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A general theory of discrete filtering
for LES in complex geometry

By Oleg V. Vasilyev AND Thomas S. Lund

1. Motivation and objectives

In large eddy simulation (LES) of turbulent flows, the dynamics of the large scale
structures are computed while the effect of the small scale turbulence is modeled
using a subgrid scale model. The differential equations describing the space-time
evolution of the large scale structures are obtained from the Navier-Stokes equations
by applying a low-pass filter. In order for the resulting LES equations to have
the same structure as the Navier-Stokes equations, the differentiation and filtering
operations must commute. In inhomogeneous turbulent flows, the minimum size of
eddies that need to be resolved is different in different regions of the flow. Thus
the filtering operation should be performed with a variable filter width. In general,
filtering and differentiation do not commute when the filter width is non-uniform
in space.

The problem of non-commutation of differentiation and filtering with non-uniform
filter widths was studied by Ghosal and Moin (1995), who proposed a new class of
filters for which the commutation error could be obtained in closed form. The
application of this filter to the Navier-Stokes equations introduces additional terms
(due to commutation error) which are of second order in the filter width. Ghosal and
Moin suggested that the leading correction term be retained if high order numerical
schemes are used to discretize the LES equations. This procedure involves additional
numerical complexities which can be avoided by using the filters described in this
report. Van der Ven (1995) constructed a family of filters which commute with
differentiation up to any given order in the filter width; however, this approach is
limited to a specific choice of filters and does not address the issue of additional
boundary terms that would arise in finite domains.

Due to the lack of a straightforward and robust filtering procedure for inhomo-
geneous flows, most large eddy simulations performed to date have not made use of
explicit filters. The nearly universal approach for LES in complex geometries is to
argue that the finite support of the computational mesh together with the low-pass
characteristics of the discrete differencing operators effectively act as a filter. This
procedure will be referred to as implicit filtering since an explicit filtering operation
never appears in the solution procedure. Although the technique of implicit filter-
ing has been used extensively in the past, there are several compelling reasons to
adopt a more systematic approach. Foremost of these is the issue of consistency.
While it is true that discrete derivative operators have a low-pass filtering effect,
the associated filter acts only in the one spatial direction in which the derivative 1s
taken. This fact implies that each term in the Navier-Stokes equations is acted on
by a distinct one-dimensional filter, and thus there is no way to derive the discrete
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equations through the application of a single three-dimensional filter. Considering
this ambiguity in the definition of the filter, it is nearly impossible to make detailed
comparisons of LES results with filtered experimental data. In the same vein it
is not possible to calculate the Leonard term (Leonard, 1974) that appears as a
computable portion in the decomposition of the subgrid-scale stress.

The second significant limitation of the implicit filtering approach is the inability
to control numerical error. Without an explicit filter, there is no direct control in
the energy in the high frequency portion of the spectrum. Significant energy in this
portion of the spectrum coupled with the non-linearities in the Navier-Stokes equa-
tions can produce significant aliasing error. Furthermore, all discrete derivative
operators become rather inaccurate for high frequency solution components, and
this error interferes with the dynamics of the small scale eddies. This error can be
particularly harmful (Lund and Kaltenbach, 1995) when the dynamic model (Ger-
mano et al., 1991; Ghosal et al., 1995) is used since it relies entirely on information
contained in the smallest resolved scales. In addition, it is difficult to define the
test to primary filter ratio which is needed as an input to the dynamic procedure.

The difficulties associated with the implicit filtering approach can be alleviated
by performing an explicit filtering operation as a part of the solution process. By
damping the energy in the high frequency portion of the spectrum, it is possible
to reduce or eliminate the various sources of numerical error that dominate this
frequency range. Explicit filtering reduces the effective resolution of the simulation
but allows the filter size to be chosen independently of the mesh spacing. Further-
more, the various sources of numerical error that would otherwise enter the stresses
sampled in the dynamic model can be controlled, which can ultimately result in
more accurate estimate for the subgrid scale model coefficient. Finally, the shape
of the filter is known exactly, which facilitates comparison with experimental data
and the ability to compute the Leonard term.

To realize the benefits of an explicit filter, it is necessary to develop robust and
straightforward discrete filtering operators that commute with numerical differen-
tiation. As mentioned above, the earlier works in this area required either adding
corrective terms to the filtered Navier-Stokes equations or required the use of a re-
stricted class of filters that could not account properly for non-periodic boundaries.
The objective of this work is to develop a general theory of discrete filtering in
arbitrary complex geometry and to supply a set of rules for constructing discrete
filters that commute with differentiation to the desired order.

This report summarizes the essential results; the details of mathematical deriva-
tions and proofs are described by Vasilyev et al. (1997), hereafter denoted by VLM.

2. Accomplishments

2.1 Commutation error of filtering and differentiation operations

Consider a one-dimensional field 1)(x) defined in a finite or infinite domain [a, b].
Let f(x) be a monotonic differentiable function which defines the mapping from
the domain [a, b] into the domain [, ], i.e. &€ = f(x). f(a) can be associated with
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mapping of the non-uniform computational grid in the domain [a,b] to a uniform
grid of spacing A, where the non-uniform grid spacing is given by h(z) = A/f/(:zj)

Let @ = F(£) be the inverse mapping (F(f(x)) = x). The filtering operation is
defined in an analogous way as in (Ghosal and Moin, 1995). Given an arbitrary
function ¢ (x), we obtain the new function ¢(§) = ¥(F(£)) defined on the interval
[ar, B]. The function ¢(€) is then filtered using the following definition:

o= [ o(550e) s, &

where G is a filter function, which can have different shapes in various regions of the
domain. This definition is more general then the one commonly used in the LES
literature and, as will be shown later, is crucial for elimination of boundary terms
in the commutation error. The introduction of filters of different shapes in different
parts of the domain is necessitated by considering inhomogeneous (non-periodic)
fields. If we assume that the function ¢(¢) is homogeneous (periodic) in [«, 5], then
a periodic filter can have the same shape throughout the domain.
The filtering operation in physical space can be written as

=5 [ ¢ (M5 ) ) vs s )

Note that definitions (1) and (2) are equivalent. However, the filtering operation
(1) in the mapped space is much easier to analyze and implement than (2), and we
will use it throughout unless stated otherwise.

Let us consider first the commutation error of filtering and derivative operations
in one spatial dimension. We define an operator that measures commutation error
by

d Ay dyp

ol _dv_dv (3)
de| — dx dx
Introducing the change of variables n = £ — A(, Eq. (1) can be rewritten as

E—a

a6 = [ eo6e-aodc @

A

Performing the formal Taylor series expansion of ¢(§ — A() in powers of A and
changing the order of summation and integration, we obtain

where Dg = % is the derivative operator and M*(¢) is the k-th filter moment
defined by

M*(E)Dg ¢(8), (5)

E—a

M = [ G (©
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The series (5) may have either infinite or finite radius of convergence depending
on the filter moments. For the discrete filters, as shown in VLM, the radius of
convergence of the series is infinity.

Substituting (5) into (3) and skipping the algebra we obtain

=

where Ap (k > 1) and By (k > 0) are, in general, nonzero coefficients. Thus,
the commutation error is determined by the filter moments, M*(¢), and mapping
function, F(¢).

In this report we consider a general class of filters which satisfy the following
properties:

Z A M (EAY + Z Br— de , (7)

M°(&) =1 for € € [, B]; (8a)
MM =0for k=1,...,n—1and ¢ € [a, §]; (8b)
M¥(€) exist for k > n. (8¢)

There are many examples of filters which satisfy these properties when the function
#(€) is defined in the domain (—oo, +00). One is the exponentially decaying filter
defined in (Van der Ven, 1995). Another example is the correlation function of
the Daubechies scaling function used in multi-resolution analysis for constructing
orthonormal wavelet bases (Beylkin, 1995; Beylkin and Saito, 1993). Examples of
such filters with 5, 9, and 17 vanishing moments and the corresponding Fourier
transforms, G(k) = +Oooo G(&) exp(—ik€)dE, are shown in Fig. 1.

We also note that the definition (8) does not require that the filter kernel be
symmetric. This allows us to use a wider class of filters than in (Ghosal and Moin,
1995; Van der Ven, 1995). We do not present continuous filters on an interval, which
satisfy definitions (8a-8c), since as it will be shown later, for practical purposes we
need discrete filters. For now we only assume that such filters exist and that they
can be constructed.

Using properties (8a) and (8b) it follows that

oM*
73

(&)=0 for k=0,...,n—1. (9)
Consequently, the commutation error (7) is

[%] = O(A"). (10)

It is easy to show that in the homogeneous (periodic) case, when the shape of the
filter does not depend on the location, and the mapping from the physical to the
computational domain is linear, Ay is exactly zero for any k and the filter moments
are not functions of the location. This results in zero commutation error.
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FIGURE 1. Filters G(£), (a), with 5 (——), 9 (----), and 17 (—-—) vanishing

moments and corresponding Fourier transforms G(k), (b).

The non-uniform filtering operation in one spatial dimension can be extended
easily to three spatial dimensions (see VLM). As in the one-dimensional case this
transformation can be associated with the mapping of spatially non-uniform com-
putational grid to a uniform grid with spacings Ay, Ay, Aj in the corresponding
directions. If one performs the same type of analysis as in one-dimensional case, it
is easy to show (see VLM) that the commutation error in three spatial dimensions
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is given by
)
En

Thus, the commutation error of differentiation and filtering operation is no more
than the error introduced by an n-th order finite difference scheme, provided that
the filter has n — 1 zero moments.

] — O(A7LALLAD). (1)

2.2 Duscrete filtering in complex geometry

In large eddy simulation of turbulent flows, the solution is available only on a set
of discrete grid points, and thus discrete filters are required in various operations.
The machinery developed in Section 2.1 can be adapted to discrete filtering. In this
section we will limit ourselves to consideration of discrete one-dimensional filtering,
since three dimensional filtering can be considered as an application of a sequence
of three one-dimensional filters. Also, since the filtering operation is performed in
the mapped space, we will consider only the case of uniformly sampled data.

2.2.1 Construction of discrete filters

Let us consider a one-dimensional field ¢(€) defined in the domain [a, 3]. {¢;}
corresponds to values of ¢(¢;) at locations {; = a +Aj (j =0,...,N), where A is
the sampling interval. A one-dimensional filter is defined by

L;

1 C_ 4
ZG <§]A nwf]) = Z Wio(n — 1), (12)

I=—K;

where 6(¢) is the Dirac é-function and W‘lj are weight factors. We consider the general
class of non-symmetric filters for which K; # L;. One of the important aspects of
discrete filters is that all filter moments exist and the radii of convergence of Taylor
series (5) and other related series are infinite. Substitution of (12) into (1) gives the
following definition for a discrete filter

L; ‘
G;= Y, Wit (13)

I=—K;

It is the property (12) which allows us to apply results of Section 2.1 to discrete
filters.

In light of the filter definition (8), the weight factors should satisfy the following
properties

Lj
Y owi=1, (14a)

I=—K;

Lj
d Imwl=0, m=1,..n-1 (14b)
I=—K;
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Equations (14) give us n constraints on W‘lj and are solvable if and only if L; +
K;+1>n. If L; + K; +1 > n then additional constraints can be applied.

Conditions (14) give the minimum number of degrees of freedoms for a discrete
filter in order for the derivative and filtering operations to commute to order n.
This condition gives the minimum filter support, which can be increased by adding
additional constraints. The additional linear or nonlinear constraints can be altered
depending on the desired shape of the Fourier transform é’(k) associated with the
filter (12) given by

Lj
Gk)= ) wle sk (15)

I=—K;
number of
case Vanishing W_3 W_9g W_1 Wg W1 W9 W3 W4qu W5
moments
L1 io7oq
2| 2 § 5 75 3
3 2 I
41 3 61 ~5 1T
5| hii-i
6| s |t iioh
7 4 % % _15_6 % T 32 %
8| 4 3 35 16 16 3 33
9 4 T 32 % % % _35_2 %
101 5 |55 =37 &1 io o4 "3 04

TABLE 1. The values of the weight factors and the number of vanishing moments
for different minimally constrained discrete filters.

A desirable constraint on a filter is that its Fourier transform be zero at the cut-
off frequency, i.e. G(w/A) = 0. The mathematical equivalent of this requirement
is given by

> (-D'w] =o. (16)

I=—K;

Condition (14) and (16) represent the minimum number of constraints which should
be imposed on the filter. Examples of weights for minimally constrained discrete
filters are given in Table 1 and associated Fourier transforms for some of these filters
are presented in Figs. 2-4. Examples of the Fourier transforms of minimally con-
strained symmetric filters with one, three, and five vanishing moments are presented
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FIGURE 2. Fourier transform é’(k) of the symmetric minimally constrained dis-
crete filters with one (----), three (—-—), and five ( ) vanishing moments
corresponding respectively to cases 1, 6, and 10 given in Table I.

in Fig. 2. These filters correspond respectively to cases 1, 6, and 10 presented in
Table 1. We see that increasing the number of vanishing moments yields a better
approximation to the sharp cutoff filter, which is more appealing from a physical
point of view. It also can be observed that filters shown in Fig. 2 have different
effective cut-off frequencies. Thus, in order to control the effective cut-off frequency,
additional constraints should be introduced. The Fourier transform of asymmetric
filters with four vanishing moments corresponding to cases 8 and 9 presented in Ta-
ble 1 are shown in Figs. 3 and 4 correspondingly. Note that the asymmetric filters
introduce phase shifts due to their non-zero imaginary parts. The imaginary part
should be minimized by introducing additional constraints. Also notice the over-
shoot in the real part and absolute value of the filter shown in Fig. 3. In general,
an overshoot is not desirable since it may lead to non-physical growth of energy.
Additional constraints are necessary in order to reduce or remove overshoot.
In the interior of the domain, in order to eliminate the phase shift, the filter
should be symmetric, i.e. the following relation should be satisfied
W{:W‘il, I=1,...,L, (17a)
L]‘ = I&’]‘ = L. (17[))

In this case the filter only adjusts the amplitude of a given wavenumber component
of the solution and leaves its phase unchanged. Near the boundaries, however,
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FIGURE 3. Real R{G(k)} (—-—), imaginary S{G(k)} (----), and absolute value
G| (

vanishing moments corresponding to case 8 given in Table I.

) of Fourier transform é’(k) of the asymmetric discrete filter with four
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FIGURE 4. Real R{G(k)} (—-—), imaginary S{G(k)} (----), and absolute value
G| (

vanishing moments corresponding to case 9 given in Table I.

) of Fourier transform G’(k) of the asymmetric discrete filter with four
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number of
case |vanishing additional constraints Wo W41 W9 W3 Wy Was
moments
A 7
1 3 N G(Aﬁ/?’) = 1/2 131532 3941516 1270238 _2:1;(1)4 _6290132 _6812
GmM(Ar)=0,m=0,...,5
2 3  G(Ar/2)=1/2 T 5 0 -+
GmM(Ar)=0,m=0,...,1
3 3 G(2AT/3)=1/2 et rv i YT:

GU(Ar)=0,m=0,...,1

TABLE 2. The values of the weight factors and the number of vanishing moments
for different linearly constrained discrete filters.

it may be necessary to make the filter asymmetric. In this case a phase shift is
introduced and one is interested in minimizing this effect.

Examples shown in Figs. 2-4 demonstrate the necessity of the introduction of
additional constraints which ensure that the resulting filter has all the desired prop-
erties. One way to constrain the filter is to specify either its value or the value of
its derivative for a given frequency ks. Examples of weights for filters with three
vanishing moments and different linear constraints are given in Table 2 and as-
sociated Fourier transforms for these filters are presented in Fig. 5. These filters
are constrained in such a way that the effective filter widths are 3A, 2A, and 3/2A
(corresponding to characteristic wavenumbers Ak, /7 =1/3,1/2,2/3). We observed
that for the filters with relatively small characteristic wavenumbers, the number of
zero derivatives at k = 7 /A should be considerably larger than for filters with char-
acteristic wavenumbers close to 7/A. If we chose this number small enough, then
the value of the Fourier transform of the filter for frequencies larger then character-
istic wavenumber may reach a large amplitude. Thus setting the large number of
derivatives at k = 7 /A forces the filter to have the desired shape.

2.2.2 Alternative construction of filters with desired properties

Linear constraints are often enough to obtain the desired filter. However, there
are situations, especially for non-symmetric filters, where it is difficult to choose a
limited number of constraints such that the filter is close to the desired shape. It is
much more desirable to specify the target filter function G’t(k) and to construct a
filter which will be close to it. One way of doing so 1s to find the set of filter weights
which satisfy all linear constraints and minimize a following functional

/Oﬂ/A (<{Gwm - ét(k)})2 dk + /Oﬂ/A (s{cm - Gt(k)}>2 dk,  (18)

where < {z} and I {z} denote correspondingly real and imaginary parts of a com-
plex number z. Note that integral ranges as well as relative weights for real and
imaginary contributions to the functional can be arbitrarily set depending on the
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FIGURE 5. Fourier transform G’(k) of the symmetric discrete filters with different
additional linear constraints corresponding to cases 1 (----), 2 (—-—), and 3

( ) given in Table II.

filter function G’t(k) The mathematical details of the minimization are given in
VLM. Figure 6(a) shows an example of an asymmetric filter with eight point sten-
cil, (K = 2 and L = 5). The real part of the filter is constrained to be 1/2 at
Ak/m = 1/2. The filter value and its first two derivatives are constrained to be zero
at k = 7/A. In order to improve the filter’s characteristics, the minimization was
performed, where requirements for two derivatives at k = x/A were relaxed and
quadratic minimization as described in VLM was used instead. The resulting filter
is shown in Fig. 6(b). Comparing both filters we can see that the filter presented
in Fig. 6(b) has better characteristics. We found that, in general, minimization
procedure gives better filters than the ones obtained using only linear constraints.

2.2.8 Pade filters

Discrete filters with vanishing moments are not limited to the simple weighted
average form of (13). Pade-type filters are described in this subsection as an example
of an alternative formulation. Other discrete filtering approaches can be utilized as
well but they will not be discussed here. A Pade filter is defined as

N;j L;
Y Vibirm = > Wit (19)
m=—M;

I=—K;

and requires the solution of linear systems of equations. The Fourier transform
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FIGURE 6. Real R{G(k)} (—-—), imaginary S{G(k)} (----), and absolute value
G| (

three vanishing moments obtained using only linear constraints (a) and quadratic

) of Fourier transform G’(k) of the asymmetric discrete filter with

minimization (b).
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case additional constraints Vg V41 V49 V43 Wo Wi W9 Wiy Wy W5
A _ 543 1405 313 51 63 105 15 45 5 1
1| G(A7/3)=1/2 13% — 312 156 — 517 356 513 128 109 513 ToHd
G (AT)=0,m=0,...,9
A _ 7 5 7 175 5 35 1
2 . G(Ar/2) =1/2 w0 5 31 76s 18 1536 0 1536
Gm(AT)=0,m=0,...,7
A _ 49 13 19 11 119 1 1
31  GRAn/3)=1/2 130 §0 240 350 480 15 180
Gm(AT)=0,m=0,...,3

TABLE 3. The values of the weight factors for different linearly constrained sym-
metric Pade filters with five vanishing moments.

~

G(k) associated with Pade-type filters is given by

L; J_—iAkl
R ~ . We
G(k) = D . (20)

ENJ vi e—iAkm
m=—M; "™

In the case of Pade filters conditions (14) can be rewritten as

L
Y wi=1, (21a)
I=—Kj
Nj
o o =1, (21b)
m=—M;
Nj L;
Z mv) = Z liW‘lj, i=1,...n—1. (21¢)
m:—MJ‘ l:—Ryj

It is straightforward to constrain Pade filters to a specific value at specific fre-
quency. Nevertheless linear constraining of filter derivatives é(m)(k) at certain
frequency requires additional specification of filter value as well as all previous
derivatives. For more details on Pade filters we refer to (Lele, 1992).

The use of Pade-type filters gives more flexibility in constructing filters which are
closer to spectral cut-off filters. Examples of weights for symmetric (M; = N; and
K; = Lj) Pade filters with five vanishing moments and different linear constraints
are given in Table 3 and associated Fourier transforms are presented in Fig. 7.
Comparing Figs. 5 and 7 it can be seen that Pade filters are considerably better
approximations of sharp cut-off filters.

2.2.4 Commutation error of discrete filtering and differentiation

In Section 2.1 we demonstrated that the commutation error of continuous filter-
ing and differentiation operators is determined by the number of vanishing moments



80 0. V. Vasilyev €& T. S. Lund

1.0
0.8 4
0.6 4
~~
e
~—
<
O 0.4 4
0.2 4
0
0 0.25 0.50 0.75 1.00

FIGURE 7. Fourier transform G’(k) of the symmetric Pade filters with different
additional linear constraints corresponding to cases 1 (----), 2 (—-—), and 3

( ) given in Table III.

of the continuous filter. As it was mentioned earlier in this section the same con-
clusion is valid for discrete filters. In order to validate that discrete filtering and

differentiation commute up to the same order, we perform a numerical test in which
we differentiate numerically the Chebyshev polynomial of the 16-th order and de-
termine the commutation error of discrete filtering and differentiation operators.
Since the derivative of the Chebyshev polynomial can be calculated exactly, we can
calculate the truncation error of the numerical differentiation as well. We choose
the nonuniform computational mesh to be given by

) .

tanh () ’

r; = —

where N, is the total number of grid points and + is the stretching parameter. The
choice for the hyperbolic grid stretching is motivated by its frequent use in both
DNS and LES simulations of wall-bounded flows. For the hyperbolic tangent grid
the ratio of largest to smallest grid size is a function of stretching parameter v and
is given by cosh® v/ sinh~. In this test we choose v = 2.75, which makes this ratio
approximately 62. The differentiation operator is chosen to be fourth order accurate
on the non-uniform grid. Figure 8 shows the truncation error of finite difference
scheme and commutation errors as a function of the total number of grid points
for filters with different number of zero moments. The results presented on Fig. 8
confirm that the discrete filtering and differentiation operators commute up to the
n-th order, provided that discrete filter has n — 1 vanishing moments.
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FIGURE 8. Truncation error (
tion error for discrete filtering and differentiation operations for the filters with one

) of the differentiation operator and commuta-

(e ), three (----), five (—-—), and seven (— - —) vanishing moments.

2.8 Coneclusions

We have formulated general requirements for a filter having a non-uniform filter
width which ensure that the differentiation and filtering operations commute to
any desired order. Minimization of the commutation error is achieved by requiring
that the filter has a number of vanishing moments. Application of this filter to the
Navier-Stokes equations results in the standard LES equations which can be solved
on a non-uniform computational grid. The commutation error can be neglected
provided that the filter has n — 1 vanishing moments, where n is the order of the
numerical discretization scheme used to solve the LES equations. A general set of
rules for constructing discrete filters in complex geometries is provided. The use of
these filters ensures consistent derivation of discrete LES equations. The resulting
discrete filtering operation is very simple and efficient.

3. Future plans

The commutative discrete filters presented in this report enable us to perform
consistent large eddy simulations of inhomogeneous turbulent flows. The first step
in this direction is to study the effect of explicit filtering in LES of turbulent channel
flow. For that purpose we are planning to use the fourth-order scheme described
in (Morinishi et al., 1997). A discrete filter with a number of vanishing moments
will be applied to the incremental field at the conclusion of each time step. This
procedure guarantees that no high frequency signal is added to the field from the
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previous time step. The dynamic procedure should be modified due to explicit fil-
tering of nonlinear terms. As more experience is gained with the explicit filtering,
it will be determined whether explicit filtering is a cost-effective means of improv-
ing simulation results. If so, explicit filtering will be applied to more complicated
problems.
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