�uenced in an unphysicalmanner� However� by isotropiza�
tion of the test��lter many of the features of isotropic turbulence could be restored�
This result suggests that the isotropic �lter kernel �
�� may restore some of the
physical properties of turbulence in large�eddy simulations�

�� Invariant properties of proposed large�eddy models

Almost all of the existing SGS models for large�eddy simulation of turbulence
which have been proposed have the functional form�


ik � Fik�!u�x�� �

�

In order to capture all of the invariance properties of the Navier�Stokes equations�
�

� should re�ect the same symmetries� Hence it is a necessary condition to have


�ik � Fik�!u
��x�� �
��

for all the transformations listed in Section ���� Nearly all SGS models proposed
in the literature conform with time translation� rotation� and re�ection invariance�
However� as was �rst investigated by Speziale ���	
�� several SGS models �Birin�
gen � Reynolds ��	�� Moin � Kim ��	�� Bardina� Ferziger � Reynolds ��	�� are
not Galilean invariant and� therefore� are also not invariant under the generalized
Galilean transformation �
�� In the present investigation it will be shown that sev�
eral of the proposed SGS models are not scale invariant and not material indierent�
However� it will be demonstrated that a certain class of models� namely the dynamic
models� obey all invariance properties derived in Section ��
One of the most widely�used models in LES� the Smagorinsky model �Smagorin�

sky ������ violates scale invariance but captures all other known symmetries� It is
given by


ik �
�

�
�ik
mm � �C"�j!Sj !Sik where !Sik �

�

�

�
�!ui
�xk

�
�!uk
�xi

�
� �
��



�� M� Oberlack

" is the �lter width which is usually taken to be a function of the local grid spacing�
In order to see the shortcoming of �
��� Eqs� ����� ����� and �
�� are used in �
��
to yield


ik �
�

�
�ik
mm � �C"�j!Sj !Sik�

��� �
	�

The latter expression is not form invariant since it is dependent on the arbitrary
scaling parameter �� The reason for this problem is the explicit external length
scale that has been introduced into the model� which is not related to any turbulent
length scale� This imposed length scale is particularly damaging in turbulent wall�
bounded �ows� To overcome this problem empirical wall�damping functions have
been adopted to obtain reasonable results in the near�wall region� Wall�damping
functions are widely used in conjunction with Reynolds averaged models� There�
it has long been known that this approach is not frame invariant� and several new
ideas have been put forward to overcome this problem�

Several new near�wall self�similar solutions or scaling laws have been derived in
Oberlack �����a�b� which rely heavily on the scaling symmetry� All near�wall scaling
laws may be captured in a large�eddy simulation of turbulence when the symmetry
properties of the Navier�Stokes equations are preserved by the model� In Appendix
A it is shown by analyzing the two�point correlation equation that the Smagorinsky
model is not able to capture important near�wall scaling laws� It can be concluded
that any model which contains a �xed external length scale� and which does not
account for the proper turbulent length scale� will violate the scaling symmetry�
Since the Smagorinsky model is only written in terms of the strain rate !S� material
indierence is guaranteed�

A model which violates both scale invariance and material indierence is the
structure�function model by M#etais � Lesieur ������� The latter problem has al�
ready been reported by Meneveau ������� The proposed SGS model is of the form


ik �
�

�
�ik
mm � CSF"h�!u�x� r�� !u�x���i��� !Sik �
��

where CSF � and hi are� respectively� a model constant and a spatial average� Using
the condition �
�� in conjunction with the transformation ���� and ���� yields


ik �
�

�
�ik
mm � CSF"h�!u�m��x� r� � !u�m��x�� 	�l�m���rl�

�i
�

� !Sik� ����

The latter expression is not of the form �
�� since it contains an additional rotation
term� Hence� the structure�function model is not materially indierent� As for the
Smagorinsky model� one can also show that �
�� is not scale invariant�

A class of SGS models which have a similar de�ciency are those explicitly con�
taining the rotation rate

!Rij �
�

�

�
�!ui
�xj

�
�!uj
�xi

�
� ����
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Lund � Novikov ������ derived the most general form of SGS model comprising all
possible combinations of the strain and the rotation rate tensors� They proposed a
model of the form


ik �
�

�
�ik
mm � "

�

�
C�j!Sj !Sik � C�

�
!Sim !Smk �

�ik
�
!Smn

!Smn

�

� C�

�
!Rim

!Rmk �
�ik
�
!Rmn

!Rmn

�
� C�

�
!Sim !Rmk � !Rim

!Smk

�
�
C�

j!Sj

�
!Sim !Smn

!Rnk � !Rim
!Smn

!Snk
��

� ����

For the same reason as the previous two models� ���� is also not scaling invariant�
Violation of material indierence can be shown by computing the rotation rate ����
under the transformation ���� which yields

!R�

ij � BikBjlRkl � 	kij�k ����

Using this in ����� the required form of ���� under constant rotation cannot be
recovered since the frame rotation term� i�e� the last term of ����� does not cancel
out�
An SGS model which captures all the invariance requirements derived in Section

� is the dynamic subgrid�scale model of Germano et al� ������� They proposed a
procedure which� used in conjunction with the classical Smagorinsky model� results
in the following SGS model


ik �
�

�
�ik
mm �

� g!um!un � $!um$!un� !Smn�
�	
	

��
j$!Sj$!Smn

!Smn �
gj!Sj !Spq !Spq j

!Sj !Sik� ����

Here� all the tilded quantities refer to the �test���lter

$h�x� �

Z
V

$G�x�y�h�y�d�y� ��
�

which corresponds to the �lter length $" and $" � "� The test��lter quantities are
explicitly computed from the �ow �eld� The resolved quantities are still denoted
by an overbar� The dynamic model contains the ratio of two length scales� which
is a dimensionless number� and therefore no external length scale is imposed to
break symmetries� Consequently� the scaling invariance ���� is recovered� as can be
shown by using ����� provided the proper �lter function is utilized� It is straightfor�
ward to prove that frame invariance� generalized Galilean invariance� and material
indierence are also captured by the dynamic model�
Since its publication by Germano et al� ������� several modi�ed versions of the

dynamic model have been proposed� The model by Lilly ������ keeps the Smagorin�
sky model as the base model� but the dynamic procedure is modi�ed� Zang et
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al� ������ used the mixed model� �rst introduced by Bardina et al� ���	��� as a
new base model� In addition� they employed Lilly�s modi�cation of the dynamic
procedure� Yoshizawa et al� ������ developed a new base model and also adopted
Lilly�s modi�cation of the dynamic procedure� The dynamic mixed model by Zang
et al� is further extended by Salvetti � Banerjee ����
�� This new model contains
two parameters which are both computed with a modi�ed dynamic procedure� It
can easily be shown that all the latter modi�ed versions of the dynamic model cap�
ture the symmetry requirements developed in Section �� It should be noted that
the dynamic procedure only restores scaling invariance� which may be violated by
certain base models� Other de�ciencies such as the violation of Galilean invariance
or material indierence cannot be repaired by the dynamic procedure�
So far� it was tacitly assumed that the symmetries are not broken by the �ltering

process� However� some of the common �lter functions are not consistent with the
symmetries of the Navier�Stokes equations� One of these is the Gaussian �lter

G �
�

���"�
exp

�
�
jx� yj�

"�

�
� ����

since it does not match the form �
��� The scaling symmetry is violated by �����
Another common �lter function which is not consistent with the form of �
�� is

the spectral cut�o �lter� In physical space it is given by

G �
�Y

i
�

sin
h 
"
�xi � yi�

i
 �xi � yi�

� ����

���� violates both rotation and scaling invariance� It has already been pointed out
by Vreman et al� ������ that the latter �lter should not be utilized as it may lead
to unrealizable results� In Liu et al� ������ it was shown by analyzing experimental
results of a turbulent jet that ���� has a very prejudicial in�uence on the overall
statistical behavior of SGS models�
The classical isotropic top�hat �lter

G �

� �
�"� if jx� yj � "

� otherwise
��	�

is of the form �
�� with � � �� Hence� it preserves all symmetry requirements of
Navier�Stokes equations�

�� Summary and conclusions

The Navier�Stokes equations admit certain symmetries� that is� there are certain
form�invariant transformations which preserve the equations� These symmetries are
one of the most fundamental properties of the equations of motion� They re�ect
many features of classical mechanics� It was shown recently that certain statis�
tical properties of turbulent shear �ows follow from these symmetries �Oberlack
����a%b��
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To capture those statistical features of the Navier�Stokes equations that are as�
sociated with symmetries� the symmetries should be built into the SGS models and
the �lter functions in LES of turbulence� This leads to necessary conditions on the
functional form of the SGS model and the �lter kernel�

One particular symmetry� scale invariance� is violated by the most common SGS
model� the Smagorinsky model� because it contains the grid size as an explicit
length scale� This seriously impairs the ability of the model to describe turbulence�
In particular� in near�wall turbulent �ows it is known that the Smagorinsky model
performs poorly and wall damping functions have to be used� In Appendix A it
is shown that the violation of the scaling symmetry excludes important turbulent
near�wall scaling laws such as the log law and the algebraic law� Other models
such as the structure function model by M#etais � Lesieur ������ violate material
indierence�

It appears that the dynamic Smagorinsky model by Germano et al� ������ and
its successors �e�g� Lilly ����� Zang et al� ����� Yoshizawa et al� ����� Salvetti
� Banerjee ���
� conserve the symmetries of Navier�Stokes equations� In fact�
numerical simulations have shown �see Germano et al� ����� that the dynamic
model captures the proper near�wall behavior without introducing any arti�cial
wall treatment such as damping functions�

The symmetry restrictions for the �lter function are severe in the sense that only a
very con�ned class of �lters is allowed� For example� only a spherical �lter function
admits �nite rotation invariance� The consequences of anisotropic �lter functions
may be illustrated by a simple example� Consider a simulation of homogeneous
turbulent shear �ow where explicit �ltering is employed� The integration domain of
the �lter function may have the form of a box whose edges are aligned with the grid�
which is chosen to be parallel to the mean �ow� In homogeneous shear the dominant
turbulent structures have a certain inclination to the mean �ow� If the grid and the
�lter were instead chosen to be parallel to this inclination� averaging would take
place over dierent �ow structures� As a consequence� large scale quantities such
as the Reynolds stress tensor would exhibit dierent growth rates� Since a model
should be frame independent� the latter result is in contradiction to the basic physics
of the problem�

However� the practical implications may be less severe than they appear� Since
explicit �ltering takes place on very few mesh points� the numerical truncation
error may be of the same order of magnitude as the error caused by a non�spherical
�lter� Numerical tests for dierent applications need to be performed to determine
how closely the �lter form given by �
�� has to be matched� A �rst test towards
this requirement has been carried out by Scotti et al� ������� An isotropized test�
�ltering in conjunction with the dynamic model on a highly anisotropic pencil�like
mesh considerably improved the LES of isotropic turbulence�

An approach to overcome the very restricted form of the �lter function may be
to introduce the strain rate into the �lter function� Since the strain rate introduces
three additional directions corresponding to its principle axes� a more complex ge�
ometry for the �lter volume may be in order�
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Another consequence of the required spherical form of the �lter appears to be its
use in combination with wall�bounded �ows� Close to solid walls the requirement
that the �lter be spherical �lter is always violated� and hence certain symmetries
are broken� However� the symmetries listed in Section � are only properties of
the Navier�Stokes equations� Symmetries are always broken by arbitrary boundary
conditions� One can conclude that a non�spherical �lter near a solid wall is not a
restriction of LES� but a consequence of boundary conditions for turbulence models
in general�
It appears that future improvements for LES models should be along the lines

of the dynamic model since it mimics fundamental properties of the Navier�Stokes
equations� Despite its known superior performance� it has problems with stability
since the model coe cient in the SGS model may become negative� If the �ow under
investigation possesses a homogeneous direction� averaging of the model coe cient
in that direction seems to stabilize the simulation� In more complex geometries
a clipping procedure is introduced which sets a negative model coe cient to zero�
However� the �rst approach may violate rotation invariance since a preferred direc�
tion has been introduced� The clipping approach seems to obey all the symmetry
properties of the Navier�Stokes equations but appears to be unrelated to Navier�
Stokes equations�
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Appendix A� Two�point correlation equation of LES models containing

an explicit external length scale

To investigate why SGS models containing an explicit length scale are inconsistent
with certain near�wall scaling laws� two�point correlation equations derived from
LES models are analyzed� The standard Reynolds decomposition is given by

!u � hui� u�� !p � hpi � p�� �A��

where the instantaneous velocity !u and the pressure !p is assumed to be computed
by a LES in conjunction with a certain SGS model and h�i denotes an ensemble
average� Using this� several two�point quantities may be de�ned

Rij�x� r� � hu�i�x�u
�

j�x
����i� �A��

R�ik�j�x� r� � hu�i�x�u
�

k�x�u
�

j�x
����i� Ri�jk��x� r� � hu�i�x�u

�

j�x
����u�k�x

����i�A��

Pj�x� r� � hp��x�u�j�x
����i� Qj�x� r� � hu�j�x� p

��x����i �A��

S�ik�j�x� r� � h
ik�x�u
�

j�x
����i� Ti�jk��x� r� � hu�i�x�
jk�x

����i� �A
�
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Using the latter de�nitions the two�point correlation equations are derived from
����

DRij

Dt
� �Rkj

�huii
�xk

�Rik
�huij
�xk

				
x�r

� �huik �x � r� t� � huik �x� t��
�Rij

�rk

�

�
�Pj
�xi

�
�Pj
�ri

�
�Qi

�rj

�
�
�R�ik�j

�xk
�

�

�rk



R�ik�j �Ri�jk�

�
�

�S�ik�j

�xk
�

�

�rk



S�ik�j � Ti�jk�

�
� �A��

where D�Dt � ���t � huik���xk � The tensors in �A����A
� are functions of the
physical and correlation space coordinates� x and r � x��� � x respectively� The
vertical line denotes the derivative to be taken with respect to x and evaluated at
x� r�
In Oberlack �����a� the ���component of the two�point correlation equations

emerging from the Navier�Stokes equations �A� with S�ik�j � Ti�jk� � �� for parallel
mean �ows of the form hui � �hui��x��� �� ��T was investigated� The entire system
contains one physical and three correlation coordinates and consists of equation
�A�� and two Poisson equations for Pj and Qi �not shown here�� It was shown that
for four distinct mean velocity pro�les similarity variables can be introduced so that
the number of independent variables is reduced by one�
The most general self�similar solution� with all group parameters dierent from

zero� is given by

!u� � C�

�
x� �

q�
q�

���
q�
q�

�
q�

q� � q�
� �A��

$r� �
r� �

q�
q�

x� �
q�
q�

� $r� �
r�

x� �
q�
q�

� $r� �
r� �

q�
q�

x� �
q�
q�

� �A	�

R�� �

�
x� �

q�
q�

��
�
��

q�
q�

�
$R��� �A��

P� �

�
x� �

q�
q�

��
�
��

q�
q�

�
$P�� Q� �

�
x� �

q�
q�

��
�
��

q�
q�

�
$Q�� �A���

R��k�� �

�
x� �

q�
q�

��
�
��

q�
q�

�
$R��k��� R���k� �

�
x� �

q�
q�

��
�
��

q�
q�

�
$R���k���A���

where the �$� correlation quantities only depend on �A	�� From �A����A��� one
can conclude that scaling of the �uctuation velocity is according to

u� �

�
x� �

q�
q�

���
q�
q�

�u�� �A���
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The second similarity solution is given by q� � q�� which corresponds to the
log�law and �A�� changes to

!u� �
q�
q�
ln

�
x� �

q�
q�

�
� C�� �A���

while the similarity coordinates �A	� are unaltered and the correlation functions
R��� P�� Q�� R��k��� and R���k� are un�scaled�
If q� � � and q� �� �� the exponential law holds and the new similarity variables

are given by

!u� � C� exp

�
�
q�
q�
x�

�
�

q�
q�
� �A���

$r� � r� �
q�
q�
x�� $r� � r�� $r� � r� �

q�
q�
x�� �A�
�

R�� � e
��

q�
q�
x� $R��� �A���

P� � e
��

q�
q�
x� $P�� Q� � e

��
q�
q�
x� $Q�� �A���

R��k�� � e
��

q�
q�
x� $R��k��� R���k� � e

��
q�
q�
x� $R���k�� �A�	�

where similar to �A����A��� the �$� correlation quantities only depend on �A�
��
It can be concluded that the �uctuation velocities scale as

u� � e�
q�
q�
x� �u�� �A���

Finally� if q� � q� � �� the mean velocity is given by

!u� � q�x� � C� �A���

while the similarity variables �A�
� are the same as for the exponential case� but
the correlations R��� P�� Q�� R��k��� and R���k� stay un�scaled�
In order to see that some common SGS models are not consistent with the latter

scaling laws if they contain an explicit external length scale� the Smagorinsky model
will be investigated� Suppose �
�� is substituted for � in �A����A
�� then S�ik�j and
Ti�jk� will read as follows

S�ik�j�x� r� � �C"�hj!Sj�x� !Sik�x�u
�

j�x
����i� �A���

Ti�jk��x� r� � �C"�hu�i�x�j!Sj�x
���� !Sjk�x

����i� �A���

Here !S is computed from �
�� while for !u the Reynolds decomposition �A�� is used�
Using ��������� in Eqs� �A�� leads to a reduced set of possible self�similar solu�

tions� From the above�mentioned four scaling laws� only two allow for self�similarity
so that the number of independent variables reduces by one� These two scaling laws
are the exponential law �A�����A�	� and the linear law �A���� Both have been
derived under the assumption that there is an external symmetry breaking length
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scale in the �ow and no scaling with respect to the coordinates exists� It is straight�
forward to show that the algebraic law �A�� and the logarithmic law �A��� are no
longer self�similar solutions of the system �A�� if ��������� is employed�
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