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Subgrid scale modeling taking the
numerical error into consideration

By Youhei Morinishi1 AND Oleg V. Vasilyev2

1. Motivation and objectives

Large eddy simulation (LES) is regarded as one of the most promising numerical
methods to predict unsteady turbulent flows at high Reynolds number. In LES
the flow field is decomposed into grid and subgrid scales. The grid scale (GS) flow
field is computed numerically using discrete filtered Navier-Stokes equation with a
model for the subgrid scale (SGS) stress. Therefore, the reliability of the computed
flow field is strongly affected by both the reliability of the SGS model and the
accuracy of the numerical method (Ghosal 1996), particularly in the approximation
of the convective term. This means that even if we use the exact SGS stress, the
computed flow field will be contaminated by the numerical error. This connection
between SGS modeling and numerical error was mostly overlooked. As a result all
of the existing SGS models have been developed independently from the numerical
methods.

One of the objectives of this study is to develop a dynamic subgrid scale model,
for which computational results will not depend on the accuracy of the numerical
method. The most commonly used SGS model is based on the Smagorinsky eddy
viscosity model (Smagorinsky, 1963) with the model coefficient computed dynami-
cally through the tensor level identity by Germano et al. (1991), hereafter denoted
by DSM. However, the tensor level identity does not explicitly include the effect
of the numerical error, and thus the computational results strongly depend on the
numerical method, especially in simulations with poor resolution. In this report we
will present a new dynamic procedure with the vector level identity, which takes
the numerical error into consideration. We will test the dynamic Smagorinsky SGS
model with the vector level identity, hereafter referred as VDSM model.

The second objective of this study is to present a modification to the dynamic
two-parameter mixed model. It is well known that the correlation between the
Smagorinsky model and the SGS stress is low (for example see Horiuti 1989) while
the model based on the scale similarity assumption by Bardina et al. (1983) has
considerably higher correlation. However, the scale similarity model has a defect:
it is not dissipative enough. Therefore, the model is usually used together with the
Smagorinsky model. Model coefficients are commonly computed using the dynamic
procedure (Zang et al. 1993; Vreman et al. 1994; Salvetti & Banerjee 1995; Horiuti
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1997). Nevertheless, the two-parameter mixed model is still not dissipative enough,
and the defect of the scale similarity model is not cured by the dynamic proce-
dure. Recently Morinishi (1997) recommended a modification to the two-parameter
dynamic procedure which removes that defect. In this study, we will apply the
modification to the dynamic two-parameter mixed model (DTM) of Salvetti and
Banerjee (1995) since the model seems to be the standard dynamic two-parameter
mixed model. The revised model will be named DTMR.

In this study, all computational tests will be done in the turbulent channel flow,
and the Reynolds number based on the channel half width and wall friction velocity
is 395. To remove the ambiguity regarding the accuracy of the finite difference
scheme, we use the higher (up to 12th) order accurate fully conservative finite
difference schemes in a staggered grid system proposed by Morinishi et al. (1998).

The present report is organized as follows. In section 2.1 numerical method for the
channel flow is outlined and the computational results for channel flow without SGS
model is presented as a reference. In section 2.2 the dynamic procedure with the
vector level identity is proposed and the computational result of VDSM is compared
with those of DSM. In section 2.3 a recommended modification to the dynamic two-
parameter mixed model is presented and the the computational result of DTMR is
compared with those of DTM.

2. Accomplishments

2.1 Numerical method and no SGS model simulation

The basic LES equations for incompressible flows are the filtered Navier-Stokes
and continuity equations given by

∂ūi
∂t

+
∂uiuj
∂xj

= − ∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

, (1)

∂ūi
∂xi

= 0. (2)

Here ui is the velocity component in xi direction (i = 1, 2, 3), p is the pressure
divided by the density, ν is the kinematic viscosity, and t is time. The overbar
· means filtering operator. The commutability between the differentiation and
filtering operations is usually assumed, and the filtered convective term is treated
as

∂uiuj
∂xj

=
∂ūiūj
∂xj

+
∂τij
∂xj

, (3)

where τij = uiuj − ūiūj is the SGS stress which should be modeled.
In this study the numerical tests of several SGS models, described in the subse-

quent sections, are performed using fully developed plane channel flow. The flow
field is assumed to be periodic in the streamwise (x1) and spanwise (x3) direc-
tions. The Reynolds number (Reτ = uτh/ν) based on the channel half width h
and the wall friction velocity uτ is 395. The treatment of the convective term (the
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first term in the right-hand side of Eq. (3)) is important for unsteady turbulent
numerical simulations at high Reynolds number. Fully conservative higher (2nd,
4th, 8th and 12th) order accurate finite difference schemes proposed by Morinishi
et al. (1998) are used for the convective term in the periodic directions. The second
order accurate scheme in the wall normal direction (x2) is combined properly and
used in order to remove the ambiguity regarding both the conservation properties
of the non-uniform meshes and the wall boundary treatment. A semi-implicit time
marching method is used. The diffusion term in the wall normal direction is treated
implicitly with the Crank-Nicolson method, and a third order Runge-Kutta (RK3)
method of Spalart et al. (1991) is used for all other terms. The splitting method
by Dukowicz and Dvinsky (1992) is used to enforce the solenoidal condition. The
resulting discrete Poisson equation for the pressure is solved using a discrete Fourier
transform in the periodic directions and a tri-diagonal direct matrix solver in the
wall normal direction. The computational box is 2πh×2h×2πh/3 and 32×64×32
mesh points are used. The grid spacings in the periodic directions are uniform. In
this case, the grid spacings in wall units are ∆+

x1
= 77.6 and ∆+

x3
= 25.9. The wall

normal grid is stretched using a hyperbolic-tangent function

x2(j)
h

=
tanh[γ(2j/N2 − 1)]

tanh[γ]
, j = 0, . . . , N2,

where x2(j) is the wall normal grid point for u2 in the staggered grid system and
x2(0) and x2(64) = x2(N2) correspond to the lower and upper walls respectively.
The stretching parameter, γ, is taken to be 2.75. Time increment is ∆t = 2.5×10−3,
and it satisfies the stability condition for RK3. The filtering operations in the
dynamic SGS models are done in the periodic directions. The test filtering with the
filter width ∆̂1 = 2∆x1 and the grid filtering with the filter width ∆̄1 = ∆x1 in x1

direction are done respectively as follows:

f̂(x1) =
1
6
[
f(x1 −∆x1) + 4f(x1) + f(x1 + ∆x1)

]
,

f̄(x1) =
1
24
[
f(x1 −∆x1) + 22f(x1) + f(x1 + ∆x1)

]
.

Figures 1 and 2 show the profiles of mean streamwise velocity and velocity fluc-
tuations respectively by the higher order schemes without SGS model at Reτ=395.
In these figures the DNS data by Mansour et al. (1996) (see also (Rodi & Mansour
1993)), are also plotted. Note that with the increase of the order of accuracy, the re-
sults of finite difference calculations converge. The error of the second order scheme
acts as an effective SGS stress, and the mean velocity profile by the second order
scheme looks the best on Fig. 1. However, the profile of the velocity fluctuations of
the second order scheme is the worst. The differences between the no SGS model
simulations and DNS results should be piked up by the SGS model. The amount
of required SGS stress depends on the accuracy of the numerical method and the
grid resolution.
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Figure 1. Mean streamwise velocity of the channel flow at Reτ = 395 using no
SGS model with the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order
schemes. DNS (•) data are also plotted.
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Figure 2. Velocity fluctuations of the channel flow at Reτ = 395 using no SGS
model. For symbols see Fig. 1.
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2.2 Tensor and vector level identities for the dynamic SGS model
In the dynamic SGS model, the tensor level identity of Germano et al. (1991)

between the grid and test fields is used to determine the parameter in the SGS
model

Lij = Tij − τ̂ij , (4)

where the subtest stress Tij is defined as Tij = uiuj − ˆ̄ui ˆ̄uj , and the resolved stress
Lij is defined as

Lij = ūiūj − ˆ̄ui ˆ̄uj . (5)

The Smagorinsky eddy viscosity model is assumed for both the subgrid and subtest
stresses in the standard dynamic SGS model.

τ∗ij = −2(CS∆̄)2|S̄|S̄ij , S̄ij =
1
2

( ∂ūi
∂xj

+
∂ūj
∂xi

)
, |S̄| =

(
2S̄ijS̄ij

)1/2 (6)

T ∗ij = −2(CS ˆ̄∆)2| ˆ̄S| ˆ̄Sij , ˆ̄Sij =
1
2

(∂ ˆ̄ui
∂xj

+
∂ ˆ̄uj
∂xi

)
, | ˆ̄S| =

(
2ˆ̄Sij ˆ̄Sij

)1/2 (7)

The superscript “*” denotes the trace free operator (τ∗ij ≡ τij− 1
3δijτkk). The model

parameter CS is computed by minimizing the the square of the error Q = EijEij
(Lilly, 1992), where the error Eij is given by

Eij = L∗ij + 2(CS∆̄)2Mij , (8)

Mij = α2| ˆ̄S| ˆ̄Sij − |S̄|S̄ij ,

and α2 = ( ˆ̄∆/∆̄)2 is the square value of the test to grid filter widths ratio. In this
study we take α2 = 42/3 ∼ 2.52. Assuming CS is a function of x2, and taking
the average in x1 − x3 plane (denoted by 〈·〉), we obtain the following equation for
(CS∆̄)2:

(CS∆̄)2 = −1
2
〈LijMij〉
〈MijMij〉

. (9)

In this report the dynamic Smagorinsky model given by Eqs. (6) and (9) is called
DSM.

Figures 3, 4, and 5 show the profiles of mean streamwise velocity, velocity fluc-
tuations, and the SGS eddy viscosity respectively using the higher order schemes
with DSM at Reτ=395. The SGS eddy viscosity is defined as νt = (CS∆̄)2|S̄|.
Note that the mean streamwise velocity profiles of the simulations with DSM are
shifted up when compared to the results of the simulations without SGS model.
The mean velocity and turbulent intensity profiles of DSM do not depend strongly
on the order of the accuracy except for the second order scheme. This means that
the effect of the numerical error of the second order scheme is considerably larger
than those of the higher order schemes. The implicit effect of the order of the finite
difference schemes on the eddy viscosity is shown in Fig. 5. The eddy viscosity
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Figure 3. Mean streamwise velocity of the channel flow at Reτ =395 using DSM
with the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order schemes.
DNS (•) data are also plotted.

increases gradually with the increase of the order of the scheme. Even for the 12th
order scheme, the dynamic procedure with the Smagorinsky model gives excessive
SGS eddy viscosity for the chosen resolution, and the mean velocity profile is much
higher than the DNS data.

Note that in practical LES applications the finite difference method is usually
used, and the first term in the right-hand side of Eq. (3) is approximated by

∂ūiūj
∂xj

=
δūiūj
δxj

+O(hn), (10)

where δuiuj/δxj is the n-th order accurate finite difference approximation
to ∂uiuj/∂xj and O(hn) denotes the truncation error. This means that the filtered
convective term Eq. (3) suffers from the effect of the numerical error even if we know
the exact SGS stress. That is why the development of the higher order accurate
finite difference methods has been considered as one of the important areas of LES
research.

In this study, we propose an alternate approach to improve the reliability of com-
putational results of LES. The filtered convective term in the grid field is modeled
as

∂uiuj
∂xj

=
δūiūj
δxj

+
∂τij
∂xj

, (11)

where the numerical error is treated as a part of the SGS stress (exactly, SGS vector)
and the rest is modeled with τij . The filtered convective term in the test field is
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Figure 4. Velocity fluctuations of the channel flow at Reτ =395 using DSM. For
symbols see Fig. 3.
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Figure 5. SGS eddy viscosity of the channel flow at Reτ =395 using DSM with
the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order schemes.
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assumed as follows.
∂uiuj
∂xj

=
δˆ̄ui ˆ̄uj
δxj

+
∂Tij
∂xj

(12)

The model parameter in the dynamic SGS model is determined through the follow-
ing vector level identity:

Ci =
∂Tij
∂xj

− ∂τij
∂xj

, (13)

where the resolved convective term Ci is defined as

Ci = Cjij , Ckij =
δūiūj
δxk

− δˆ̄ui ˆ̄uj
δxk

. (14)

If the parameter in the dynamic SGS model is estimated through the vector level
identity given by Eq. (13), then the numerical error explicitly affect the model
parameter. Substituting Eqs. (6) and (7) into Eq. (13), we obtain the following
error Ei:

Ei =
(
Ci −

1
3
δijCjkk

)
+ 2Mi(CS∆̄)2 + 2Mij

∂(CS∆̄)2

∂xj
, (15)

where
Mi =

∂Mij

∂xj
.

The least square minimization of Lilly (1992) is not applicable in this case due to
the presence of third term on the right-hand side of Eq. (15). In this study, (CS∆̄)2

is estimated by minimizing the following weighted integral:∫ ∫ ∫
w(x2)Q(x1, x2, x3)dx1dx2dx3, (16)

where w(x2) is a weight function and Q = EiEi. Assuming that CS is a function
of x2 and taking the average in the periodic directions, the (CS∆̄)2 value, which
minimizes the integral (16), is obtained through the variational principal, which
leads to the following differential equation:

w(x2)
[
〈CiMi〉+ 2 〈MiMi〉 (CS∆̄)2 + 〈Mi2Mi〉

d(CS∆̄)2

dx2

]
− d

dx2

[
w(x2)

(
〈CiMi2〉+ 2 〈MiMi2〉 (CS∆̄)2 + 〈Mi2Mi2〉

d(CS∆̄)2

dx2

)]
= 0.

(17)

Equation (17) is discretized using the second order finite difference method and
is solved using the direct tri-diagonal solver. In this study the weight is selected
as w(x2) = 1/∆x2(x2), where ∆x2(x2) is the grid spacing in x2. The dynamic
Smagorinsky model given by Eq. (6) with (CS∆̄)2 determined by Eq. (17) is called
VDSM.
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Figure 6. Mean streamwise velocity of the channel flow at Reτ =395 using
VDSM with the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order
schemes. DNS (•) data are also plotted.
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Figure 7. Velocity fluctuations of the channel flow at Reτ =395 using VDSM.
For symbols see Fig. 6.
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Figure 8. SGS eddy viscosity of the channel flow at Reτ =395 using VDSM with
the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order schemes.

Figures 6, 7, and 8 show the profiles of mean streamwise velocity, velocity fluc-
tuations, and SGS eddy viscosity respectively using the higher order schemes with
VDSM at Reτ=395. Although the mean velocity profile for the second order scheme
is still higher than the DNS data, the great improvement is accomplished by using
the vector level identity. It is noteworthy that the mean velocity profile in the core
region is qualitatively represented by VDSM with the higher order schemes while
it is not done by DSM.

Figure 9 shows the profiles of the model parameter CS using the fourth order
scheme with DSM and VDSM at Reτ = 395. The traditional CS value with the
Van Driest (1956) type wall dumping function, CS = 0.1 × [1 − exp(−x+

2 /25)], is
also plotted. Near the wall the CS profile for VDSM qualitatively coincides with the
one for DSM although there exists a slight negative region very near the wall in the
profile of VDSM. The peak value of the negative region of CS is about -0.005, and
it has practically no effect on the results of computations. The CS profile by VDSM
differs qualitatively from that by DSM in the region away from the wall, and this is
the important difference between the tensor and vector level identities. It appears
that the profile of CS away from the wall is affected strongly by the numerical error.
It is interesting that the CS profile by VDSM is closer to the traditional profile than
that by DSM in the buffer region.

2.3 Recommended modification to the dynamic two-parameter mixed model

The dynamic two-parameter mixed model of Salvetti & Banerjee (1995) is based
on the scale similarity model of Bardina et al. (1983) and the Smagorinsky eddy
viscosity model.

τ∗ij = CL
(
ūiūj − ¯̄ui ¯̄uj

)∗ − 2(CS∆̄)2|S̄|S̄ij (18)
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Figure 9. The profiles of CS of the channel flow at Reτ =395 using DSM ( )
and VDSM ( ) with the fourth order scheme. The traditional profile ( ),

CS = 0.1× [1− exp(−x
+
2

25 )], is also plotted.

The scale similarity model by itself is not dissipative enough, and the Smagorinsky
eddy viscosity model is usually added to recover the defect. Following the standard
procedure for the plane channel flow, the two parameters, CS and CL, are computed
simultaneously using the tensor level identity of Germano et al. (1991) with the
least square minimization. The resulting equations for CS and CL are given by

(CS∆̄)2 = −1
2
〈LijMij〉

〈
H∗ijH∗ij

〉
−
〈
LijH∗ij

〉 〈
H∗ijMij

〉
〈MijMij〉

〈
H∗ijH∗ij

〉
−
〈
H∗ijMij

〉2 , (19)

CL =

〈
LijH∗ij

〉
〈MijMij〉 − 〈LijMij〉

〈
H∗ijMij

〉
〈MijMij〉

〈
H∗ijH∗ij

〉
−
〈
H∗ijMij

〉2 , (20)

where

Hij =
(
ˆ̄ui ˆ̄uj − ˆ̂̄̄

ui
ˆ̂̄̄
uj
)
−
(
ūiūj − ¯̄ui ¯̄uj

)
.

In this study, the dynamic mixed model given by Eq. (18) with Eqs. (19) and (20)
is called DTM.

Figures 10, 11, and 12 show the profiles of mean streamwise velocity, velocity
fluctuations, and SGS eddy viscosity respectively using the higher order schemes
with DTM at Reτ=395. The profile of streamwise velocity fluctuation for DTM is
better than the one for DSM (compare Fig. 11 with Fig. 4). However DTM has
a defect in that the mean velocity profile is lower than that of DNS when it is
used with the higher order schemes. Although the mean velocity profile of DTM
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Figure 10. Mean streamwise velocity of the channel flow at Reτ =395 using
DTM with the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order
schemes. DNS (•) data are also plotted.
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Figure 11. Velocity fluctuations of the channel flow at Reτ =395 using DTM.
For symbols see Fig. 10.
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Figure 12. SGS eddy viscosity of the channel flow at Reτ =395 using DTM with
the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order schemes.
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Figure 13. Mean streamwise velocity of the channel flow at Reτ =395 using
DTMR with the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order
schemes. DNS (•) data are also plotted.
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Figure 14. Velocity fluctuations of the channel flow at Reτ =395 using DTMR.
For symbols see Fig. 13.
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Figure 15. SGS eddy viscosity of the channel flow at Reτ =395 using DTMR
with the 2nd ( ), 4th ( ), 8th ( ) and 12th ( ) order schemes.
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Figure 16. The profiles of CS of the channel flow at Reτ =395 using DSM
( ), DTM ( ) and DTMR ( ) with the fourth order scheme. The

traditional profile ( ), CS = 0.1× [1− exp(−x
+
2

25 )], is also plotted.
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Figure 17. The profiles of CL of the channel flow at Reτ =395 using DTM
( ) and DTMR ( ) with the fourth order scheme.
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with the second order finite difference method accidentally agrees well with the
DNS data, it is caused by the numerical error explained in Fig. 1. In this stage,
the model parameters in DTM are estimated through the tensor level identity,
and the numerical error is not taken into consideration. Remember that the scale
similarity model itself has less dissipation, and therefore the model is used together
with the Smagorinsky model as the mixed model to remove the defect. However
the profiles of the SGS eddy viscosity in Fig. 12 are much smaller than those in
Fig. 5. This indicates that the defect of the scale similarity model is not cured if
the model parameters are estimated through the dynamic procedure with the tensor
level identity. The reason why the defect is not cured is that the correlation of the
Smagorinsky model to the SGS stress is much lower than that of the scale similarity
model (for example see Horiuti 1989). This imbalance makes CS smaller if the two
parameters are solved simultaneously.

To remove the problem, Morinishi (1997) proposed a modification to a dynamic
two-parameter mixed model. First, the Smagorinsky parameter CS is computed
exactly the same way as in DSM (using Eq. (9)). This ensures that the mixed model
has enough dissipation. Secondly, the other parameter is computed dynamically as
CS is known. In this study, we adopt the following modification to the mixed model
(18):

CL =

〈
[Lij + 2(CS∆̄)2Mij ]H∗ij

〉〈
H∗ijH∗ij

〉 . (21)

This revised dynamic two-parameter mixed model is called DTMR.
Figures 13, 14, and 15 show the profiles of mean streamwise velocity, velocity

fluctuations, and SGS eddy viscosity respectively using the higher order schemes
with DTMR at Reτ=395. The profiles of the mean velocity and velocity fluctua-
tion using the higher order schemes with DTMR coincide well with the DNS data.
Comparing Fig. 15 with Fig. 12, it is apparent that the defect of DTM is recovered
by the revised model. Figures 16 and 17 show the profiles of the parameters CS and
CL respectively by the fourth order scheme with DTM and DTMR (and DSM in
Fig. 16). The traditional CS value with the wall dumping function is also plotted
in Fig. 16. The CS profile of DTMR is almost the same as that of DSM, and the
merit of DSM is kept in DTMR. The CS value of DTM is much lower than those of
DSM, DTMR, and the traditional value, and this makes DTM less dissipative. The
CL profile of DTMR is almost the same as that of DTM, and the merit of DTM is
kept in DTMR.

3. Future plans
The proposed SGS models will be tested in high Reynolds number channel flow

to see if they work well in LES for practical problems. In addition, the vector level
identity will be extended to the revised two-parameter mixed model.
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