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Measurements of the three-dimensional scalar
dissipation rate in gas-phase planar turbulent jets

By L. K. Su

1. Motivation and objectives
The scalar dissipation rate, χ ≡ D∇C · ∇C, where C is a conserved scalar and

D is the scalar diffusivity, is a quantity which is of great interest to models of
turbulent non-premixed combustion. Mathematically, it represents the loss term in
the evolution equation for 1

2C
2, the scalar energy:(

∂

∂t
+ u · ∇ −D∇2

)
1
2
C2 = −D∇C · ∇C ≡ −χ.

Physically, χ can be interpreted as a mixing rate, or equivalently as a rate at which
scalar fluctuations are destroyed. More specifically for combustion applications,
Peters (1983) identified χ as a characteristic diffusion time scale, imposed by the
mixing field. Then, local flame extinction could be explained by the scalar dissi-
pation rate exceeding a critical value, thus making the diffusion time smaller than
the chemical time of the local flame structure. Accurate representation of flame
quenching and stabilization poses notable difficulties for diffusion flame computa-
tions, because the scalar dissipation can occur at the finest mixing length scales
of the flow. This means that modeling is required for the scalar dissipation in, for
example, large-eddy simulations (LES) of turbulent combustion, where the filtered
mixture fraction is used as a starting point to describe the combustion.

This study will address two issues regarding the properties of the scalar dissipation
which are of particular significance in the context of combustion. The first concerns
the length scales at which dissipation occurs, in particular their magnitude and
their dependence on Reynolds number. The second issue concerns the scaling of
the mean dissipation values with downstream distance in jet flows. Defining the
thicknesses of the dissipation layers will be of use in determining the resolution
requirements of both DNS and LES computations of turbulent diffusion flames.
Meanwhile, experimental assessment of existing models for the downstream decay
of mean dissipation will provide a fundamental test of our understanding of the
properties of the dissipation rate.

The experimental data used in this study are the planar measurements of the
complete, three-dimensional scalar dissipation rate by Su & Clemens (1998a,b) in
the self-similar region of a gas-phase planar turbulent jet. The data are unique
in providing scalar field information simultaneously in two parallel spatial planes,
with sufficient resolution to permit differentiation in all three spatial dimensions.
Determining the three spatial components explicitly obviates the need to invoke
Taylor’s hypothesis, while the planar nature of the measurement volume allows
direct determination of structural properties of the dissipation field.
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Previous planar measurements of the three-dimensional scalar dissipation at the
smallest scales have been demonstrated in water flows (Southerland & Dahm (1994)).
Some difficulties may arise, however, in applying scalar mixing results in the liq-
uid phase to the gas phase, which is of particular interest in combustion applica-
tions. The Schmidt number (Sc ≡ ν/D, where ν is the kinematic viscosity and D
the molecular diffusivity) of water is approximately 2000, while in gas-phase flows
Sc ≈ 1. From Batchelor (1952), the ratio of the smallest length scales in the ve-
locity and scalar gradient fields in turbulent mixing scales as Sc−1/2. Thus, while
in water flows scalar gradients can be sustained on scales roughly 45 times smaller
than the smallest velocity gradient scales, in the gas phase these scales are expected
to be of the same order. It is reasonable to expect that the details of scalar mixing
in the high and low Schmidt number regimes will differ as a result. Results from
analysis of the present gas-phase scalar dissipation data are expected to be directly
applicable to mixing in combustion systems.

1.1 Expressions for the dissipation length scale

Some confusion arises in defining the dissipation length scale in turbulent flows
because different expressions are used. Here we will define the scalar dissipation
length scale as

λD = ΛδRe−3/4
δ Sc−1/2, (1)

where δ is the flow width, Reδ is the Reynolds number based on δ and a measure
of large-scale velocity, Sc is the Schmidt number, and the constant Λ is to be
determined. More commonly, this dissipation scale is expressed in the form due to
Kolmogorov and Batchelor. From dimensional arguments, Kolmogorov showed that
the finest turbulence length scale, λK , should depend on the kinematic viscosity, ν,
and mean kinetic energy dissipation rate, ε, as

λK ≡ (ν3/ε)1/4. (2)

Subsequently, Batchelor introduced the equivalent expression for the scalar dissipa-
tion length scale,

λB ≡ λK · Sc−1/2.

The expressions for λD and λB are equivalent to within a constant factor. To show
this, begin by expressing the mean kinetic energy dissipation as ε ∝ U3/δ, were U
and δ respectively are measures of the large-scale velocity and flow width. In the
self-similar region of a round jet, Friehe et al. (1971) found

ε = 48
U3

0

d

(y
d

)−4

,

where y is the downstream coordinate, U0 the initial jet velocity, and d the jet nozzle
diameter. To convert to the large-scale variables U and δ, we use the relations
U/U0 = 6.2 (y/d)−1 and δ = 0.37 y (e.g. Chen & Rodi (1980)), defining U as the jet
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mean centerline velocity and δ as the jet full-width at the 5% points of the velocity
profile. Then, Friehe’s result becomes

ε = 0.075
(
U3

δ

)
.

Though derived from results for the round jet, this result should be general to all
turbulent shear flows, under the assumption that the small-scale behavior of fully
developed turbulence is universal and is described by the parameters U and δ.

Inserting this result for ε into the definition for λB , and using Reδ ≡ Uδ/ν, we
obtain

λB = 0.075−1/4δ

(
ν3

U3δ3

)1/4

Sc−1/2 = 1.9 δ ·Re−3/4
δ Sc−1/2. (3)

Thus the Batchelor scale λB is equivalent to λD with a coefficient Λ = 1.9. The
coefficient 1.9 appearing in these relations results from assuming a proportionality
constant of 1 in the Kolmogorov/Batchelor scale definition. Since that definition
is purely dimensional, there is no reason to expect that the proper proportionality
constant should be 1. Empirical determination of the true value for Λ is discussed
below (Section 2.2.1).

2. Accomplishments

2.1 Experimental conditions
This section presents a brief discussion of the experimental method. A compre-

hensive description can be found in Su & Clemens (1998a,b).

2.1.1 Flow field
The flow considered in these experiments is a planar, turbulent jet of propane

issuing into a slow co-flow of air. The nozzle exit has a slot width h = 1 mm
and spans 150 mm. This aspect ratio is sufficiently high that three-dimensional
effects in the mean flow should be negligible in the flow region of interest, which
extends to 127h downstream of the exit. The nozzle itself has a contraction ratio
of 75 : 1 to provide a uniform exit velocity profile. Jet exit velocities ranged from
5.9 to 10.7 m/s, while the co-flow velocity was 0.3 m/s. For the planar jet, the jet
exit Reynolds number is insufficient to describe the local turbulence because the
centerline velocity decays as y−1/2 (y is the downstream coordinate) while the jet
grows linearly in y, so the local outer scale Reynolds number, Reδ, grows as y1/2.
Here, Reδ was determined using the scalings of Bradbury (1965) and Everitt &
Robins (1978), namely

δ0.05 = 0.39 y (4)

and
U/U0 = 2.4 (ρJ/ρ∞)1/2(y/h)−1/2,

and using the kinematic viscosity of air, ν = 0.155 cm2/s. For the present mea-
surements, consisting of a total of 906 image pairs, y ranged from 65 to 127 h,
and Reδ ranged from 3200 to 8400. The binary diffusivity of propane and air is
D = 0.114 cm2/s, giving a Schmidt number of 1.36.
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2.1.2 Laser diagnostics
Previous efforts at three-dimensional scalar field imaging in gas-phase flows have

used either simultaneous two-plane Rayleigh scattering (Yip & Long (1986)), or
multi-plane scattering or laser-induced fluorescence (LIF), in which a single laser
sheet is swept through a three-dimensional volume (Yip et al. (1988)). The for-
mer measurements, however, showed somewhat weak signal levels, while the latter
technique suffers from temporal resolution limitations introduced by the laser sheet
scanning.

The current measurements were performed by simultaneous Rayleigh scattering
and LIF in two planes. This approach eliminates temporal skewing effects, while
the high efficiency of LIF yields much higher signal levels for a given amount of laser
energy than two-plane Rayleigh scattering. In fact, only a single, frequency-doubled
Nd:YAG laser was required. Propane was chosen for the jet fluid because its high
index of refraction results in a Rayleigh scattering cross-section over 13 times that
of air. For the LIF, acetone was seeded into the jet fluid to approximately 5% by
volume. The 532 nm output of the laser was split so that 75% was used for the
Rayleigh scattering, while the remainder was further doubled to 266 nm to excite the
LIF. The resulting laser sheet energies were typically 240 mJ/pulse at 532 nm and
30 mJ/pulse at 266 nm. To capture the signals, two slow-scan, thermoelectrically
cooled CCD cameras, with 500 × 500 pixel resolution, were used. Optical filters
ensured separation of the LIF signal (which peaks in the range 400-500 nm) from
the 532 nm Rayleigh scattering signal. To obtain the scalar concentrations from
the raw imaging signals, standard background and sheet intensity profile corrections
were performed. For additional accuracy, however, the intensity profiles for the two
sheets were captured for individual pulses rather than on an average basis.

In computing the three components ∂C/∂xi of the scalar gradient vector, the
out-of-plane component (here, ∂C/∂z) will be subject to the highest uncertainties,
owing to the need to perform the difference calculation across distinct planes, which
were obtained by different techniques and processed independently. To quantify
the errors incurred, Su & Clemens (1998a,b) applied the two-plane technique to a
single spatial plane, for which the scalar fields measured in the two imaging planes
should be equal. Deviations from this were used to estimate the errors in the
three-dimensional measurements. It was found that errors in the ∂C/∂z term were
substantially smaller than the magnitudes of ∂C/∂z corresponding to significant
events in the dissipation fields.

2.1.3 Spatial resolution
To increase signal levels, the scalar field images were binned 2 × 2; in the data

reduction process it was also necessary to match the fields of view of the two cameras
geometrically, with the resulting pixel resolution being 220×220. This measurement
area spanned 34 jet widths, h, per side, giving a grid resolution ∆x = ∆y of roughly
150 µm. The 266 nm laser sheet showed a Gaussian cross-sectional profile, with a full
width at the 5% points of 200 µm at its waist, while the 532 nm laser sheet showed
a roughly uniform profile with a full width of 180 µm. The laser sheet spacing
∆z was 200 µm. These parameters are to be compared with the estimated finest
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Figure 1. Scalar fields measured by (a) PLIF and (b) Rayleigh scattering, with a
laser sheet separation of 200 µm. The mean flow direction is upward in the images.
The Reynolds number, Reδ, evolves from 5100 to 6200 in the measurement area.

dissipation length scale λD (Eq. 1), here computed using Λ = 11.2 as suggested
by Buch & Dahm (1991). For these measurements the downstream coordinate y
spanned from 65 to 127 h, and the Reynolds number Reδ ranged from 3200 to 8400.
The resulting λD ranged from 370 µm to 720 µm. Therefore 0.21 < ∆x/λD < 0.41
and 0.28 < ∆z/λD < 0.54, where these non-dimensional grid spacings should be
0.5 or less to satisfy the Nyquist resolution criterion.

2.2 Results
A scalar field image pair obtained by this simultaneous Rayleigh/LIF technique is

shown in Fig. 1. The mean flow is upward in the images, so the positive y direction
is streamwise, while the x direction is cross-span and the z (out-of-plane) direction
is spanwise relative to the mean flow. In these fields C is normalized by <C>, the
mean centerline concentration value for the full set of 906 image pairs.

Figure 2a shows the scalar dissipation for the scalar field of Fig. 1. The in-
plane derivative components were determined from the LIF image (Fig. 1a) by two-
point central differencing, and the out-of-plane component was found by simple
differencing between the LIF and Rayleigh images. The dissipation shown in the
figure is non-dimensional, with the scalar values being normalized by <C >, and
the ∆xi used in the differencing being normalized by λD (Eq. 1), with Λ = 11.2.
Figure 2b shows the dissipation layer centers for dissipation field of Fig. 2a. The
layer center field was compiled by first identifying peaks in the dissipation field. A
given point was determined to be a ‘peak’ if it both exceeded a given threshold,
and represented the local maximum of dissipation in both its positive and negative
in-plane scalar gradient directions. A connectivity condition was then imposed on
the peak field to remove noise effects. For Fig. 2a, the threshold value was that
which captures 50% of the total dissipation for the full data set (non-dimensional
χ = 0.058), and the connectivity condition required that the dissipation structures
span a minimum length of twice λD.

The probability distribution of the logarithm of the dissipation is shown in Fig. 3.
Also shown is a Gaussian distribution having the same first two moments. The
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Figure 2. (a) The non-dimensional scalar dissipation for the scalar fields of
Fig. 1. (b) The layer centers.
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Figure 3. Distribution of the logarithm of the non-dimensional scalar dissipation.
Current data, ; Gaussian (with same first two moments), .

measured distribution follows the Gaussian quite closely, except for a slight negative
skewness. Similar asymmetry has been observed in both experiments (Feikema et
al. (1996)) and direct numerical simulations (Eswaran & Pope (1988)) of scalar
mixing, and has also been seen in the kinetic energy dissipation in DNS (Vincent
& Meneguzzi (1991)).

2.2.1 Length scales

It is generally accepted that the scalar dissipation field is organized into layers;
the thickness of these layers will scale with the local outer scale Reynolds number,
Reδ, in a manner dependent on the strain field on the layers. Where the strain
field is the inner scale strain the normalized layer thickness, λD/δ, scales as Re−3/4

δ

(Batchelor/Kolmogorov scaling), while if the strain field were the outer scale strain
the thickness would scale as Re−1/2

δ (Taylor scaling). The traditional view (e.g. Ten-
nekes & Lumley (1972)) holds that the bulk of the scalar dissipation occurs at the
Batchelor scale, though Dowling (1991), based on time-resolved single point scalar
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field measurements, has suggested that the regions of highest dissipation observe
Taylor scaling. Nevertheless, Dowling (1991) found that the smallest dissipation
scales observe Batchelor scaling.

Numerous studies have attempted to find the value of the constant Λ in Eq. 1
which accurately defines the size of the smallest dissipation scales. These efforts
have generally proceeded by analysis of single-point scalar or velocity time series
data. The difficulties of this approach can be seen by noting that Dowling & Dimo-
takis (1990) found Λ ≈ 25 from spectra of scalar concentration fluctuations, while,
using the same scalar time series data set, Dowling (1991) subsequently obtained
Λ ≈ 5 from scalar dissipation rate estimates. In contrast, Buch & Dahm (1991)
determined Λ = 11.2 from explicit measurement of the average thicknesses of dis-
sipation structures in two-dimensional scalar field images. This latter approach is
taken here.

Consistent with Buch & Dahm (1991), we define λD from Eq. 1 as the average
of the full widths of the dissipation layers, where this width is computed as the
distance across a layer between those points where the dissipation is 20% of the
maximum. As a first step in computing the layer thicknesses, the layer center fields
for the images were found, as described in Sec. 2.2 and shown in Fig. 2b. For each of
the points on these layer centers, a search was then performed in the scalar gradient
direction (both positive and negative) until the dissipation value dropped to 20%
of the maximum. The resulting layer half width values were then doubled to give a
measure of the full width. Statistics were not compiled for those layers where the
dissipation failed to drop monotonically, indicating a possible intersection of layers.
Finally, because the dissipation images, and thus the thickness computations, are
strictly two-dimensional, the resulting thicknesses were adjusted by a factor of cos φ,
where φ is the out-of-plane angle of ∇C.

Figure 4 shows the distribution of layer thicknesses, expressed in terms of Λ, as
determined from Eq. 1. The threshold and connectivity conditions used for the layer
center determination were the same as those used to compute the layer center field
of Fig. 2b. To minimize the effect of the cosφ correction, only dissipation maxima
where φ ≤ 60◦ were considered. The mean of the distribution is Λ = 14.8, indicating
the the layers in these data are somewhat thicker than predicted by Buch & Dahm
(1991), and are over seven times larger than the Batchelor scale determined using
a proportionality constant of 1 in the Kolmogorov scale definition (Eqs. 2, 3).

In Fig. 5, the dependence of λD on the local outer scale Reynolds number Reδ
is shown. The curve was compiled by dividing the Reynolds number range 3200
to 8400 into 26 bins, then computing the thicknesses for each bin as above, with
the same threshold and connectivity conditions. The curve thus represents the
average layer thickness for the given Reδ. The dashed line in the plot is the curve
14.5 · Re−3/4

δ . The actual least-squares fit gives a Reynolds number dependence of
Re−.74

δ . From this plot it is quite evident that the average layer thicknesses observe
the Re−3/4

δ Batchelor scaling. (The constant Λ = 14.5 differs slightly from that
found from the curve of Fig. 4 because the data are not evenly distributed in Reδ
space.)
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Figure 4. Distribution of dissipation layer thicknesses, expressed in terms of Λ.
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Figure 5. Average layer thickness conditioned on local outer scale Reynolds
number. Current data, ; 14.5 ·Re−3/4
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However, Dowling (1991) concluded that while the majority of the dissipation oc-
curred at scales which followed Batchelor scaling, a substantial portion of the dissi-
pation, in particular the highest local dissipation values, occurred at the larger Tay-
lor scales. With the present data this can be assessed by considering the Reynolds
number dependence of the extremes of the thickness distribution. Figure 6 shows
the Reδ dependence of the average thickness of the thickest and thinnest 25% of
layers, together with the overall average as shown in Fig. 5. There is no evidence
of Taylor scaling of the thickest layers. The least-squares fit to the thickness curve
for the thickest 25% of the layers has dependence Re−.73

δ , while the curve for the
thinnest 25% has dependence Re−.75

δ . The trend of weaker Reδ dependence for
thicker layers is consistent with Dowling’s hypothesis, but this very slight difference
of Re−.73

δ versus Re−.75
δ is likely within experimental tolerances, and certainly gives

no indication of Re−1/2
δ scaling.

Figure 7 shows the dependence of Λ on the threshold value of the dissipation rate.
Again, in contradiction to the idea that high dissipation values take place on length
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Figure 6. Layer thickness conditioned on Reδ. Average thickness of all layers,
; average of thickest 25% of layers, ; average of thinnest 25%, .
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Figure 7. Dependence of the coefficient Λ on the threshold value of the dissipation
rate.

scales observing Taylor scaling, it can be seen that higher values of χ are associated
with thinner layers.

2.2.2 Dissipation rate scaling

The scaling of mean scalar dissipation rates with downstream distance in turbu-
lent jets is of interest in certain models of the stabilization properties of turbulent jet
diffusion flames. Peters & Williams (1983) suggest that the mean scalar dissipation
rate should scale linearly with the global strain rate, with the square of the local
mean centerline scalar concentration, and with the inverse square of the local jet
width. For the planar turbulent jet, we thus expect χ ∝ (U0/h)(y/h)−3. The few
existing measurements for the downstream dependence of the mean dissipation fail
to observe the expected scalings, however. In round jets, both Lockwood & Moneib
(1980) and Effelsberg & Peters (1988) found that the decay of χ in the self-similar
region was significantly weaker than the predicted (y/d)−4 dependence.

The present measurements span from 65 to 127 jet widths downstream, and
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Figure 8. Downstream decay of scalar dissipation rate, normalized by global
strain rate. Current data, ; best fit, y−1.4, .

so can provide useful information on the decay of the dissipation rate. However,
because the present measurements were intended primarily for investigation of the
structure of the scalar dissipation rate field, no direct effort was made to correlate
the measured scalar concentrations to the initial jet value. We account for the scalar
decay here by assuming that the recommended scaling from Chen & Rodi (1980)
applies, namely

<C(y)> /C0 = 2.46 (y/h)−1/2,

where < C(y) > and C0 are the local mean centerline concentration and initial
jet concentration, respectively, and the effect of the jet and ambient fluid density
difference has been included. For each data set of 15 or 30 image pairs, the centerline
average is found, the effective C0 value is computed from the above formula, and
this C0 is then used to normalize the scalar field values for the purpose of compiling
the dimensional dissipation rate χ.

Figure 8 shows the conditional average of χ/(U0/h) with downstream distance,
for off-center positions |x|/δ ≤ 0.05, i.e. near the centerline. The dissipation rate
χ is computed here as χ = D (∂C/∂xi)(∂C/∂xi), where D is the propane-air dif-
fusivity, 0.114 cm2/s, C is the scalar concentration normalized by C0, and the xi
are dimensional. The global strain rate U0/h has been divided from χ to isolate
the dependence of the decay on (y/h). The dotted line is the best linear fit to the
data, which has a slope of -1.4. Consistent with previous results, the data predict a
much slower decay than anticipated by the theory of Peters & Williams (1983). It
should be pointed out that for both planar and round jets, the fine scales increase
in size with downstream distance, and thus resolution requirements are relaxed as
the measurement area moves away from the nozzle. It is therefore possible that the
decay rates are underestimated because high dissipation rates are more accurately
measured further downstream. For the present measurements, however, the relative
resolution differs at most by a factor of two between the y = 65h and y = 127h
locations. Considering only these two locations, a dependence of χ on y−3 would
require that χ decay by a factor of 7.5 from y = 65h to 127h, while the measured
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y−1.4 dependence corresponds to a χ decay factor of 2.5. From the evidence of
existing measurements which assess the effects of varying resolution (e.g. Dowling
(1991), Antonia & Mi (1993)), this factor of three discrepancy cannot be accounted
for by the resolution difference between near and far downstream positions. Rather
it appears, based on these limited results, that the current understanding of the
scaling of dissipation rates is quite incomplete.

3. Future plans

While this paper has focused on the fine scales of the mixing field, the data are
also well suited to analysis of larger scale properties and, perhaps more significantly,
to analysis of the interactions of the large and small scales. At the upstream limit
of the measurement domain, y = 65h, the jet width (Eq. 4) is δ ≈ 25h, while at
the downstream limit, y = 127h, we find that the jet width is δ ≈ 50h. Since each
imaging plane spans 34h, each scalar field image covers a range of scales from the
finest mixing scale to in excess of 0.68 δ. It is therefore possible, for example, to
investigate scale similarity over the full range of flow length scales. As pointed out
by Frederiksen et al. (1996), information on the full three-dimensional dissipation
rate is necessary to assess the true scale similarity of the mixing process. Direct, a
priori assessments of subgrid models for LES can also be performed, by filtering the
scalar and scalar dissipation results and comparing the model predictions based on
these filtered quantities with the actual values on the original, resolved measurement
grid. Similar tests have been demonstrated both on DNS data for Sc = 1 mixing,
and on experimental liquid-phase mixing results (Cook & Riley (1994)).
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