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Numerical study of a channel
flow with variable properties

By F. C. Nicoud

1. Motivation and objectives
In many industrial devices such as heat exchangers, piston engines, or propul-

sion systems strong temperature gradients arise in the near wall region even if the
characteristic Mach number is close to zero. A strong coupling exists between mo-
mentum and energy equations caused by variations in the fluid properties, and the
classical wall models for incompressible flows are not appropriate.

In the 1950’s through the mid 1960’s, many experimental studies focused on the
assessment of global quantities at the wall (friction coefficient, Nusselt number)
for laminar/turbulent flows with variable properties. Some empirical correlations
of engineering interest were derived. More recent studies also deal with velocity
and temperature profiles, and it has now reached the point that the supersonic
compressible turbulent boundary layer with or without heat transfer is now well
documented (see Bradshaw (1977), Fernholz & Finley (1980) and Spina et al. (1994)
for reviews). The Strong Reynolds Analogy was introduced by Morkovin (1961) in
the context of adiabatic boundary layers and has often been used in turbulence
modeling. An extension was proposed by Gaviglio (1987) and subsequently Huang
et al. (1995) for use in the presence of heat transfer. Some experimental data
support these analogies in the case of a supersonic boundary layer over a cooled
or heated wall and low speed flow on a slightly heated wall. Dimensional analysis
of the inner layer shows that the law of the wall can be described in terms of
two non-dimensional wall parameters, the friction Mach number Mτ = uτ

cw
and the

heat flux parameter Bq = qw
ρwCpuτTw

, where uτ is the friction velocity
√

τw
ρw

, cw the

speed of sound, qw the heat flux, Cp the constant-pressure specific heat, and Tw the
temperature at the wall. Two cases, (Mτ ,Bq)=(0.08,−0.05) and (0.12,−0.14), were
considered in the DNS study of a supersonic channel flow performed by Coleman
et al. (1995). These data were found in Huang & Coleman (1994) to support the
validity of the Van Driest (1951) transformation

U+
VD =

∫ u+

o

(
ρ

ρw

)1/2

du+ =
1
κ

lny+ + C

and suggest that the additive constant C is a function of both Mτ and Bq.
The case with large heat transfer and small Mach number has received very mi-

nor attention (W. Kays, private communication). The usefulness of the Van Driest
transformation to retrieve the classical logarithmic law of the wall is not fully ac-
cepted in this case (Cheng & Ng (1982), Wardana et al. (1994), Wang & Pletcher
(1996)) although some of the results in the latter reference appear to be erroneous
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(P. Bradshaw, private communication). An LES of subsonic turbulent channel flow
with constant heat flux performed by Dailey & Pletcher (1998) suggests that when
the Mach number is close to 0 the constant C depends slightly on heat transfer. In
the latter study, a Smagorinsky subgrid-scale model with Van-Driest damping at
the wall was used to account for the subgrid scale effects. Since the value of C is
expected to depend on conditions in the viscous and buffer layers (i.e. where the
empirical Van Driest damping function is active), these LES data are questionable.
In their experiments, Wardana et al. (1992, 1994) study the effect of strong wall
heating on turbulence statistics of a channel flow. They provide high-order corre-
lations for the velocity components and conclude that near the wall the ejection
of low-speed fluid is intensified. They suppose that the local thermal expansion
close to the heated wall is the driving force of the intensification. Since they do
not use the Van Driest transformation to represent their mean velocity profiles, it
is difficult to use their data to study the dependence of the additive constant on the
heat transfer parameter Bq. Their experiments correspond to Bq ≈ 0, 0.073, 0.11,
0.13, and 0.17.

The objective of the present work is to study the case where the thermo-physical
properties vary significantly in the absence of compressibility effects (M = Mτ = 0).
We perform a DNS of a low speed flow with a large temperature gradient in order
to generate high-fidelity data which is not presently available. The configuration
is a plane channel flow between two isothermal walls with temperatures T1 and
T2 (see Fig. 1). Regarding the turbulence modeling, the objective is to provide
more reliable information about the variation of the constant of integration C as
a function of Bq. Other questions of interest relate to how good the Gaviglio’s
analogy is in the zero Mach number limit and the exact role of the fluid-property
variations. A recent analytical study performed by Eames & Hunt (1997) shows how
a lump of fluid experiences a lift force when it moves perpendicularly to a density
gradient. A fundamental question that can be addressed using DNS is how this
inviscid effect can modify the near wall streaks. Is it related to the intensification
of the ejection events observed by Wardana et al. (1992, 1994)? The low Mach
number approximation and the numerical method are discussed in Sections 2 and
3. The first DNS results are given in Section 4.

2. Low Mach number approximation

To avoid contamination of the solution by the non-physical acoustic modes re-
ported in Coleman et al. (1995), a low Mach number approximation is first applied
to the 3D compressible Navier-Stokes equations. In doing so, the density is decou-
pled from the pressure so that no acoustics are present in the computation. This
also eliminates the acoustic CFL restriction on time step size.

To derive the low Mach number equations, one expands the dependent variables
as a power series in ε = γM2, which is a small parameter (see Paolucci (1982)
for a complete discussion). Substituting these expansions into the Navier-Stokes
equations and collecting the lowest order terms in ε yields:
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Figure 1. Computational domain.

∂ρ

∂t
+

∂ρuj
∂xj

= 0 (1)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂P

∂xi
+

1
Re

∂τij
∂xj

(2)

ρCp
∂T

∂t
+ ρCpuj

∂T

∂xj
=

1
RePr

∂qj
∂xj

+
γ − 1

γ

dPo
dt

(3)

In these equations, all the variables are normalized using the reference state ρref ,
uref , T ref = P ref

o /ρref , Cref
p = C∗p (T ref), µref = µ∗(T ref), and kref = k∗(T ref) where

the superscript ∗ represent dimensional quantities. Also Re = ρrefurefLref/µref and
Pr = µrefCref

p /kref are the Reynolds and the Prandtl number while γ is the ra-
tio of specific heats at the reference state. ui, ρ, T , and Cp stand for the non-
dimensionalized velocity vector, density, temperature, and specific heat. τij =

µ
(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3δij
∂uk
∂xk

)
and qj = k ∂T

∂xj
are the viscous stress tensor and the heat

flux vector respectively. Moreover, P may be interpreted as the hydrodynamic pres-
sure. In the low-Mach number approximation, the thermodynamic pressure Po only
depends on time and must be computed if it is not constant. The equation of state
is simply:

Po = ρT (4)

Since density is uniquely determined by the temperature (and the thermodynamic
pressure which is constant in space), the energy equation acts as a constraint which
is enforced by the hydrodynamic pressure. This constraint is:

∂ui
∂xi

=
1

Po(t)Cp

[
1

RePr

∂

∂xj

(
k

∂T

∂xj

)
+
(

γ − 1
γ
−Cp

)
dPo
dt

]
Integrating over the flow domain V leads to the following ODE for the thermody-
namic pressure in a closed system:

dPo
dt

=
1∫

V

(
γ−1
γ − Cp

)
dV

[
1

RePr

∫
V

∂

∂xj

(
k

∂T

∂xj

)
dV + Po(t)

∫
V

ui
∂Cp
∂xi

dV

]
(5)
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Since
∫
V

∂
∂xj

(
k ∂T
∂xj

)
dV =

∫
S k ∂T

∂xj
dSj , this relation expresses how the rate of

change of the mean pressure is affected by the heat flux through the surface S
of the domain V and the gradients of heat capacity of the gas. In many practical
applications the fluid may be considered as a calorifically perfect gas so that CP = 1
and the time derivative of Po is simply:

dPo
dt

=
γ

V

1
RePr

∫
V

∂

∂xj

(
k

∂T

∂xj

)
dV =

1
V

1
RePr

∫
S

k
∂T

∂xj
dSj (6)

Thus the constraint on the velocity field becomes:

∂ui
∂xi

=
1

Po(t)RePr

[
∂

∂xj

(
k

∂T

∂xj

)
− 1

V

∫
V

∂

∂xj

(
k

∂T

∂xj

)
dV

]
(7)

If the system considered is open, then the thermodynamic pressure is set by
atmospheric conditions. If it is closed, then the amount of mass in it, M0, is constant
over time so that by integrating the equation of state over the whole domain one
obtains the following expression for the thermodynamic pressure:

Po(t) =
M0∫

V
1
T dV

(8)

Note that, in the limit of an inviscid flow of a calorifically perfect gas, the ther-
modynamic pressure remains constant over time (from Eq. (6)) and the velocity
field is divergence-free (from Eq. (7)). The solution (ρ, ui, T , P , Po) is completely
described by Eqs. (1)-(5). The constraint (7) should also be satisfied since it is a
linear combination of Eqs. (1), (3), and (4).

3. Numerical method

The numerical method chosen for solving the variable density momentum and
temperature equations is a generalization of a fully conservative fourth order spatial
scheme developed for incompressible flows on staggered grids by Morinishi et al.
(1998). A scheme to solve the momentum equations in non-conservative form is
described in the following subsection. After that, a scheme with ‘good’ conservative
properties is discussed.

3.1 Scheme in non-conservative form

For a uniform mesh, the advective term in the momentum equation (2) is dis-
cretized as:

ρuj
∂ui
∂xj

≡ 9
8

(
9
8ρ(4j)uj

1xi − 1
8ρ(4j)uj

3xi
)
δ1ui
δ1xj

1xj

−1
8

(
9
8ρ(4j)uj

1xi − 1
8ρ(4j)uj

3xi
)
δ3ui
δ3xj

3xj (9)
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where the finite-difference operator with stencil n acting on φ with respect to xi is
defined as

δnφ

δnxi
=

φ(xi + nhi/2)− φ(xi − nhi/2)
nhi

and the interpolation operator with stencil n acting on φ in the xi direction is

φ
nxi =

φ(xi + nhi/2) + φ(xi − nhi/2)
2

.

ρ(4j) = 9
8
ρ1xj − 1

8
ρ3xj is a fourth order interpolation of ρ in the xj direction. When

the density is constant, Eq. (9) reduces to the advective form (Adv.-S4) in Morinishi
et al. (1998). The pressure term in Eq. (2) in discretized by:

∂P

∂xi
≡ (Pres.)i = (∇dP )i =

9
8

δ1P

δ1xi
− 1

8
δ3P

δ3xi
(10)

and the discrete divergence operator is defined consistently: ∂ui
∂xi
≡ ∇d · (ui) =

9
8
δ1ui
δ1xi
− 1

8
δ3ui
δ3xi

. The viscous terms in Eq. (2) are written using the generic form:

∂
∂xj

(
µ ∂ui∂xj

)
≡ 9

8
δ1
δ1xj

[
µ(4i),(4j)

(
9
8
δ1ui
δ1xj
− 1

8
δ3ui
δ3xj

)]
−1

8
δ3
δ3xj

[
µ(4i),(4j)

(
9
8
δ1ui
δ1xj
− 1

8
δ3ui
δ3xj

)] (11)

The advective term for the temperature is discretized as:

ρuj
∂T

∂xj
≡ 9

8
ρ(4j)uj

δ1T

δ1xj

1xj

− 1
8
ρ(4j)uj

δ3T

δ3xj

3xj

(12)

A semi-implicit time marching algorithm is used in which the diffusion terms in
the wall normal direction are treated implicitly with a Crank-Nicolson scheme while
a third order Runge-Kutta scheme is used for all other terms. The temperature
equation is advanced first so that ρn+1 is known via the state equation ρ = Po/T ,
where Po is first assessed using Eq. (8) written at time n + 1. Then a fractional
step method is used to solve the momentum equation.

ρ(4i),n+1 un+1
i − uni

∆t
= ρ(4i),n+1 un+1

i − ûi
∆t

+ ρ(4i),n+1 ûi − uni
∆t

=
βk
2
(
In+1 + In

)
+ γkE

n + ζkE
n−1 − 2βk∇dPn − 2βk∇dδPn+1 (13)

where I and E represent all the spatial implicit and explicit terms except for the
pressure at n and the pressure update δPn+1 = Pn+1 − Pn. The parameters βk,
γk, and ζk (k = 1, 3) are chosen so that the mixed Runge-Kutta/Crank-Nicolson
time stepping is recovered after the third substep (Spalart, 1987). Equation (13)
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is then split into a decoupled set which is a second-order approximation in time to
the original equation:

ρ(4i),n+1 ûi − uni
∆t

=
βk
2
(
In+1 + In

)
+ γkE

n + ζkE
n−1 − 2βk∇dPn (14)

ρ(4i),n+1 un+1
i − ûi

∆t
= −2βk∇dδPn+1 (15)

Equation (14) is solved for ûi by using the discretizations (9), (10), and (11). Then
(15) is divided by ρ(4i),n+1 before its discrete divergence is taken to obtain:

∇d ·
(

1
ρ(4i),n+1

∇dδP
)

=
1

2βk∆t

(
∇d · ûi −∇d · un+1

i

)
= S (16)

A similar Poisson equation with variable coefficients was solved in Bell & Marcus
(1992) to impose the divergence-free constraint for variable-density flows.

Since the transport equation for T has been advanced prior to the momentum
equation, the last term in the equation for the pressure variation is known from
Eq. (7), written at time n+1. The non-linear Poisson equation (16) for the pressure
is solved using the iterative procedure:

∇d ·
(

1〈
ρ(4i),n+1

〉∇dδP k+1

)
=

1
2βk∆t

(
S +∇d ·

([
1〈

ρ(4i),n+1
〉 − 1

ρ(4i),n+1

]
∇dδP k

))
(17)

where <> denote a plane averaging in the two homogeneous directions x and z.
Each sub-iteration is solved exactly using a Fast Poisson Solver. The advantage
of solving Eq. (16) to update the pressure is that the divergence-free constraint is
recovered in the inviscid limit, as it has to be from Eq. (7). This is not the case
when a backward approximation of ∂ρ∂t is used to compute the source term of a linear
Poisson equation for δP as proposed by McMurthry et al. (1986), Cook & Riley
(1996). The other advantage is that the pressure terms remain energy conserving in
the inviscid limit as discussed in the following subsection. Several basic test cases
have been computed to validate the above procedure (see Subsection 3.3).

3.2 Toward a fully conservative scheme
Although the previous scheme was found to be accurate, it only conserves mo-

mentum and kinetic energy to its own order of accuracy. Experience has shown
that the latter quantity must be conserved exactly if a robust and dissipation-free
numerical method is sought. Morinishi et al. (1998) developed a set of fully conser-
vative (mass, momentum, and kinetic energy) high order schemes for incompressible
flow. In the general case of the Navier-Stokes equations without body force, the
transport equation for the kinetic energy per unit volume ρk reads:

∂ρk

∂t
+

∂ρujk

∂xj
= PSjj −

∂Puj
∂xj

+
∂τijui
∂xj

− τijSij (18)
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Let us consider a periodic (or infinite) domain so that, after Eq. (18) is integrated
over the domain, the flux terms ∂ρujk

∂xj
and ∂Puj

∂xj
make no contribution. Due to the

dissipation term τijSij , the question of conservation of the kinetic energy is only
relevant in the inviscid limit where τij = 0. We know from Eq. (7) that in this limit
the velocity field is divergence-free, that is Sjj = 0. Thus global conservation of
kinetic energy is a common feature of incompressible and low Mach number flows.
The purpose of this section is to investigate how this property can be extended in
discrete space. Let us define the following discrete approximations of the possible
forms for the non-linear term in the momentum equation:

(Adv.)i = 9
8

(
9
8ρ(4j)uj

1xi − 1
8ρ(4j)uj

3xi
)
δ1ui
δ1xj

1xj

−1
8

(
9
8ρ(4j)uj

1xi − 1
8ρ(4j)uj

3xi
)
δ3ui
δ3xj

3xj
(19)

(Div.)i = 9
8
δ1
δ1xj

[(
9
8ρ(4j)uj

1xi − 1
8ρ(4j)uj

3xi
)

ui
1xj
]

− 1
8
δ3
δ3xj

[(
9
8ρ(4j)uj

1xi − 1
8ρ(4j)uj

3xi
)

ui
3xj
] (20)

(Skew.)i =
1
2

((Adv.)i + (Div.)i) (21)

The forms (Adv.), (Div.), and (Skew.) are the discrete equivalent to the advective
ρuj

∂ui
∂xj

, conservative ∂ρuiuj
∂xj

, and skew-symmetric 1
2

(
ρuj

∂ui
∂xj

+ ∂ρuiuj
∂xj

)
form of the

convective term. The following relations hold between these three discrete forms:

(Div.)i = (Adv.)i + ui

(
9
8
(Cont.)

1xi − 1
8
(Cont.)

3xi
)

(22)

(Skew.)i = (Adv.)i +
1
2
ui

(
9
8
(Cont.)

1xi − 1
8
(Cont.)

3xi
)

(23)

(Skew.)i = (Div.)i −
1
2
ui

(
9
8
(Cont.)

1xi − 1
8
(Cont.)

3xi
)

(24)

where (Cont.) = 9
8
δ1ρ

(4j)uj
δ1xj

− 1
8
δ3ρ

(4j)uj
δ3xj

is the discrete form of the divergence of ρuj.
A key assumption in the semi-discrete analysis proposed in Morinishi et al. (1998)

for incompressible flow is that the operator (Cont.) is identically zero so that the
three forms (Div.)i, (Adv.)i, and (Skew.)i are equivalent. Since (Div.)i is conser-
vative a priori for the momentum equation and (Skew.)i is conservative a priori
in the kinetic energy equation, a fully conservative scheme is obtained as soon as
the velocity constraint ∂uj

∂xj
= 0 is imposed properly through the pressure correction

step. In the present case where the density is not constant, the velocity constraint
∂uj
∂xj

= 0 (in the inviscid limit) does not imply that ∂ρuj
∂xj

is zero. Thus the discrete
operators (Div.)i, (Adv.)i, and (Skew.)i are not equivalent in the low Mach number
case, meaning that a fully discrete analysis (including the time discretization) must
be conducted to achieve conservation of kinetic energy.
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A conservative scheme for the momentum can be derived by solving the divergence
form of Eq. (2). The first guess for the velocity is obtained by:

ρ̂(4i)ûi − ρ(4i),nuni
∆t

= −γk(Div.)ni − ζk(Div.)n−1
i − 2βk(Pres.)ni (25)

where ρ̂ can be either any intermediate value. Then the projection step is:

un+1
i =

ρ̂(4i)

ρ(4i),n+1
ûi − 2βk

1
ρ(4i),n+1

∇dδP∆t (26)

where the Poisson equation for δP must be:

∇d ·
(

1
ρ(4i),n+1

∇dδP
)

=
1

2βk∆t

(
∇d ·

(
ρ̂(4i)

ρ(4i),n+1
ûi

)
−∇d · un+1

i

)
(27)

Obviously, Eqs. (25), (26), and (27) constitute a scheme which is momentum
conserving. To investigate whether it also conserves kinetic energy, let us multiply
Eq. (25) by ûi + uni and integrate over the whole domain. The overall contribution
of the first pressure term in the kinetic energy equation reads as:∫

V

uni (Pres.)ni dV =
∫
V

(
9
8
uni

δ1P

δ1xi

1xi

− 1
8
uni

δ3P

δ3xi

3xi
)

dV (28)

where

9
8
uni

δ1P

δ1xi

1xi

− 1
8
uni

δ3P

δ3xi

3xi

=
9
8

δ1u
n
i P

1xi

δ1xi
− 1

8
δ3u

n
i P

3xi

δ3xi

−P

(
9
8

δ1u
n
i

δ1xi
− 1

8
δ3u

n
i

δ3xi

)
(29)

The first two terms do not contribute because they are in divergence form; the
last two are identically zero because the non-linear Poisson equation (27) is solved
with ∇d · un+1

i = 9
8
δ1u

n
i

δ1xi
− 1

8
δ3u

n
i

δ3xi
= 0 imposed in the source term. The contribution

of the term ûi(Pres.)ni is of order ∆t because ûi = uni +O(∆t). Using Eq. (24), the
overall contribution of the RHS of Eq. (25) may be written as∫

V (ûi + uni )
(
−γk(Skew.)ni − ζk(Skew.)n−1

i

)
dV

− γk
∫
V
ûi+u

n
i

2 uni

(
9
8 (Cont.)n

1xi − 1
8(Cont.)n

3xi
)

dV

− ζk
∫
V
ûi+u

n
i

2 un−1
i

(
9
8 (Cont.)n−1

1xi − 1
8(Cont.)n−1

3xi
)

dV

+ O(∆t)

(30)

The first integral in (30) contributes to the order ∆t because (Skew.)i is kinetic
energy conserving in nature and because ûi, uni , and un−1

i are equal to the order
∆t. On the other hand, the contribution of the LHS of (25) may be written:∫

V

ρ̂(4i) (ûi)
2 − ρ(4i),n (uni )

2

∆t
dV +

∫
V

uni ûi
ρ̂(4i) − ρ(4i),n

∆t
dV (31)



Turbulent flow with variable properties 297

Comparing Eqs. (30) and (31) it appears that the discrete rate of change of the
kinetic energy (the first integral in Eq. (31)) is at most of order ∆t if one defines
the intermediate density as:

ρ̂− ρn

∆t
= −γk(Cont.)n − ζk(Cont.)n−1 (32)

In the context of second order scheme, the same definition of ρ̂ was adopted (C.
Pierce, private communication) to achieve approximate conservation of kinetic en-
ergy. Multiplying the projection step Eq. (26) by ûi + un+1

i and integrating over
the whole domain, the following expression can be derived:

∫
V

ρ(4i),n+1
(
un+1
i

)2 − ρ̂(4i) (ûi)
2

∆t
dV =

∫
V

ûiu
n+1
i

ρ̂(4i) − ρ(4i),n+1

∆t
dV +O(∆t) (33)

This shows that the global rate of change of the kinetic energy is of order ∆t only
if ρ̂(4i) − ρ(4i),n+1 = O(∆tn), n ≥ 2. Unfortunately, n is only 1 in the most general
case. A conservative scheme is obtained if one accepts that the state equation (4)
is verified to the order ∆t only, viz:

ρn+1 = ρ̂ =
Po

Tn+1
+ O(∆t) (34)

In this case, the error in the kinetic energy conservation is at most of order ∆t.

3.3 Basic test cases

The following test cases were designed to check the accuracy of the numerical
method. In what follows, AdvSC and DivSC stand for the schemes discussed in
Sections 3.1 and 3.2 respectively. Except as otherwise stated (Section 3.3.2), the
state equation (4) is enforced exactly.

3.3.1 1D Euler convection

If the Peclet number is infinite, the velocity field must be divergence-free; that is,
u must be constant in 1D. Also, the pressure should remain constant. To test the
ability of the two formulations to reproduce this feature of Eqs. (1)-(3), consider
the domain 0 ≤ x ≤ 1, periodic in x. The initial condition is u = u0 = 1, P = 0,
and T = 1 +A exp

[
−
(
x−x0
a

)2] with A = 1, x0 = 0.5, and a = 0.05. When the grid
contains Nx = 24 points, only 6 points are used to describe a Gaussian perturbation.
Figure 2 shows Prms/ρ0u

2
0 as a function of the grid spacing, where three grid levels

were considered: 24, 48, and 96 points in x. The rms of pressure is assessed for
the time t = 20a/u0. The CFL number is of order 0.5 in all cases. Both schemes
are fourth-order accurate in space, but AdvSC is exact for this particular test case.
The divergence is zero in both cases because it is explicitly enforced through the
Poisson equations (27) for DivSC and (16) for AdvSC.
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Figure 2. Root-mean-square of pressure as a function of the grid spacing at time
t = 20a/u0. : Prms ∝ ∆x4; ◦ : DivSC; : AdvSC.

3.3.2 Small 1D perturbations
In the case where the Reynolds number is finite but where the perturbation in

temperature is small (A << 1), the analytical resolution of Eqs. (1)-(3) can be
conducted and the structure of the perturbation which propagates is given by:

ρ′ = −ρ0

T0
T ′ (35)

u′ =
1

RePr

∂T ′

∂x
(36)

p′ =
4

3R2
eP

2
r

∂2T ′

∂x2

(
Pr −

3
4

)
(37)

An interesting feature is that the pressure fluctuation should vanish in the limit
Pr = 3

4 . Figure 3 shows the error in Eq. (37) in the case Nx = 24, a = 0.05,
A = 0.01, and Re = 50. The initial condition is uniform for u and P and the
physical time simulated is large enough (t ≈ 160a/u0) so that the values reported
in the figure are asymptotic values. For this poor resolution, the remaining error
for DivSC is much greater than for AdvSC.

3.3.3 2D Random perturbations
To validate the results of Section 3.2 with numerical tests, inviscid flow simula-

tions were performed on a 2D periodic domain. The analytical solution dictates that
the total momentum in each direction 〈ρui〉 and total kinetic energy 〈K〉 = 1

2

〈
ρu2

i

〉
should be conserved in time. The domain is 0 ≤ x ≤ L, 0 ≤ y ≤ L, and a 24x24
mesh is used. Solenoidal velocity fields are used as the initial condition together
with random temperature fluctuations. The initial mean kinetic energy is of order
1.5 while Trms ≈ 0.15 < T > at t = 0. Figure 4 shows the relative error for the total
kinetic energy 〈K0−K〉

〈K0〉 after an integration time of t = 0.125L/
√
〈K0〉. As expected

from Section 3.2, the error for the scheme DivSC is not a function of the time step
only, but also of space the space discretization. On the other hand, it appears that



Turbulent flow with variable properties 299

P
rm

s
/

3
4
R

2 e
P

2 r

( ∂2 T
′

∂
x

2

) rm
s

Pr − 3/4
−1.0 0.0 1.0 2.0

0.0

0.5

1.0

1.5

2.0

Figure 3. Root-mean-square of pressure as a function of the Prandtl number.
Prms is non-dimensionalized by its theoretical value as a function of T ′. :
exact solution Eq. (37); ◦ : DivSC; : AdvSC.

〈K
0
−

K
〉/
〈K

0
〉

∆t
10

−3
10

−210
−5

10
−4

10
−3

10
−2

10
−1

Figure 4. Kinetic energy conservation error as a function of the time step.
: ∆t3 behavior; : ∆t behavior; ◦ : DivSC; • : DivSC with approximate

equation of state, Eq. (34).

the same scheme with the approximate equation of state, Eq. (34), produces no vio-
lation in the conservation of kinetic energy due to the spatial scheme. The measured
error behaves like ∆t3 instead of ∆t as predicted in 3.2 . Indeed, a single substep of
the time integration was considered in the analysis so that the cancellation of error
in the full third-order Runge-Kutta procedure was not accounted for.

3.3.4 Linear stability in a channel

To check the accuracy of the code in the case where the physical properties vary in
space and time through the temperature, the evolution of low amplitude eigenmodes
in laminar channel flow is simulated. The linear stability problem in a channel flow
between two isothermal walls with temperature T1 = 1 − δT

2 and T2 = 1 + δT
2

was studied by Suslov & Paolucci (1995) under the low Mach number assumption.
They found that the critical Reynolds number increases with the parameter δT

2 . It
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is of order 40000 for δT
2 = 0.4, compared to 5772 in the isothermal case (δT = 0).

In their analysis the dimensionless thermal conductivity and dynamic viscosity are
given by Sutherland’s law:

k(T ) = T 3/2 1 + Sk
T + Sk

µ(T ) = T 3/2 1 + Sµ
T + Sµ

(38)

where Sk = 0.648 and Sµ = 0.368 for air at Tref = 300K and normal pressure. The
molecular Prandtl number is 0.76. In the computation, the length of the periodic
domain in x is L = 2π/α, where α is the wave number of the mode of interest.
The initial condition consists of a small amplitude (0.01%) random noise on u, v
superimposed to the laminar solution of the problem (Suslov & Paolucci (1995)).
A stretched grid is used in the normal direction in order to capture the eigenvector
accurately near the walls. The wall normal velocity points are distributed according
to a hyperbolic tangent function (j = 0, 1, 2, ..., N):

yv(j) = yj+ 1
2

=
tanh(γ

(
2j
N − 1

)
)

tanh(γ)
(39)

A typical result is shown in Fig. 5. In this case the resolution is 24x100 with γ = 2 for
the stretching parameter. The CFL number is fixed at 1. The length of the domain
is L = 2.4πh (α = 5

6
1
h) and the Reynolds number is 45000, based on the maximum

velocity and the channel half-height h. The temperature ratio is T2
T1

= 2.33, i.e.
δT
2 = 0.4. For these conditions, the flow is linearly unstable (see Suslov & Paolucci

(1995)). The code predicts a reasonable growth rate for this eigenmode. Note that
a fairly long time (10h/uτ ) is needed for the mode to settle in. Once the transition
phase is finished, the temperature and the two velocity components develop with
exactly the same rate, as dictated by the linear stability theory. DivSC and AdvSC
give similar results (AdvSC shown).
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4. Results
Two DNS’s of a channel flow are performed to study the effect of the temperature

gradient on the flow. Details of the test cases adopted are given in Table I.

Case T2/T1 Rτ1 Rτ2 Rec ∆x+ ∆y+ ∆z+

A 1.01 180 180 3300 18.8 0.25− 10 6.28
B 2 200 82 2700 8.4− 21.5 0.25− 9 2.8− 7.2

Table I: Numerical parameters of the two computations performed.

In each case the domain size is (4πh,2h,4π/3h) and the grid contains 120x100x120
cells. The statistics shown for Case B were obtained over a time period of order
5.7h/uτ , where uτ = uτ1+uτ2

2 is the mean friction velocity. The wall normal velocity
points are distributed according to Eq. (39) with γ = 2.5 for Case A. For Case B,
the Reynolds number near the hot wall is expected to be smaller than near the cold
wall and the following non-symmetric distribution is used:

yv(j) = 2
ŷv(j) + 1
ŷv(N) + 1

− 1 (40)

with

ŷv(j) =
tanh(γ

(
2αj
N − 1

)
)

tanh(γ)
(41)

and γ = 2.5 and α = 0.9. Buoyancy effects are neglected and the dimensionless
thermal conductivity and dynamic viscosity are given by Sutherland’s law (see Sec-
tion 3.3.4). The molecular Prandtl number is 0.76. In Case A the temperature is
almost uniform and the results may be compared to previous incompressible DNS
performed by Kim & Moin (1987) and Kasagi (1992) as well as semi-empirical cor-
relations derived by Kader (1981) for the passive scalar case. In Case B one expects
the temperature (density) variations to be large enough to modify the momentum
balance through both viscous and inviscid effects. The analytical work of Eames &
Hunt (1997) shows that when a body moves perpendicularly to a density gradient,
a lift force, CL(U × ∇ρ) × U , pushes it towards the denser fluid. Thus the order
of magnitude of the inviscid lift acting on a turbulent structure in the channel flow
is CLu2

τ∆ρ/h. Requiring that this inviscid force is of the same order of magnitude
as the viscous force, τw/h = ρu2

τ/h, one obtains the estimate ∆ρ/ρ ' 1/CL, where
CL is the lift coefficient. With CL in the range 1/4 − 1/2, the inviscid lift related
to the density gradient may balance the viscous forces for ∆ρ/ρ in the range 2− 4.
Note that one overestimates the required ∆ρ/ρ by assuming that the density gra-
dient in the near wall region is equal to the mean density gradient ∆ρ/h. Case B
corresponds to T2/T1 = 2, viz. ∆T/T = ∆ρ/ρ = 2/3 and the density gradient may
be strong enough to generate important inviscid effects.

4.1 Mean quantities
Figure 6 shows that Case A is in good agreement with previous incompress-

ible DNS (Kim et al., 1987) for the mean velocity profile. The expected (for
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Figure 6. Mean profile of velocity (a) and temperature (b) for Case A. Wall
units. : Law-of-the-wall; ◦ : Kader’s formula : Case A.
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Figure 7. Mean profile of velocity (a) and temperature (b) in global coordi-
nates. : Case A; : Case B. Non-dimensionalization is u/umax and
(T − T1)/(T2 − T1).

the Reynolds number Rτ considered) law-of-the-wall u+ = 2.5ln(y+) + 5.5 is ob-
tained, and there is good agreement with Kader’s formula for the mean tempera-
ture. The non-dimensionalization is such that T+ = Pry

+ in the limit y+ → 0, viz.
T+ = (Tw−T )/(BqTw) or T+ = (Tw−T )ρwCpuτ/qw. Note that the linear behavior
for T near y+ = 180 is related to the inflexion point near the centerline, as shown
in Fig. 7. This figure also shows the profiles for Case B. The temperature difference
is strong enough to induce a significant asymmetry in the mean quantities. The
temperature gradient is smaller near the hot wall so that, with the Sutherland’s law
Eq. (38), the heat flux is the same in absolute value at both sides. In semi-log plot,
the mean velocity profile does not match the classical law-of-the-wall if scaled by the
friction velocity. However, once transformed as proposed by Van Driest (1951), a
logarithmic behavior is clearly obtained for the two sides of the channel. The slope
remains close to its incompressible value whereas the additive constant is (slightly)
greater for both the heated and the cooled wall. This puzzling result (there is no
physical reason to believe that C(Bq) is even) may be due to a low Reynolds num-
ber effect near the hot wall where density is lower and dynamic viscosity is higher.
The temperature profiles (see Fig. 9) for Case A and Case B collapse only through



Turbulent flow with variable properties 303

y+

1 10 100
0.0

10.0

20.0 (a)

y+

1 10 100
0.0

10.0

20.0 (b)

Figure 8. Mean profile of velocity in wall units for Case B. (a): non-transformed;
(b): Transformed (Van Driest, 1951). : u+ = y+ and u+ = 2.5ln(y+) + 5.5;

: Case B - Cold wall; : Case B - Hot wall.
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Figure 9. Mean profile of temperature in wall units. (a): classic scaling; (b):
semi-local scaling. : Case A; : Case B - Cold wall; : Case B -
Hot wall.

the beginning of the buffer layer (y+ ≈ 15). The Peclet number is so low near
the hot wall (Pe ≈ 62) that the linear behavior due to the inflexion point begins
before the logarithmic region (y+ ≈ 50). A better collapse between Case A and the
cold side of Case B is obtained when a semi-local scaling is used as suggested in
Huang et al. (1995) (replacing ρw with ρ(y), µw with µ(y) and uτ =

√
τw/ρw with

u∗τ (y) =
√

τw/ρ(y) and then defining T ∗ and y∗ in a similar manner as T+ and y+).
From Eq. (7), the mean normal velocity:

v =
1

PoRePr

(
k

∂T

∂y
−
∣∣∣∣k∂T

∂y

∣∣∣∣
w

)
(42)

is not zero although the continuity equation requires that the Favre-averaged normal
velocity ṽ = ρv/ρ is zero. However, the negative mean velocity generated by the
turbulent heat transfer is only a small fraction (≈ 1%) of the mean friction velocity
uτ . From Eq. (42), the total heat flux q = −ρṽ′′T ′′ + k ∂T∂y is constant through the
channel. Table II gives the principal mean physical characteristics for Case B.
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Figure 10. Velocity fluctuations for Case A. Wall units. Symbols from Kim et
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Figure 11. Velocity fluctuations in streamwise and normal direction. (a): classic
scaling; (b): semi-local scaling. See previous figure for symbols. : Case B -
Cold wall; : Case B - Hot wall.

T2/T1 uτ1/uτ uτ2/uτ Cf1 Cf2 Bq1 Bq2

2 0.87 1.13 2.82× 10−3 2.48× 10−3 −0.018 0.014
Table II: Physical parameters for Case B.

The friction coefficient is based on the mean density in the channel and the
maximum velocity. Due to density and dynamic viscosity variation, the friction
velocity is higher at the hot wall but the shear stress is higher at the cold wall. The
values obtained for the heat flux parameter Bq are small in absolute value compared
to those in the DNS’s of Coleman et al., 1995 (Bq = −0.05 and −0.14) although the
mean channel centerline-to-wall temperature ratios are equivalent (1.5 for Case B,
compared to 1.4 and 2.5 for the compressible case). This is because the dissipation
term in the internal energy equation is neglected in the low Mach approximation.

4.2 Turbulent fluctuations
For Case A, Fig. 10 shows a good agreement with previous incompressible DNS

(Kim et al., 1987) for the three velocity fluctuations and the Reynolds shear stress.
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Figure 12. Velocity fluctuations in spanwise direction and correlation u′v′. (a):
classic scaling; (b): semi-local scaling. See previous figure for symbols. : Case
B - Cold wall; : Case B - Hot wall.
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Figure 13. Temperature fluctuations. (a): classic scaling; (b): semi-local scaling.
: Case A; : Case B - Cold wall; : Case B - Hot wall.

In Case B, these profiles are no longer symmetric and the inner layer appears to be
thicker near the hot wall. Large departure from the incompressible case exists if the
classic wall scaling is used (see Figs. 11a and 12a). The semi-local scaling allows the
profiles to collapse very well. Still, the maximum of v∗rms and w∗rms is smaller in the
hot side of Case B. The same trend was observed by Dailey & Pletcher (1998) in
their strong heating case (in the supersonic channel flow studied by Coleman et al.
(1995), both sides correspond to a strong cooling). It suggests that all the differences
between the isothermal and heated flow cannot be reduced to a simple mean density
effect. It is worth studying this point in more detail. The temperature fluctuations
collapse neither for the classic nor for the semi-local scaling (see Fig. 13), except
close to the wall and if only Case A and the cooled side of Case B are considered.

Gaviglio (1987) invokes a distinction between large and small scales in turbulence
and argues that temperature and velocity fluctuations are highly correlated within
large coherent structures. Defining the characteristic length as lu = urms

|∂u/∂y| and
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Figure 14. (a): Trms
urms

|∂u/∂y|
|∂T/∂y| from the DNS Case B. : cold wall; : hot

wall; symbols: theoretical ratio from. ◦ : Gaviglio (1987), 4 : Huang et al. (1995),
:Rubesin (1990). (b): Turbulent Prandtl number. : Case A; : Case

B - Cold wall; : Case B - Hot wall.

lT = Trms

|∂T/∂y| and assuming lu ∝ lT , he derives:

Trms

urms

|∂u/∂y|
|∂T/∂y|

= R0 (43)

Gaviglio’s formulation imposes R0 = 1 whereas Huang et al. (1995) propose R0 =
1/Prt (Prt ≈ 0.9) and Rubesin (1990) chooses R0 = 1.34. These analogies are
tested in Fig. 14a and appear to give a reasonable representation of the present
results. Figure 14a suggests that R0 = 1/Prt is a good choice. The turbulent
Prandtl number is given in Fig. 14b. The cold side of the channel looks like the
incompressible Case A with a peak around 1.1 at the wall, a plateau around y∗ ≈
40, and a constant decrease through the center of the channel where Prt ≈ 0.7.
However, at the hot side of the channel, the turbulent Prandtl number is closer to
a constant value and Prt ≈ 1 would be a good approximation everywhere. It is
not clear yet whether this different behavior is due to differing thermal conditions
between the two walls, or whether it simply reflects a low-Reynolds number effect
(Rτ2 is half Rτ1). The same question arises in looking at the correlation coefficients
for the shear stress and the heat fluxes (Fig. 15). The main differences appear in the
hot side of the channel where the Reynolds number is small. The maximum of Ruv

and RvT is located further from the wall in Case B, but the difference disappears
when wall units are adopted. However, the profile of RuT is fuller in the heated
case with a larger negative correlation between u and T (RuT ≈ −0.80 compared to
RuT ≈ −0.60 at y/h = 0.5). A scaling argument can hardly explain the difference.
Kim & Moin (1987) did not observe that |RuT | increases for lower Peclet numbers.

4.3 Higher-order statistics
The computed skewness and flatness factors for u and v are shown in Figs. 16 and

17. The adequacy of the sample size used to compute the higher-order statistics
is only marginal for Case B. However, these quantities are strongly related to the
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Figure 15. Correlation coefficients for Case B. Symbols from Kim et al. (1987).
◦ : Ruv, 4 : RvT , : RuT ; : Case B.
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Figure 16. Skewness factors of u (a) and v (b). : Case B; :
Incompressible DNS, Rτ = 110; ◦ : Incompressible, Rτ = 180, from Kim et al.
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Figure 17. Flatness factors of u (a) and v (b). : Case B; : Incom-
pressible DNS, Rτ = 110; ◦ : Incompressible, Rτ = 180, from Kim et al.

turbulence structure, and it is worth considering how they are modified by a strong
heating/cooling. In Figs. 16 and 17, the results for Case B are compared to the
incompressible data of Kim et al. (1987). To distinguish between the heat transfer
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and the Reynolds number effect, a DNS of an incompressible channel flow at very low
Reynolds number (Rτ = 110) was performed with the fourth-order accurate code of
Morinishi et al. (1998). The domain size for this simulation is (4πh,2h,4π/3h)
and the grid contains 72x50x60 cells. Although Rτ2 is only about 80 in Case
B, the incompressible simulation with Rτ = 110 is adequately representative of
the hot (upper) half of the channel in Case B. Indeed, because of the rapid near-
wall variations of mean properties, the Reynolds number R∗τ2 based on properties
evaluated locally is equal to 110 in Case B at the distance 0.4h from the hot wall.

The skewness factor of the streamwise velocity u (see Fig. 16a) is roughly −0.5
to −0.6 for y+ ≈ 50 for the incompressible DNS’s at Rτ = 180 and Rτ = 110. At
the same time, the normal velocity (see Fig. 16b) is skewed positively in the lower
half-channel and negatively in the upper one. It is known that these features of
the skewness factors correspond to large excursions of fluid from the walls to the
core region. Figure 16a shows that the skewness factor of u in the heated (upper)
half-channel of Case B is approximately twice as large as in the incompressible
cases. This strongly suggests that the density gradient enhances the ejection events
in this region. The same trend is visible in Fig. 16b, which also suggests that the
ejection events are weakened in the cooled (lower) half-plane. These findings would
be consistent with the existence of a force that pushes the lumps of fluid from the
hot to the cold wall. Wardana et al. (1992) supposed that the thermal expansion
was responsible for the modifications observed in the turbulence structure. From
Eq. (42), the mean dilatation in Case B produces negative mean momentum whose
modulus is roughly ρ|qw|/Po. It acts on turbulent structures with time scale αh/uτ ,
where α < 1 expresses that the vortices are smaller than the channel half-height
(α ≈ 0.1 at the distance y = 0.2h from the wall). Requiring that the resulting
impulsion, ρ|qw|uτ/(Poαh), is of the same order of magnitude as the viscous force,
τw/h = ρu2

τ/h, one obtains the estimate Bq ≈ 0.1 for the heat flux parameter. In
Case B, as the modulus of Bq is of order 10−2, it is unclear whether or not thermal
expansion is significant. The inviscid force studied by Eames & Hunt (1997) offers
an alternative to the mean thermal expansion to explain the modifications in the
turbulence structure. It has the right sign (it is oriented from the hot wall to the
cold wall) and the relative density variation ∆ρ/ρ is of order 1 in Case B, so that
this force is not negligible (see the beginning of Section 4). Figures 17a and 17b
show that the intermittency is higher in the heated side, smaller in the cooled side
of the channel. This is consistent with the enhancement/damping of the strong
bursting events illustrated above.

5. Discussion and future plans
The analogies developed in the context of supersonic boundary layers work well in

the case of a low-speed flow with strong heat transfer. It is not very surprising since
these analogies were derived assuming that compressibility effects are negligible
except for the mean density gradient. An advantage of the present configuration
is that each DNS provides information about both one positive and one negative
heat flux parameter Bq. In this respect, the classical Van Driest transformation was
tested for both a cooled and a heated wall, and the logarithmic behavior was well
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retrieved for the mean velocity. The results suggest that the additive constant C is
in both cases greater than its incompressible value. This unexpected result may be
due to a low Reynolds number effect. Indeed, the Reynolds number Rτ at the hot
wall is half its value at the hot wall and it is known that the additive constant in the
law-of-the-wall increases for low Reynolds numbers. Assuming that the Reynolds
number ratio Rhot

τ /Rcold
τ behaves roughly like the temperature ratio T1/T2, it is

clear that a DNS with strong heat transfer and sufficiently high Reynolds number
everywhere in the domain would be very expensive. To this end, a ‘non-physical’
simulation where both the thermal conductivity and dynamic viscosity are inversely
proportional to the temperature may serve as a less expensive way to minimize
Reynolds number effects. Some differences appeared between the incompressible
case and the cooled/heated channel that a re-scaling based on the mean density
gradient was unable to eliminate altogether (amplitude of the peak in vrms and
wrms, shape of the profile of Prt, value of RuT ). The higher-order statistics reveal
large modifications in the turbulence structure when the density gradient is not
negligible. It is suggested that these modifications are related to a purely inviscid
effect which pushes the turbulent structures towards the denser fluid. A case with a
larger temperature ratio would be worth considering to investigate these differences
in further detail.

P. Bradshaw and C. Pierce are acknowledged for their helpful comments on an
earlier version of this manuscript.
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