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�� Motivation and objectives

In large eddy simulation �LES� of turbulent �ows� the dynamics of the large scale
structures are computed while the e�ect of the small scale turbulence is modeled
using a subgrid scale model� The di�erential equations describing the space�time
evolution of the large scale structures are obtained from the Navier�Stokes equations
by applying a low�pass �lter� In order for the resulting LES equations to have
the same structure as the Navier�Stokes equations� the di�erentiation and �ltering
operations must commute� In inhomogeneous turbulent �ows� the minimum size of
eddies that need to be resolved is di�erent in di�erent regions of the �ow� Thus
the �ltering operation should be performed with a variable �lter width� In general�
�ltering and di�erentiation do not commute when the �lter width is non�uniform
in space�
The problem of non�commutation of di�erentiation and �ltering with non�uniform

�lter widths was studied by Ghosal and Moin ��		
�� who proposed a new class of
�lters for which the commutation error could be obtained in closed form� The
application of this �lter to the Navier�Stokes equations introduces additional terms
�due to commutation error� which are of second order in the �lter width� Ghosal and
Moin suggested that the leading correction term be retained if high order numerical
schemes are used to discretize the LES equations� This procedure involves additional
numerical complexities which can be avoided by using the �lters described in this
report� Van der Ven ��		
� constructed a family of �lters which commute with
di�erentiation up to any given order in the �lter width� however� this approach is
limited to a speci�c choice of �lters and does not address the issue of additional
boundary terms that would arise in �nite domains�
Due to the lack of a straightforward and robust �ltering procedure for inhomo�

geneous �ows� most large eddy simulations performed to date have not made use of
explicit �lters� The nearly universal approach for LES in complex geometries is to
argue that the �nite support of the computational mesh together with the low�pass
characteristics of the discrete di�erencing operators e�ectively act as a �lter� This
procedure will be referred to as implicit �ltering since an explicit �ltering operation
never appears in the solution procedure� Although the technique of implicit �lter�
ing has been used extensively in the past� there are several compelling reasons to
adopt a more systematic approach� Foremost of these is the issue of consistency�
While it is true that discrete derivative operators have a low�pass �ltering e�ect�
the associated �lter acts only in the one spatial direction in which the derivative is
taken� This fact implies that each term in the Navier�Stokes equations is acted on
by a distinct one�dimensional �lter� and thus there is no way to derive the discrete
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equations through the application of a single three�dimensional �lter� Considering
this ambiguity in the de�nition of the �lter� it is nearly impossible to make detailed
comparisons of LES results with �ltered experimental data� In the same vein it
is not possible to calculate the Leonard term �Leonard� �	�
� that appears as a
computable portion in the decomposition of the subgrid�scale stress�

The second signi�cant limitation of the implicit �ltering approach is the inability
to control numerical error� Without an explicit �lter� there is no direct control in
the energy in the high frequency portion of the spectrum� Signi�cant energy in this
portion of the spectrum coupled with the non�linearities in the Navier�Stokes equa�
tions can produce signi�cant aliasing error� Furthermore� all discrete derivative
operators become rather inaccurate for high frequency solution components� and
this error interferes with the dynamics of the small scale eddies� This error can be
particularly harmful �Lund and Kaltenbach� �		
� when the dynamic model �Ger�
mano et al�� �		�� Ghosal et al�� �		
� is used since it relies entirely on information
contained in the smallest resolved scales� In addition� it is di�cult to de�ne the
test to primary �lter ratio which is needed as an input to the dynamic procedure�

The di�culties associated with the implicit �ltering approach can be alleviated
by performing an explicit �ltering operation as a part of the solution process� By
damping the energy in the high frequency portion of the spectrum� it is possible
to reduce or eliminate the various sources of numerical error that dominate this
frequency range� Explicit �ltering reduces the e�ective resolution of the simulation
but allows the �lter size to be chosen independently of the mesh spacing� Further�
more� the various sources of numerical error that would otherwise enter the stresses
sampled in the dynamic model can be controlled� which can ultimately result in
more accurate estimate for the subgrid scale model coe�cient� Finally� the shape
of the �lter is known exactly� which facilitates comparison with experimental data
and the ability to compute the Leonard term�

To realize the bene�ts of an explicit �lter� it is necessary to develop robust and
straightforward discrete �ltering operators that commute with numerical di�eren�
tiation� As mentioned above� the earlier works in this area required either adding
corrective terms to the �ltered Navier�Stokes equations or required the use of a re�
stricted class of �lters that could not account properly for non�periodic boundaries�
The objective of this work is to develop a general theory of discrete �ltering in
arbitrary complex geometry and to supply a set of rules for constructing discrete
�lters that commute with di�erentiation to the desired order�

This report summarizes the essential results� the details of mathematical deriva�
tions and proofs are described by Vasilyev et al� ��		��� hereafter denoted by VLM�

�� Accomplishments

��� Commutation error of �ltering and di�erentiation operations

Consider a one�dimensional �eld ��x� de�ned in a �nite or in�nite domain �a� b��
Let f�x� be a monotonic di�erentiable function which de�nes the mapping from
the domain �a� b� into the domain ��� ��� i�e� � � f�x�� f�x� can be associated with
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mapping of the non�uniform computational grid in the domain �a� b� to a uniform
grid of spacing �� where the non�uniform grid spacing is given by h�x� � ��f

�

�x��
Let x � F ��� be the inverse mapping �F �f�x�� � x�� The �ltering operation is

de�ned in an analogous way as in �Ghosal and Moin� �		
�� Given an arbitrary
function ��x�� we obtain the new function ���� � ��F ���� de�ned on the interval
��� ��� The function ���� is then �ltered using the following de�nition�

���� �
�

�

Z �

�

G

�
� � �

�
� �

�
����d�� ���

where G is a �lter function� which can have di�erent shapes in various regions of the
domain� This de�nition is more general then the one commonly used in the LES
literature and� as will be shown later� is crucial for elimination of boundary terms
in the commutation error� The introduction of �lters of di�erent shapes in di�erent
parts of the domain is necessitated by considering inhomogeneous �non�periodic�
�elds� If we assume that the function ���� is homogeneous �periodic� in ��� ��� then
a periodic �lter can have the same shape throughout the domain�
The �ltering operation in physical space can be written as

��x� �
�

�

Z b

a

G

�
f�x� � f�y�

�
� f�x�

�
��y�f

�

�y�dy� ���

Note that de�nitions ��� and ��� are equivalent� However� the �ltering operation
��� in the mapped space is much easier to analyze and implement than ���� and we
will use it throughout unless stated otherwise�
Let us consider �rst the commutation error of �ltering and derivative operations

in one spatial dimension� We de�ne an operator that measures commutation error
by �

d�

dx

�
�

d�

dx
�
d�

dx
� ���

Introducing the change of variables � � � ��	� Eq� ��� can be rewritten as

���� �

Z ���
�

���
�

G �	� ����� ��	�d	� �
�

Performing the formal Taylor series expansion of ��� � �	� in powers of � and
changing the order of summation and integration� we obtain

���� �
��X
k��

����k

k�
�kMk���Dk

������ �
�

where Dk
� �

dk

d�k
is the derivative operator and Mk��� is the k�th �lter moment

de�ned by

Mk��� �

Z ���

�

���

�

	kG�	� ��d	� ���
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The series �
� may have either in�nite or �nite radius of convergence depending
on the �lter moments� For the discrete �lters� as shown in VLM� the radius of
convergence of the series is in�nity�
Substituting �
� into ��� and skipping the algebra we obtain

�
d�

dx

�
�

��X
k��

AkM
k����k �

��X
k��

Bk
dMk

d�
����k� ���

where Ak �k � �� and Bk �k � �� are� in general� nonzero coe�cients� Thus�
the commutation error is determined by the �lter moments� Mk���� and mapping
function� F ����
In this report we consider a general class of �lters which satisfy the following

properties�

M���� � � for � � ��� ��� ��a�

Mk��� � � for k � �� � � � � n� � and � � ��� ��� ��b�

Mk��� exist for k � n� ��c�

There are many examples of �lters which satisfy these properties when the function
���� is de�ned in the domain �������� One is the exponentially decaying �lter
de�ned in �Van der Ven� �		
�� Another example is the correlation function of
the Daubechies scaling function used in multi�resolution analysis for constructing
orthonormal wavelet bases �Beylkin� �		
� Beylkin and Saito� �		��� Examples of
such �lters with 
� 	� and �� vanishing moments and the corresponding Fourier
transforms� �G�k� �

R��
��

G��� exp��ik��d�� are shown in Fig� ��
We also note that the de�nition ��� does not require that the �lter kernel be

symmetric� This allows us to use a wider class of �lters than in �Ghosal and Moin�
�		
� Van der Ven� �		
�� We do not present continuous �lters on an interval� which
satisfy de�nitions ��a��c�� since as it will be shown later� for practical purposes we
need discrete �lters� For now we only assume that such �lters exist and that they
can be constructed�
Using properties ��a� and ��b� it follows that


Mk


�
��� � � for k � �� � � � � n� �� �	�

Consequently� the commutation error ��� is

�
d�

dx

�
� O��n�� ����

It is easy to show that in the homogeneous �periodic� case� when the shape of the
�lter does not depend on the location� and the mapping from the physical to the
computational domain is linear� Ak is exactly zero for any k and the �lter moments
are not functions of the location� This results in zero commutation error�
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Figure �� Filters G���� �a�� with 
 � �� 	 � �� and �� � � vanishing
moments and corresponding Fourier transforms �G�k�� �b��

The non�uniform �ltering operation in one spatial dimension can be extended
easily to three spatial dimensions �see VLM�� As in the one�dimensional case this
transformation can be associated with the mapping of spatially non�uniform com�
putational grid to a uniform grid with spacings ��� ��� �� in the corresponding
directions� If one performs the same type of analysis as in one�dimensional case� it
is easy to show �see VLM� that the commutation error in three spatial dimensions
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is given by �

�


xk

�
� O��n

� ��
n
� ��

n
� �� ����

Thus� the commutation error of di�erentiation and �ltering operation is no more
than the error introduced by an n�th order �nite di�erence scheme� provided that
the �lter has n� � zero moments�

��� Discrete �ltering in complex geometry

In large eddy simulation of turbulent �ows� the solution is available only on a set
of discrete grid points� and thus discrete �lters are required in various operations�
The machinery developed in Section ��� can be adapted to discrete �ltering� In this
section we will limit ourselves to consideration of discrete one�dimensional �ltering�
since three dimensional �ltering can be considered as an application of a sequence
of three one�dimensional �lters� Also� since the �ltering operation is performed in
the mapped space� we will consider only the case of uniformly sampled data�

����� Construction of discrete �lters

Let us consider a one�dimensional �eld ���� de�ned in the domain ��� ��� f�jg
corresponds to values of ���j� at locations �j � � ��j �j � �� � � � �N�� where � is
the sampling interval� A one�dimensional �lter is de�ned by

�

�
G

�
�j � �

�
� �j

�
�

LjX
l��Kj

wj
l ��� � �j�l�� ����

where ���� is the Dirac ��function and wj
l are weight factors� We consider the general

class of non�symmetric �lters for which Kj �� Lj � One of the important aspects of
discrete �lters is that all �lter moments exist and the radii of convergence of Taylor
series �
� and other related series are in�nite� Substitution of ���� into ��� gives the
following de�nition for a discrete �lter

�j �

LjX
l��Kj

wj
l�j�l� ����

It is the property ���� which allows us to apply results of Section ��� to discrete
�lters�
In light of the �lter de�nition ���� the weight factors should satisfy the following

properties

LjX
l��Kj

wj
l � �� ��
a�

LjX
l��Kj

lmwj
l � �� m � �� � � � n� �� ��
b�
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Equations ��
� give us n constraints on wj
l and are solvable if and only if Lj �

Kj � � � n� If Lj �Kj � � 
 n then additional constraints can be applied�
Conditions ��
� give the minimum number of degrees of freedoms for a discrete

�lter in order for the derivative and �ltering operations to commute to order n�
This condition gives the minimum �lter support� which can be increased by adding
additional constraints� The additional linear or nonlinear constraints can be altered
depending on the desired shape of the Fourier transform �G�k� associated with the
�lter ���� given by

�G�k� �

LjX
l��Kj

wj
l e
�i�kl� ��
�

number of
case vanishing w�� w�� w�� w� w� w� w� w� w�
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Table �� The values of the weight factors and the number of vanishing moments
for di�erent minimally constrained discrete �lters�

A desirable constraint on a �lter is that its Fourier transform be zero at the cut�
o� frequency� i�e� �G����� � �� The mathematical equivalent of this requirement
is given by

LjX
l��Kj

����lwj
l � �� ����

Condition ��
� and ���� represent the minimum number of constraints which should
be imposed on the �lter� Examples of weights for minimally constrained discrete
�lters are given in Table � and associated Fourier transforms for some of these �lters
are presented in Figs� ��
� Examples of the Fourier transforms of minimally con�
strained symmetric �lters with one� three� and �ve vanishing moments are presented
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Figure �� Fourier transform �G�k� of the symmetric minimally constrained dis�
crete �lters with one � �� three � �� and �ve � � vanishing moments
corresponding respectively to cases �� �� and �� given in Table I�

in Fig� �� These �lters correspond respectively to cases �� �� and �� presented in
Table �� We see that increasing the number of vanishing moments yields a better
approximation to the sharp cuto� �lter� which is more appealing from a physical
point of view� It also can be observed that �lters shown in Fig� � have di�erent
e�ective cut�o� frequencies� Thus� in order to control the e�ective cut�o� frequency�
additional constraints should be introduced� The Fourier transform of asymmetric
�lters with four vanishing moments corresponding to cases � and 	 presented in Ta�
ble � are shown in Figs� � and 
 correspondingly� Note that the asymmetric �lters
introduce phase shifts due to their non�zero imaginary parts� The imaginary part
should be minimized by introducing additional constraints� Also notice the over�
shoot in the real part and absolute value of the �lter shown in Fig� �� In general�
an overshoot is not desirable since it may lead to non�physical growth of energy�
Additional constraints are necessary in order to reduce or remove overshoot�
In the interior of the domain� in order to eliminate the phase shift� the �lter

should be symmetric� i�e� the following relation should be satis�ed

wj
l � wj

�l� l � �� � � � � L� ���a�

Lj � Kj � L� ���b�

In this case the �lter only adjusts the amplitude of a given wavenumber component
of the solution and leaves its phase unchanged� Near the boundaries� however�
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Figure �� Real �f �G�k�g � �� imaginary �f �G�k�g � �� and absolute value��� �G�k�
��� � � of Fourier transform �G�k� of the asymmetric discrete �lter with four

vanishing moments corresponding to case � given in Table I�

�
f
� G
�k
�g
�
�
�
f
� G
�k
�g
�

� � �� G�
k
�� � �

�k��

0 0.25 0.50 0.75 1.00

0

0.2

0.4

0.6

0.8

1.0

Figure �� Real �f �G�k�g � �� imaginary �f �G�k�g � �� and absolute value��� �G�k�
��� � � of Fourier transform �G�k� of the asymmetric discrete �lter with four

vanishing moments corresponding to case 	 given in Table I�
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number of
case vanishing additional constraints w� w�� w�� w�� w�� w��

moments

� � �G������ � ��� �	�
����

���
����

���
�	�
 �

��
���� �

���
���� �

��
����

�G
m����� � �� m � �� � � � � 


� � �G������ � ��� �
�

�
��

� � �
��

�G
m����� � �� m � �� � � � � �

� � �G������� � ��� �	
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� ��
���
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���

�G
m����� � �� m � �� � � � � �

Table �� The values of the weight factors and the number of vanishing moments
for di�erent linearly constrained discrete �lters�

it may be necessary to make the �lter asymmetric� In this case a phase shift is
introduced and one is interested in minimizing this e�ect�
Examples shown in Figs� ��
 demonstrate the necessity of the introduction of

additional constraints which ensure that the resulting �lter has all the desired prop�
erties� One way to constrain the �lter is to specify either its value or the value of
its derivative for a given frequency ks� Examples of weights for �lters with three
vanishing moments and di�erent linear constraints are given in Table � and as�
sociated Fourier transforms for these �lters are presented in Fig� 
� These �lters
are constrained in such a way that the e�ective �lter widths are ��� ��� and ����
�corresponding to characteristic wavenumbers�ks�� � ���� ���� ����� We observed
that for the �lters with relatively small characteristic wavenumbers� the number of
zero derivatives at k � ��� should be considerably larger than for �lters with char�
acteristic wavenumbers close to ���� If we chose this number small enough� then
the value of the Fourier transform of the �lter for frequencies larger then character�
istic wavenumber may reach a large amplitude� Thus setting the large number of
derivatives at k � ��� forces the �lter to have the desired shape�

����� Alternative construction of �lters with desired properties

Linear constraints are often enough to obtain the desired �lter� However� there
are situations� especially for non�symmetric �lters� where it is di�cult to choose a
limited number of constraints such that the �lter is close to the desired shape� It is
much more desirable to specify the target �lter function �Gt�k� and to construct a
�lter which will be close to it� One way of doing so is to �nd the set of �lter weights
which satisfy all linear constraints and minimize a following functional

Z ���

�

�
�
n
�G�k� � �Gt�k�

o��
dk �

Z ���

�

�
�
n
�G�k�� �Gt�k�

o��
dk� ����

where � fzg and �fzg denote correspondingly real and imaginary parts of a com�
plex number z� Note that integral ranges as well as relative weights for real and
imaginary contributions to the functional can be arbitrarily set depending on the
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Figure �� Fourier transform �G�k� of the symmetric discrete �lters with di�erent
additional linear constraints corresponding to cases � � �� � � �� and �
� � given in Table II�

�lter function �Gt�k�� The mathematical details of the minimization are given in
VLM� Figure ��a� shows an example of an asymmetric �lter with eight point sten�
cil� �K � � and L � 
�� The real part of the �lter is constrained to be ��� at
�k�� � ���� The �lter value and its �rst two derivatives are constrained to be zero
at k � ���� In order to improve the �lter�s characteristics� the minimization was
performed� where requirements for two derivatives at k � ��� were relaxed and
quadratic minimization as described in VLM was used instead� The resulting �lter
is shown in Fig� ��b�� Comparing both �lters we can see that the �lter presented
in Fig� ��b� has better characteristics� We found that� in general� minimization
procedure gives better �lters than the ones obtained using only linear constraints�

����� Pade �lters

Discrete �lters with vanishing moments are not limited to the simple weighted
average form of ����� Pade�type �lters are described in this subsection as an example
of an alternative formulation� Other discrete �ltering approaches can be utilized as
well but they will not be discussed here� A Pade �lter is de�ned as

NjX
m��Mj

vjm�j�m �

LjX
l��Kj

wj
l�j�l� ��	�

and requires the solution of linear systems of equations� The Fourier transform
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Figure �� Real �f �G�k�g � �� imaginary �f �G�k�g � �� and absolute value��� �G�k�
��� � � of Fourier transform �G�k� of the asymmetric discrete �lter with

three vanishing moments obtained using only linear constraints �a� and quadratic
minimization �b��
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Table �� The values of the weight factors for di�erent linearly constrained sym�
metric Pade �lters with �ve vanishing moments�

�G�k� associated with Pade�type �lters is given by

�G�k� �

PLj
l��Kj

wj
l e
�i�kl

PNj

m��Mj
vjme�i�km

� ����

In the case of Pade �lters conditions ��
� can be rewritten as

LjX
l��Kj

wj
l � �� ���a�

NjX
m��Mj

vjm � �� ���b�

NjX
m��Mj

mivjm �

LjX
l��Kj

liwj
l � i � �� � � � n� �� ���c�

It is straightforward to constrain Pade �lters to a speci�c value at speci�c fre�
quency� Nevertheless linear constraining of �lter derivatives �G
m��k� at certain
frequency requires additional speci�cation of �lter value as well as all previous
derivatives� For more details on Pade �lters we refer to �Lele� �		���
The use of Pade�type �lters gives more �exibility in constructing �lters which are

closer to spectral cut�o� �lters� Examples of weights for symmetric �Mj � Nj and
Kj � Lj� Pade �lters with �ve vanishing moments and di�erent linear constraints
are given in Table � and associated Fourier transforms are presented in Fig� ��
Comparing Figs� 
 and � it can be seen that Pade �lters are considerably better
approximations of sharp cut�o� �lters�

����	 Commutation error of discrete �ltering and di�erentiation

In Section ��� we demonstrated that the commutation error of continuous �lter�
ing and di�erentiation operators is determined by the number of vanishing moments
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Figure �� Fourier transform �G�k� of the symmetric Pade �lters with di�erent
additional linear constraints corresponding to cases � � �� � � �� and �
� � given in Table III�

of the continuous �lter� As it was mentioned earlier in this section the same con�
clusion is valid for discrete �lters� In order to validate that discrete �ltering and
di�erentiation commute up to the same order� we perform a numerical test in which
we di�erentiate numerically the Chebyshev polynomial of the ���th order and de�
termine the commutation error of discrete �ltering and di�erentiation operators�
Since the derivative of the Chebyshev polynomial can be calculated exactly� we can
calculate the truncation error of the numerical di�erentiation as well� We choose
the nonuniform computational mesh to be given by

xj � �
tanh

�
�
�
�� �j

Ng

��
tanh ���

� ����

where Ng is the total number of grid points and � is the stretching parameter� The
choice for the hyperbolic grid stretching is motivated by its frequent use in both
DNS and LES simulations of wall�bounded �ows� For the hyperbolic tangent grid
the ratio of largest to smallest grid size is a function of stretching parameter � and
is given by cosh� �� sinh�� In this test we choose � � ���
� which makes this ratio
approximately ��� The di�erentiation operator is chosen to be fourth order accurate
on the non�uniform grid� Figure � shows the truncation error of �nite di�erence
scheme and commutation errors as a function of the total number of grid points
for �lters with di�erent number of zero moments� The results presented on Fig� �
con�rm that the discrete �ltering and di�erentiation operators commute up to the
n�th order� provided that discrete �lter has n� � vanishing moments�
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Figure �� Truncation error � � of the di�erentiation operator and commuta�
tion error for discrete �ltering and di�erentiation operations for the �lters with one
� �� three � �� �ve � �� and seven � � vanishing moments�

��� Conclusions

We have formulated general requirements for a �lter having a non�uniform �lter
width which ensure that the di�erentiation and �ltering operations commute to
any desired order� Minimization of the commutation error is achieved by requiring
that the �lter has a number of vanishing moments� Application of this �lter to the
Navier�Stokes equations results in the standard LES equations which can be solved
on a non�uniform computational grid� The commutation error can be neglected
provided that the �lter has n � � vanishing moments� where n is the order of the
numerical discretization scheme used to solve the LES equations� A general set of
rules for constructing discrete �lters in complex geometries is provided� The use of
these �lters ensures consistent derivation of discrete LES equations� The resulting
discrete �ltering operation is very simple and e�cient�

�� Future plans

The commutative discrete �lters presented in this report enable us to perform
consistent large eddy simulations of inhomogeneous turbulent �ows� The �rst step
in this direction is to study the e�ect of explicit �ltering in LES of turbulent channel
�ow� For that purpose we are planning to use the fourth�order scheme described
in �Morinishi et al�� �		��� A discrete �lter with a number of vanishing moments
will be applied to the incremental �eld at the conclusion of each time step� This
procedure guarantees that no high frequency signal is added to the �eld from the
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previous time step� The dynamic procedure should be modi�ed due to explicit �l�
tering of nonlinear terms� As more experience is gained with the explicit �ltering�
it will be determined whether explicit �ltering is a cost�e�ective means of improv�
ing simulation results� If so� explicit �ltering will be applied to more complicated
problems�
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