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Invariant modeling in large-eddy
simulation of turbulence

By M. Oberlack

1. Motivation and objectives

Since the derivation of the Smagorinsky model (Smagorinsky 1963), much re-
search has been dedicated to developing more reliable and physically plausible
large-eddy models for turbulence. Speziale (1985) made the first attempt to de-
rive realizable large-eddy models. He argued that any subgrid-scale (SGS) model
in large-eddy simulation (LES) of turbulence should be Galilean invariant, a funda-
mental invariance property (also called symmetry) of the Navier-Stokes equations.
In his investigation he found that many models violate this symmetry. The most
widely used model, the Smagorinsky model, is Galilean invariant.

However, Galilean invariance is only one of several symmetries of the Navier-
stokes equations. It will be seen later that several of the symmetries are violated by
common SGS models, the bulk of which contain the local grid size of the computa-
tion as a length scale. From a theoretical point of view, having an external length
scale in the turbulent model which is not related to any turbulent quantity violates
certain symmetries of Navier-Stokes equations. This has serious implications for the
overall performance of the model, which will be pointed out below. In particular,
certain scaling laws cannot be realized by the modeled equations in wall-bounded
flows (see Appendix A).

A differential equation admits a symmetry if a transformation can be obtained
which leaves the equation unchanged in the new variables. It is said the equation
is invariant under the transformation. Symmetries or invariant transformations are
properties of the equations and not of the boundary conditions, which are usually
not invariant. Symmetries and their consequences form some of the most fundamen-
tal properties of partial differential equations and illustrate many important features
of the underlying physics. The Navier-Stokes equations admit several symmetries,
each of them reflecting axiomatic properties of classical mechanics: time invariance,
rotation invariance, reflection invariance, two scaling invariances, pressure invari-
ance, material indifference, and generalized Galilean invariance, which encompasses
frame invariance with respect to finite translation and classical Galilean invariance.
Each of these symmetries is explained in Section 2.

For example, all known similarity solutions of the Euler and the Navier-Stokes
equations for laminar flows can be derived from symmetries (see Pukhnachev 1972).
Turbulent flows admit a wide variety of solutions derivable from symmetries. Some
of them, like jets and wakes, have global character (see e.g. Townsend 1976; Cantwell
1981) others only apply locally, e.g. in wall-bounded flows. Recently several new
scaling laws for turbulent wall-bounded flows were derived in Oberlack (1997a,b)
using symmetry methods, and all of these are local self-similar regions. A well
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known example, which is also among Oberlack’s results, is the logarithmic law of
the wall which has a restricted validity near the wall region but can be found in
many geometrically different flows. All the known local and global turbulent scaling
laws can be derived from symmetries.

In order to reproduce all global and local self-similar turbulent solutions with
an SGS model in LES of turbulence, it is a necessary condition that all the above
mentioned invariance properties of the Navier-Stokes equations should be built into
the SGS model. This implies certain restrictions for the functional form of the
model.

In LES of turbulence not only the SGS model is constrained by symmetries, but
so also is the filer function. Vreman, Geurts & Kuerten (1994) investigated whether
certain filter functions preserve the classical realizability constraint by Schumann
(1977). The key result in their analysis is that the filter kernel has to be positive in
order to ensure positive turbulent subgrid kinetic energy. They concluded that the
spectral cut-off filter is not suitable for LES since the kernel is negative for certain
values of its argument. Symmetries of the Navier-Stokes equations imply further
constraints for the filter function to be derived below. Moreover, it will be shown
that the form of filter function is consistent with the finding of Vreman et al..

The paper is organized as follows: In Section 2. all the known symmetries of the
Navier-Stokes equations are discussed. In Section 3 the concept of spatial averaging
is reexamined, and its implications for the SGS model and the filter function are
derived. In Section 4 several examples of proposed SGS models will be investigated
as to whether they obey or violate certain symmetries of the Navier-Stokes equa-
tions. Section 5 gives a summary and conclusions of the paper. In Appendix A
the effect on near-wall scaling laws will be investigated for the case when the SGS
model does not satisfy the proper scaling symmetries.

2. Symmetries of the Navier-Stokes equations

The Navier-Stokes and the continuity equations for an incompressible fluid writ-
ten in primitive variables in a Cartesian coordinate system are

Ou; Ou; dp 0% u; Ouy, B
5 + ukaxk and E =0, (1)

= — v
Oz; 0x?

where @, t, u, p, and v are, respectively, the spatial coordinate, time, the ve-
locity vector, the pressure normalized by the density and the kinematic viscosity.
Equations (1) admit several symmetries, each reflecting fundamental properties of
classical mechanics. In the following a list of all known symmetry transformations
will be given which preserve the functional form of (1) written in the new variables,

k9

subsequently denoted by

I. Time invariance

An arbitrary time shift of the amount a

t"=t+4+a, =2, u'=u, pP=p, v =v (2)



Invariant modeling in LES 5

has no effect on the functional form of (1).

II. Rotation invariance

Rotating the coordinate system and the velocity vector

t'=t, 2 =Ajx;, up =A5uy, pt=p v =v (3)
by a finite but arbitrary angle in space, where A is the rotation matrix with AAT =
ATA = I and |A| = 1, preserves the form of Eq. (1) in the new variables after
multiplying the momentum equation with A. The superscripts T', I, and |-| denote,

respectively, the transpose of a matrix, the unit tensor, and the determinant.

III. Reflection invariance

The reflection symmetry in any direction z, is given by

* * *
7T =1, ¥, = —Tq, U, = —Uq,

xy =xp ,up=ug with 3#a, p"=p, v" =, (4)
where the index « can be any of 1, 2, and 3, and /3 refers to the remaining two.

IV. Generalized Galilean invariance

Substituting

. 9~
u*:u—l—i—f,p:p—a:-(jiTa3 and v* =v (5)
into (1), where &(t) is any twice differentiable time dependent vector-function, does
not alter the functional form of (1). (5) covers two classical symmetries: (i) Invari-
ance with respect to finite translation in space is obtained for @(t) = b, where b is
a constant and (ii) the classical Galilean invariance is recovered if @(¢) is a linear
function in time.
All symmetries (2)-(5) are also admitted by the incompressible Euler equations.

V. Scaling invariance

Considering v = 0, the two-parameter transformation

2
tt=¢&, 2 =qx, ut = gu, p* = (g) P (6)

is an invariant transformation of Eqgs. (1), where ¢ and v are arbitrary positive
real numbers. If v # 0 and v is considered a parameter, then (6) is only a scaling
invariance provided v? = ¢,

Considering v as an additional independent variable, the full two-parameter scal-
ing invariance (6) for v # 0 is recovered if v is scaled as

vt = —u. (7)
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The two scaling groups corresponding to v and £ refer to the fact that in classical
mechanics time and space can be measured arbitrarily. Hence, scaling symmetries
are equivalent to dimensional analysis.

VI. Pressure invariance

An arbitrary time variation of the background pressure, here denoted by ¢(?),
does not affect an incompressible flow. The corresponding symmetry transformation
is given by

th=t =2, uW=u, pP=p+pt), v=r (8)

VII. Material indifference

Consider the Navier-Stokes equations in a constantly rotating frame with a rota-
tion rate €23 about the x3 direction and where all velocities only depend on 1, x5,
and t. The particular choice of the axis of rotation is not restrictive because of the
transformations (3) and (4). The transformation which leaves (1) form-invariant is
given by

t* = t, l‘j = Bl‘j(t)l']‘, ur = Bi]‘(t)u]‘ + Bik(t)l'k,

p*=p+293/

3
o (urday — ugday) — 59%(:1;% +a23), v =v (9)

where B(t) is the rotation matrix with BB" = B'"B = I, |B| =1, BikBjk =
€3;;€23 and Q3 is a constant. The line integral along the arbitrary curve () in the
pressure transformation represents the usual two-dimensional stream-function. The
property of material indifference can be reversed if turbulence undergoes rotation-
like advection. This can be accomplished either by system rotation or stream-line
curvature. In this case turbulence tends to become two-dimensional with the axis
of independence aligned with the axis of rotation.

All the symmetry transformations have been obtained by group analysis, ex-
cept for the reflection symmetry (4), which does not form a continuous group.
Pukhnachev (1972) computed the first complete list of all continuous point symme-
tries (2), (3), (5), (6), and (8) by Lie group methods (see e.g. Ibragimov 1994,1995).
Unal (1994) added the scaling of viscosity (7). The transformation (9) is a well
known property of two-dimensional flows (see e.g. Batchelor 1967). From group
theoretical methods, it was first derived by Cantwell (1978). He computed it us-
ing Lie group analysis applied to the scalar stream-function equation of the two-
dimensional Navier-Stokes equations. In this approach the symmetry (9) is a clas-
sical point symmetry while in primitive variables it is a non-local symmetry. A
corresponding symmetry in three dimensions may not exist. In Oberlack (1997¢)
it was shown that the three-dimensional Navier-Stokes equations in vector-stream-
function formulation admit only those symmetries which can be derived from the
Navier-Stokes equations in primitive variables. Recently, additional non-classical
symmetries have been obtained by Ludlow & Clarkson (1997). However, these
symmetries are not invariant transformations in the classical sense but instead can
only be used to obtain self-similar solutions of the Navier-Stokes equations.
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3. Invariant modeling and filtering

In contrast to the classical Reynolds averaging, in large-eddy simulation of tur-
bulence the averaging procedure is a spatial filtering defined as

£ = [ Glembmdy (10)
The kernel G is normalized as
/ Gz, y)d®y =1 (11)
1%

and G is assumed to be sufficiently smooth and decays rapidly enough for large
distances y so that the integrals converge.

In the present context f represents the instantaneous variables w and p. f is
decomposed as

f=f+f (12)
where
f=L[f](=). (13)
Introducing the decomposition (12) for both the velocity and pressure into Eqs. (1)
and applying the filter (10) leads to the equation of motion for the large-eddies

» » 5 25 4 -
BT = a e e m ga=0 (b

The SGS stress 7;; 1s given by
Tit = Lix + Cix + Rix, (15)

where

Lik = ujup — ujug, (16)
Cir = ultup + uuy, (17)
R = ujul. (18)

L, Cir, and R;j are, respectively, referred to as the Leonard stress, the subgrid-
scale cross-stress, and the subgrid-scale Reynolds stress. If explicit filtering is em-
ployed, the Leonard stress may be computed from the flow field, and closure models
only need to be introduced for C;; and R;;. Though the decomposition of T is ar-
bitrary, (16)-(18) is a very common notation in LES. A different decomposition has
been proposed by Germano (1986) because it was found by Speziale (1985) that
both L;; and C;; are not Galilean invariant as discussed below.

The principal assertion of this work is given by the following statement: To
deriwe a physically consistent large-eddy model for turbulence the filtered Navier-
Stokes equations (14) with the SGS closure model must admit the same symmetries
as the Navier-Stokes equations (as given in section 2).

This has certain implications for the form of the model for (16)-(18) and puts
restrictions on the filter kernel G in (10) to be derived in the next two sub-sections.
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3.1 Implications for the subgrid-scale stresses

Suppose the filter (10) preserves the invariance properties of Navier-Stokes equa-
tions, then one can deduce from (14) and (15) that

ou* ou* op* Q*ur 9t} duy
i % i * T ) d k =0 19
o Taer T 0w TV aer T aer MY aap (19)
where
T = L + O + Ry, (20)
and
k= ujuy —ujuy, (21)
o =ultur Futu'y, (22)
k= u'iu'y (23)

and “*” refers to any of the symmetry transformation variables in Section 2. The
following is a list of all constraints for the SGS model to properly reproduce all
symmetries of the equations of motion.

I. Time invariance

From (2) it can be deduced that the resolved and the unresolved quantities trans-
form as

t'=t4a, =2, ' =u, v =u, pF=p p"=p, v =y, (24)
which leads to the transformation rule for the stresses
7™ =7 o0or L*"=L, C*"=C and R* = R. (25)

Any model which is autonomous in time complies with this restriction. This is
almost always guaranteed since common models are expressed as functionals of @
and w only.

II. Rotation invariance

From (3) one can conclude that the rotation invariance for the large scale and
small scale quantities are given by

t* = t, l‘j = Ai]‘l']‘, ur = Ai]ﬂj, u;* = Aiju;, ]5* =p, pl* = pl, v =, (26)

7

As a consequence, the stress tensor (15) and its components (16)-(18) need to
transform as

*
Tk — AimAknTmn7
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This is always guaranteed if the model is formulated in a “tensorially correct”
manner. The author is unaware of any existing model that violates this property.

III. Reflection invariance
Considering reflection in the x,-direction, one can infer from (4) that the filtered
and subgrid quantities transform as

*

= ¢ * —x = Pk !
=1, Ty = "Ta, Uy = “Ua, Uy — —U,,

T =Tg ,up = Ug ,u'ﬁ*:u'ﬂ with 8 #£a, p*=p, v* =, (28)

where o and (3 are defined according to the definitions below (4). Hence, the
reflection symmetry is preserved if

« w = =1 fori=a V k=a N 1#k
7 = wTik, where {w 1 else . (29)
Similarly, one has the additional restrictions
LY = wL, B . B .
Y~ wCy. where w = 1 fori=a V k=a AN 1 #k . (30)
Y = 1 else
v = Wl

It appears that all common SGS models comply with reflection symmetry.

IV. Generalized Galilean invariance
Generalizing Speziale (1985), (5) and (12) are used to obtain

tr =+t * ‘|‘A(t) u* 7_|_d;f3 1% [R— . d*@ 1* ' *
=t, " =x+x w'=ut+—, v =u =—p—x— = vt =v
b b dt b b p p dtz b p p b
(31)
From the latter result and (20), one can verify that
™ =T, (32)

As pointed out by Speziale (1985), a corresponding simple transformation does not

exist for (16)-(18). Using (31) in (21)-(23), we find

dz;— —dag
f Uk 4
e = Rik. (35)

Hence, L;; and Cj, are not form-invariant, but their sum is. Germano (1986) tackled
the latter problem by redefining the turbulent stresses. He introduced modified
definitions for the quantities L, C, and R where each separate term is Galilean
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invariant. Since the decomposition is not unique, it appears to be preferable to test
the entire SGS model for 7 for Galilean invariance.

The requirement of Galilean invariance has nicely been demonstrated by Hartel
& Kleiser (1997), who have compared Galilean and non-Galilean invariant models
and different filter functions. The most striking result of their computation was a
negative dissipation if the model was not Galilean invariant.

V. Scaling invariance

From (6), (7) and (12) one finds

= (g)z r. (37)

Similarly one can deduce from (21)-(23) that

L* = (g) L C*= (g) C and R* = (g) R (38)

has to be valid for any SGS model. It will be shown later that (37) is violated by
the classical Smagorinsky model. In Appendix A it will be demonstrated by inves-
tigating the two-point correlation equations that this symmetry breaking produces
incorrect statistical results, particularly in the near-wall region.

VI. Pressure invariance

The pressure invariance (8) should also be observed by the filtered quantities
which leads to

— ok 1*

t"=t, ¥ =x, u=u, u

=u', pP=p+e(t), pT=p, v =v, (39)

Since SGS models are usually modeled in terms of velocities, the pressure invariance
does not give any restrictions on the stresses L, C, R and 7.
VII. Material indifference
From (9) and (12) one can conclude that
t* =t «f = Bij(t)v;, a} = Bij(t)u; + Bij(t)a;, u” = Bij(t)ul,
P =p +2Q; fQ (uidry — ubdry), v* =w.
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where B(t) obeys the definitions given below (9). Using the above relations in (20),
one finds that an SGS model captures material indifference if

Asin (33)-(35), the separated stresses (16)-(18) are not form invariant. Using (40)
in (21)-(23) it can be concluded that the separated stresses L;; and Cj; are not
form invariant under constant rotation rate and hence

zﬁk = BimBrnLmn — BzmmBknwn - BzmxmBknﬂv (42)

However, the sum of L;; and Cj is invariant. Employing the modified definition of
the stresses as introduced by Germano (1986) leads to form invariant stresses under
constant rotation rate in the sense that the last two terms on the right-hand side

of (42) and (43) disappear.
3.2 Implications for the filter kernel G

In order to incorporate the symmetries of the Navier-Stokes equations in the
large-eddy model, one needs to show that the transformation properties of © and
p are preserved for the filtered quantities @ and p. This restricts the form of the
filter kernel as will be shown subsequently.

Time invariance (2) is always preserved no matter which filter kernel is chosen in
(10) because t does not explicitly appear in G.

Generalized Galilean invariance (5) implies a restriction on the form of the filter
kernel. Consider the Galilean invariance of the filtered velocities u* = u + da/d¢
given in (31). Employing the definition of the filter (10), one obtains

[ ettty = [ Gyt 5 (45)

Since the instantaneous unfiltered velocities admit the generalized Galilean invari-
ance, (5) can be substituted into the left-hand side. This yields

/v Gle+z,y+a) [u(y) + %] Py = /‘/G(w,y)u(y)d?)y + % (46)

Because of (11), d&/dt cancels on both sides, and hence for arbitrary w the integrals
are equal, provided

Ge+z,y+a)=Gey). (47)

This functional equation can be transformed by differentiating with respect to .
The resulting first order partial differential equation has the unique solution

G=Gx—vy). (48)
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An additional restriction on G is given due to frame invariance with respect to
a fixed rotation. From the rotation invariance of the filtered velocities u} = A;;u;
given in (26) and the definition of the filter, one can deduce that

[ et =ity = 4y [ Ge—wuwdn G)

Employing (3), which results in d*y* = d®y, the two integrals are equal except for
the filter kernel. Hence, in order for (26) to hold for arbitrary u;, the condition

G(A(z —y)) = Gz —y) (50)

must be satisfied. For arbitrary A, the latter functional equation has the unique
solution

G = G(lz — y)). (51)

This corresponds to a known result from tensor invariant theory (see e.g. Spencer
1971): a scalar function depending on vectors or tensors can only depend on their
scalar invariants. Tensor invariant theory is widely used in Reynolds averaged
modeling; e.g. the scalar coefficient in the pressure-strain model depend only on
scalar invariants. In (51) G depends only on the magnitude of the separation vector,
which is the only invariant of a single vector. An additional consequence of (51) is
that the averaging volume V' in (10) is restricted to a sphere with center @.

The last restriction on G follows from scaling invariance (36). For the present
purpose the filter function G is not normalized, denoted by the superscript “"”.
Using (10) one can conclude from (36) that

Sy G2 =y Du(y )yt oy [y G|z — yu(y)d’y
Jv- G (|2 —y* Py ¢ L@z —yhd®y

(52)

and a corresponding relation for the pressure, not shown here, needs to hold. Using
(6) the spatial scaling factor 4 remains in the argument of G" on the left-hand side
of (52). As a result, v can only cancel out for arbitrary w if G" has the following
form

G|z —y|) = Ale —y| (33)

where A and « are arbitrary constants. Using (11), the final form of the filter G is
obtained 5
o+
L)(x)=———= x —y|*[(y)d® 54
) = fomes [ o= w L) (54)
where R; refers to a sphere with center @ and radius . (54) preserves all the
symmetries in section 2. If the integration argument is sufficiently smooth, the
integral converges for all « > —3.
The time invariance, the reflection invariance, the pressure invariance, and the
material indifference, even though not explicitly considered during the derivation,
are consistent with (54).
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The constraint for the filter function needs to hold for any filter operation used
in LES. However, in practice it is only relevant for schemes that utilize an explicit
filter, e.g. in the test filter used in Germano et al. (1991). In some LES models the
actual form of the filter kernel does not appear explicitly in the computation, and
the constraints for the filter derived above are irrelevant.

The restrictions on the filter kernel derived in this sub-section are rarely met by
the filtering procedures used in practical applications. For computational conve-
nience, explicit filtering at a given location is often performed by averaging values
from adjacent grid points. As a result, in many applications, such as near-wall
shear flows, the grid is highly anisotropic, and condition (26) is violated. To inves-
tigate this matter of grid dependence in LES, some empirical tests were performed
by Scotti et al. (1997) to determine whether anisotropic meshes have an effect on
isotropic turbulence. They show that on an anisotropic pencil-like grid, isotropic
turbulence was severely influenced in an unphysical manner. However, by isotropiza-
tion of the test-filter many of the features of isotropic turbulence could be restored.
This result suggests that the isotropic filter kernel (51) may restore some of the
physical properties of turbulence in large-eddy simulations.

4. Invariant properties of proposed large-eddy models

Almost all of the existing SGS models for large-eddy simulation of turbulence
which have been proposed have the functional form:

Tik = fik[ﬁ;w]. (55)

In order to capture all of the invariance properties of the Navier-Stokes equations,
(55) should reflect the same symmetries. Hence it is a necessary condition to have

T = Fie[u™; @] (56)

for all the transformations listed in Section 3.1. Nearly all SGS models proposed
in the literature conform with time translation, rotation, and reflection invariance.
However, as was first investigated by Speziale (1985), several SGS models (Birin-
gen & Reynolds 1981, Moin & Kim 1982, Bardina, Ferziger & Reynolds 1983) are
not Galilean invariant and, therefore, are also not invariant under the generalized
Galilean transformation (5). In the present investigation it will be shown that sev-
eral of the proposed SGS models are not scale invariant and not material indifferent.
However, it will be demonstrated that a certain class of models, namely the dynamic
models, obey all invariance properties derived in Section 3.

One of the most widely-used models in LES, the Smagorinsky model (Smagorin-
sky 1963), violates scale invariance but captures all other known symmetries. It is
given by

1 — = - 1 / Ou; ou
Tik — §6ik7—mm = —CA?*|S|S; where Sik = 5 ( “ + uk) ) (57)
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A is the filter width which is usually taken to be a function of the local grid spacing.
In order to see the shortcoming of (57), Eqgs. (36), (37), and (57) are used in (56)
to yield

1 o
Tik — gfsikrmm = —CA?*IS|Suy 2. (58)

The latter expression is not form invariant since it is dependent on the arbitrary
scaling parameter 4. The reason for this problem is the explicit external length
scale that has been introduced into the model, which is not related to any turbulent
length scale. This imposed length scale is particularly damaging in turbulent wall-
bounded flows. To overcome this problem empirical wall-damping functions have
been adopted to obtain reasonable results in the near-wall region. Wall-damping
functions are widely used in conjunction with Reynolds averaged models. There,
it has long been known that this approach is not frame invariant, and several new
ideas have been put forward to overcome this problem.

Several new near-wall self-similar solutions or scaling laws have been derived in
Oberlack (1997a,b) which rely heavily on the scaling symmetry. All near-wall scaling
laws may be captured in a large-eddy simulation of turbulence when the symmetry
properties of the Navier-Stokes equations are preserved by the model. In Appendix
A it 1s shown by analyzing the two-point correlation equation that the Smagorinsky
model is not able to capture important near-wall scaling laws. It can be concluded
that any model which contains a fixed external length scale, and which does not
account for the proper turbulent length scale, will violate the scaling symmetry.
Since the Smagorinsky model is only written in terms of the strain rate S, material
indifference is guaranteed.

A model which violates both scale invariance and material indifference is the
structure-function model by Métais & Lesieur (1992). The latter problem has al-
ready been reported by Meneveau (1996). The proposed SGS model is of the form

1 _
Tik — g(slkTmm = CSFA«’I](QE + T) — ﬁ(az))2>1/25ik (59)

where C°', and () are, respectively, a model constant and a spatial average. Using
the condition (56) in conjunction with the transformation (40) and (41) yields

1 1
Tik — §6zk7'mm = CSFA«’I](m)(:E + T) — ﬁ(m)(w) — 531(m)93rl)2>55ik' (60)

The latter expression is not of the form (59) since it contains an additional rotation
term. Hence, the structure-function model is not materially indifferent. As for the
Smagorinsky model, one can also show that (59) is not scale invariant.

A class of SGS models which have a similar deficiency are those explicitly con-

taining the rotation rate
_ 1 [/ 0u; Ou,
Ry = = P2y 61
J 2 (8:1;] 8:1;Z> ( )
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Lund & Novikov (1992) derived the most general form of SGS model comprising all
possible combinations of the strain and the rotation rate tensors. They proposed a
model of the form

1 L I
L Sik — - o o
Cs v o m o

For the same reason as the previous two models, (62) is also not scaling invariant.
Violation of material indifference can be shown by computing the rotation rate (61)
under the transformation (40) which yields

R}; = BixBji Ryt + c1ij (63)

Using this in (62), the required form of (41) under constant rotation cannot be
recovered since the frame rotation term, i.e. the last term of (63), does not cancel
out.

An SGS model which captures all the invariance requirements derived in Section
3 is the dynamic subgrid-scale model of Germano et al. (1991). They proposed a
procedure which, used in conjunction with the classical Smagorinsky model, results

in the following SGS model

1 (U tn — Umiip)Smn —

Tz‘k—§5ik7'mm: N VR ——[S[Su (64)
() 1518mn S = 151554554

Here, all the tilded quantities refer to the “test”-filter
)= [ Gy, (65)
\4

which corresponds to the filter length A and A > A. The test-filter quantities are
explicitly computed from the flow field. The resolved quantities are still denoted
by an overbar. The dynamic model contains the ratio of two length scales, which
i1s a dimensionless number, and therefore no external length scale is imposed to
break symmetries. Consequently, the scaling invariance (37) is recovered, as can be
shown by using (36), provided the proper filter function is utilized. It is straightfor-
ward to prove that frame invariance, generalized Galilean invariance, and material
indifference are also captured by the dynamic model.

Since its publication by Germano et al. (1991), several modified versions of the
dynamic model have been proposed. The model by Lilly (1992) keeps the Smagorin-
sky model as the base model, but the dynamic procedure is modified. Zang et
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al. (1993) used the mixed model, first introduced by Bardina et al. (1983), as a
new base model. In addition, they employed Lilly’s modification of the dynamic
procedure. Yoshizawa et al. (1996) developed a new base model and also adopted
Lilly’s modification of the dynamic procedure. The dynamic mixed model by Zang
et al. is further extended by Salvetti & Banerjee (1995). This new model contains
two parameters which are both computed with a modified dynamic procedure. It
can easily be shown that all the latter modified versions of the dynamic model cap-
ture the symmetry requirements developed in Section 3. It should be noted that
the dynamic procedure only restores scaling invariance, which may be violated by
certain base models. Other deficiencies such as the violation of Galilean invariance
or material indifference cannot be repaired by the dynamic procedure.

So far, it was tacitly assumed that the symmetries are not broken by the filtering
process. However, some of the common filter functions are not consistent with the
symmetries of the Navier-Stokes equations. One of these is the Gaussian filter

1 |z —y|°
G = m exXp [—T 5 (66)

since it does not match the form (54). The scaling symmetry is violated by (66).
Another common filter function which is not consistent with the form of (54) is
the spectral cut-off filter. In physical space it is given by

3 sin {1 (x; — yl)}
“= H 7%1?1‘ — i)

=1

(67)

(67) violates both rotation and scaling invariance. It has already been pointed out
by Vreman et al. (1994) that the latter filter should not be utilized as it may lead
to unrealizable results. In Liu et al. (1994) it was shown by analyzing experimental
results of a turbulent jet that (67) has a very prejudicial influence on the overall
statistical behavior of SGS models.

The classical isotropic top-hat filter

3 i e — A
G::{4FA3 if 2 —yl < (68)
0 otherwise
is of the form (54) with & = 0. Hence, it preserves all symmetry requirements of
Navier-Stokes equations.

5. Summary and conclusions

The Navier-Stokes equations admit certain symmetries, that is, there are certain
form-invariant transformations which preserve the equations. These symmetries are
one of the most fundamental properties of the equations of motion. They reflect
many features of classical mechanics. It was shown recently that certain statis-
tical properties of turbulent shear flows follow from these symmetries (Oberlack

1997a/b).
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To capture those statistical features of the Navier-Stokes equations that are as-
sociated with symmetries, the symmetries should be built into the SGS models and
the filter functions in LES of turbulence. This leads to necessary conditions on the
functional form of the SGS model and the filter kernel.

One particular symmetry, scale invariance, is violated by the most common SGS
model, the Smagorinsky model, because it contains the grid size as an explicit
length scale. This seriously impairs the ability of the model to describe turbulence.
In particular, in near-wall turbulent flows it is known that the Smagorinsky model
performs poorly and wall damping functions have to be used. In Appendix A it
is shown that the violation of the scaling symmetry excludes important turbulent
near-wall scaling laws such as the log law and the algebraic law. Other models
such as the structure function model by Métais & Lesieur (1992) violate material
indifference.

It appears that the dynamic Smagorinsky model by Germano et al. (1991) and
its successors (e.g. Lilly 1992, Zang et al. 1993, Yoshizawa et al. 1996, Salvetti
& Banerjee 1995) conserve the symmetries of Navier-Stokes equations. In fact,
numerical simulations have shown (see Germano et al. 1991) that the dynamic
model captures the proper near-wall behavior without introducing any artificial
wall treatment such as damping functions.

The symmetry restrictions for the filter function are severe in the sense that only a
very confined class of filters is allowed. For example, only a spherical filter function
admits finite rotation invariance. The consequences of anisotropic filter functions
may be illustrated by a simple example. Consider a simulation of homogeneous
turbulent shear flow where explicit filtering is employed. The integration domain of
the filter function may have the form of a box whose edges are aligned with the grid,
which is chosen to be parallel to the mean flow. In homogeneous shear the dominant
turbulent structures have a certain inclination to the mean flow. If the grid and the
filter were instead chosen to be parallel to this inclination, averaging would take
place over different flow structures. As a consequence, large scale quantities such
as the Reynolds stress tensor would exhibit different growth rates. Since a model
should be frame independent, the latter result is in contradiction to the basic physics
of the problem.

However, the practical implications may be less severe than they appear. Since
explicit filtering takes place on very few mesh points, the numerical truncation
error may be of the same order of magnitude as the error caused by a non-spherical
filter. Numerical tests for different applications need to be performed to determine
how closely the filter form given by (54) has to be matched. A first test towards
this requirement has been carried out by Scotti et al. (1997). An isotropized test-
filtering in conjunction with the dynamic model on a highly anisotropic pencil-like
mesh considerably improved the LES of isotropic turbulence.

An approach to overcome the very restricted form of the filter function may be
to introduce the strain rate into the filter function. Since the strain rate introduces
three additional directions corresponding to its principle axes, a more complex ge-
ometry for the filter volume may be in order.
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Another consequence of the required spherical form of the filter appears to be its
use in combination with wall-bounded flows. Close to solid walls the requirement
that the filter be spherical filter is always violated, and hence certain symmetries
are broken. However, the symmetries listed in Section 2 are only properties of
the Navier-Stokes equations. Symmetries are always broken by arbitrary boundary
conditions. One can conclude that a non-spherical filter near a solid wall is not a
restriction of LES, but a consequence of boundary conditions for turbulence models
in general.

It appears that future improvements for LES models should be along the lines
of the dynamic model since it mimics fundamental properties of the Navier-Stokes
equations. Despite its known superior performance, it has problems with stability
since the model coefficient in the SGS model may become negative. If the flow under
investigation possesses a homogeneous direction, averaging of the model coefficient
in that direction seems to stabilize the simulation. In more complex geometries
a clipping procedure is introduced which sets a negative model coefficient to zero.
However, the first approach may violate rotation invariance since a preferred direc-
tion has been introduced. The clipping approach seems to obey all the symmetry
properties of the Navier-Stokes equations but appears to be unrelated to Navier-
Stokes equations.
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Appendix A. Two-point correlation equation of LES models containing
an explicit external length scale

To investigate why SGS models containing an explicit length scale are inconsistent
with certain near-wall scaling laws, two-point correlation equations derived from
LES models are analyzed. The standard Reynolds decomposition is given by

w=(u)+u, p=(p) +7p, (A1)

where the instantaneous velocity « and the pressure p is assumed to be computed
by a LES in conjunction with a certain SGS model and () denotes an ensemble
average. Using this, several two-point quantities may be defined
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Using the latter definitions the two-point correlation equations are derived from

(14)

DR;; O{u);  O(u); OR;
B =~y et = R G (e rt) = (.0 G
oP; 0P, 00,1 ORuy; 0
B 8:1;1 B 8ri + 873] B 8:z;k + 8rk [R(lk)] _RZ(]k)]
OSiry; . 0
= e T g Sams— Tiw] (A46)

where D/Dt = 0/0t + (u)r0/0xr. The tensors in (A2)-(A5) are functions of the
physical and correlation space coordinates, @ and r = &1 — @ respectively. The
vertical line denotes the derivative to be taken with respect to @ and evaluated at
x+r.

In Oberlack (1997a) the 22-component of the two-point correlation equations
emerging from the Navier-Stokes equations (A6 with Sz); = Ti(;x) = 0) for parallel
mean flows of the form (u) = ((u)1(22),0,0)T was investigated. The entire system
contains one physical and three correlation coordinates and consists of equation
(A6) and two Poisson equations for P; and (); (not shown here). It was shown that
for four distinct mean velocity profiles similarity variables can be introduced so that
the number of independent variables is reduced by one.

The most general self-similar solution, with all group parameters different from
zero, 1s given by

45

1—45
uy = Cy (1?2 + q_4> - : (AT)
q1 q1 — gs
42 43
N T+ 25 N r N 3 + ==
rn = g}l , T2 = = g4 r3 = g}l ) (AS)
T2+ gr T2+ gr T2+ gr
2(1—3—5>
- Q4 1 ~
Ry = <:1?2 + q_> Ry, (A9)
1
(1-8) (1-8)
Py = (:1;2 + q—4> Py, Qg = (Slfz + q_4> Q2. (A10)
q1 q1
sl e
Riokys = | 22 + o Rary2, Roary = |22 + o Ro(ar){All)
where the “7” correlation quantities only depend on (A8). From (AT7)-(All) one

can conclude that scaling of the fluctuation velocity is according to

1—-95
q1
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The second similarity solution is given by ¢; = ¢5, which corresponds to the
log-law and (A7) changes to

ﬂl == q—7 In (l’z + q—4> + CQ, (A]_?))
i h!

while the similarity coordinates (A8) are unaltered and the correlation functions
Ryo, P2, Q2, Rsp)2, and Ry(yp) are un-scaled.

If ¢ =0 and g5 # 0, the exponential law holds and the new similarity variables
are given by

uy = Czexp (—q—5:1;2> + q—7, (Al4)
q4 qs

< 42 L . 43
ry =11+ —x2, rp =rg, 3 =13+ —r2, (A15)

g4 q4
Ry = e_23_2“1%227 (A16)
P2 :e_3af2ﬁ27 Qz :e_3af2@27 (A]_?)
Riagys = ¢ 1" Rigpya, Rogagy = € 142 Ryap). (A18)

where similar to (A7)-(A11) the “7” correlation quantities only depend on (A15).
It can be concluded that the fluctuation velocities scale as

45

u =e uq, (A19)
Finally, if g1 = ¢5 = 0, the mean velocity is given by
ﬂl = {q7T2 + C4 (AQO)

while the similarity variables (A15) are the same as for the exponential case, but
the correlations Rao, o, Q2, R(a1)2, and Ry(op) stay un-scaled.

In order to see that some common SGS models are not consistent with the latter
scaling laws if they contain an explicit external length scale, the Smagorinsky model
will be investigated. Suppose (57) is substituted for 7 in (A2)-(A5), then Sz, and
T jx) will read as follows

Simj(e,r) = —CAX(|S|(@)Sir(a juj(x)), (421)
Tij (@, r) = —CA*uj(@)|S|(=) (2 M), (A22)

Here S is computed from (57) while for u the Reynolds decomposition (A1) is used.

Using (21)-(22) in Egs. (A6) leads to a reduced set of possible self-similar solu-
tions. From the above-mentioned four scaling laws, only two allow for self-similarity
so that the number of independent variables reduces by one. These two scaling laws

are the exponential law (A14)-(A18) and the linear law (A20). Both have been
derived under the assumption that there is an external symmetry breaking length
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scale in the flow and no scaling with respect to the coordinates exists. It is straight-
forward to show that the algebraic law (A7) and the logarithmic law (A13) are no
longer self-similar solutions of the system (A6) if (21)-(22) is employed.
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