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Commutative filters for LES
on unstructured meshes

By Alison L. Marsden AND Oleg V. Vasilyev!

Mbotivation and objectives

Application of large eddy simulation (LES) to flows with increasingly complex
geometry necessitates the extension of LES to unstructured meshes. A desirable
feature for LES on unstructured meshes is that the filtering operation used to remove
small scale motions from the flow commutes with the differentiation operator. If this
commutation requirement is satisfied, the LES equations have the same structure
as the unfiltered Navier Stokes equations. Commutation is generally satisfied if
the filter has a constant width. However, in inhomogeneous turbulent flows, the
minimum size of eddies that need to be resolved varies throughout the flow. Thus,
the filter width should also vary accordingly. Given these challenges, the objective
of this work is to develop a general theory for constructing discrete variable width
commutative filters for LES on unstructured meshes.

Variable width filters and their commuting properties have been the focus of sev-
eral recent works. Van der Ven (1995) constructed a family of continuous filters
which commute with differentiation up to arbitrary order in the filter width. How-
ever, this set of filters applies only to an infinite domain without addressing the
practical issue of boundary condition in a finite domain. More recently, a class
of discrete commutative filters was developed by Vasilyev et al. (1998) for use on
nonuniform structured meshes. Their formulation uses a mapping function to per-
form the filtering in the computational domain. Although this type of mapping is
impossible for the unstructured case, the theory developed in Vasilyev (1998) was
used as a starting point for the present work.

In this paper we present a theory for constructing discrete commutative filters
for unstructured meshes in two and three dimensions. In addition to commutation,
other issues such as control of filter width and shape in wavenumber space are also
considered. In particular, we wish to specify a desired filter width and shape at each
point in space and obtain a discrete filter which satisfies this requirement regardless
of the choice of the computational mesh.

Accomplishments

1. Commutation error in physical space

Recently Vasilyev et al. (1998) developed a general theory of discrete filtering in
arbitrarily complex geometries. With the use of a mapping function, the filtering
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is done in the computational domain. Here, we extend the theory of commutative
filters developed in Vasilyev (1998) to the physical domain. We begin by discussing
the filtering in one-dimensional space and then extend it to three spatial dimensions.

1.1 Commutation error in one spatial dimension

Following Vasilyev (1998) an operator to measure commutation error is defined
as follows. Given a function ¢(z), the commutation error is

dg] _ dg _ do
{%}_d:p dz’ (1)

where overbar denotes the filtered quantity. The filtering operation is defined by
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where A(x) is the filter width and G (n, z) is the location dependent filter function.
With the change of variables n = i(my), (2) can be written as

A

o(x) = G (n,2) ¢ (x — Az)n) dn. (3)

A'(2)n'Dyo(x), (4)

where D, = d/dx is the derivative operator. This series was proven to be convergent
in Vasilyev (1998) for the case of uniform A by assuming that the spectrum did not
include wavenumbers higher than some finite cutoff wavenumber k... The proof
is analogous for the case of varying A and with the same assumptions the radius of
convergence in this case is considered to be infinite. Substituting (4) into (3) and
changing the order of summation and integration, we have
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In the same manner as in Vasilyev (1998) we let

With this definition we have

— o)+ Y (@)D o(x) o)
I=n
The filtered quantity of the derivative is
By = M (@)D (). (10)
The derivative of the filtered quantity is
Dioy=22, Z (Al )M (@)Dho(e)). (1)

Applying the chain rule to (11) and subtracting (11) from (10), we obtain an ex-
pression for the commutation error:

{%} ¥ <‘l_'1)l {% (Al (z) M (z)) } DLo(x). (12)

Using the properties in (8) it follows that

dM!

o ()=0 forl=1,...,n—1. (13)

As a result, the local commutation error is
d¢

o (A" 14

|-, (1)

provided that dA/dz = O (A), which is true for most smoothly varying grids. For

highly stretched grids dA/dz is O (A7), v < 1, which results in lowering the order
of the commutation error to O (A"T71).

1.2 Extension to three dimensions

The extension to three dimensions is quite straightforward. Let us consider a
three-dimensional field ¢(x), (x = (x1,22,23)") defined in a three-dimensional
domain €2. The filtering operation in three-dimensional space is defined by

_ B 1 1 —Yr T2 —Y2 T3 — Y3 X 3
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The transformation 7; = (z; — y;)/A;(x) maps the domain €2 to domain . With
this change of variable, (15) can be rewritten as

- § Gnx)6 (@i~ Atxn) d'n, (16)
Taking the Taylor series expansion of ¢ as in the one-dimensional case, we have

¢ (r1 — Ar(X)n1, 2 — Do (X)m2, T3 — Az(x)n3) =

+o00o (_1)1 3 l
Z T (ZAm(X)anmm> ¢(X), (17)
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which can alternatively be written as

+o0 1\ ' ‘
G(ri—Di(x)m)=>_ >, %aiﬂﬁ(x)%(xmk( )nimns DL, DI, Dk, 6(x),

1=0 i+j+k=l
(18)
where aé ;1 are coefficients of the polynomial expansion
(a+b+c) Z a Lalbl k.
i+j+k=l

Substituting (18) into (16) and changing the order of summation and integration,
we obtain

+o00o 1\l . . . .
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§ G (19
Defining the filter moment as before, we have
M= = il (.x) P (20)
Then, substituting (20) into (19) into gives
Z Z ”kN( x) A% (%) A§ (x) M4 (x)D;, DI, Dy, ¢(x). (21)

=0 i+j+k=l

As in the one-dimensional case, we let

0, 0<i+j+Ek<n.
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Then from (21) we obtain
S (D A (A () AE () 17 (1D DI D
:Z Z 0 aijkAl(X)AQ(X)AS(X)M (X)Dxlpm2pm3¢(x)‘ (23)
=0 i+j+k=l ’

Without loss of generality let us consider the commutation error between differ-
entiation in the z; direction and filtering, [ ] The filtered value of the derivative

is

I9 T o

2 vy Al A )AL M DI DL D o(x)  (24)
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and the derivative of the filtered function is

S

=0 i+j+k=l

ol { o (8] 9240) 350104 () DL, D, D, 6
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We now have an expression for the commutation error in three dimensions with a
variable filter width

EIE b ol
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Using the properties given in (22), it is easily shown that for smoothly varying
meshes the local commutation error in three dimensions is given by

{SZ} O(N()Ag(x)A’;(x)), itj+tk=n (27)

so that commutation is satisfied to a desired order.

2. Construction of discrete commutative filters

The filters developed by Vasilyev et. al (1998) were constructed by applying the
necessary number of constraints to the filter weights to achieve both commutation
and an acceptable filter shape. The following constraints were imposed in finding
the filter weights. The zeroth moment should be one, a specified number (order of
commutation error) of higher moments should be zero, and other constraints were
added for defining the filter shape.

These ideas were used as a starting point for developing filters for the unstructured
case. However, in the unstructured mesh formulation, it is impossible to use the
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same discrete filter at all points on the mesh as was possible in Vasilyev (1998).
Instead, filter weights must be computed at each mesh point and stored in a table.
This restriction means that the algorithm must have a way to assess the filter shape
at each point since the user cannot adjust the filter constraints by hand at each
mesh point.

An initial formulation for filter construction on an unstructured mesh used the
ideas presented in Vasilyev (1998) generalized to physical space. Given a mesh point
to filter about, a set of neighboring points was chosen to make up the filter. Then,
constraints were applied directly on the filter moments and shape in order to deter-
mine the filter weights. This procedure followed directly from Vasilyev (1998). Two
problems arose in implementing this method. First, it was found that in the case of
a non-uniform point distribution such as an unstructured mesh, the shapes of the
resulting filters were highly unpredictable. In order to overcome this problem, the
filter construction algorithm would have to choose the most appropriate constraints
to apply based on some filter shape criterion. Second, the nature of unstructured
meshes is such that a point may have any number of neighboring points. The algo-
rithm would, therefore, have to decide which points to include and possibly apply
different constraints at each mesh point, leading to inconsistencies in the filters from
one part of the mesh to another.

Greater predictability and the ease of implementation can be gained by using in-
terpolation based filters to achieve commutation rather than directly implementing
constraints as discussed above. The construction of discrete filters on unstructured
meshes is motivated by work on interpolating wavelets (Donoho 1992) and the the-
ory of second generation wavelets (Sweldens 1996, Sweldens 1997, Daubechies and
Sweldens 1998). To illustrate the idea of construction of discrete filters based on
polynomial interpolation, let us consider a one-dimensional example. Suppose we
have a set of NV unevenly spaced grid points z;, and the values of the function f; are
known at these points. We can uniquely define the N — 1 order polynomial Py, (z)
that passes through the data. Polynomial coefficients are uniquely determined by
locations x; and values f;. Evaluating this polynomial at the point xy and substi-
tuting the values of the polynomial coefficients expressed in terms of the values f;,
we easily find that Py_1(xg) = Zgzl w; f;. If we treat these weights as the weights
of the corresponding discrete filter, then this filter will have the unique property
that, when it is applied to the polynomial of degree less than N — 1, it does not
change this polynomial. Then the discrete filter moments defined by

M= Zwk(l‘k — z0)" (28)

automatically satisfy the conditions (8) since (z — zg)! is exactly zero at z =
forl =1,...,N —1 and 1 for [ = 0. Consequently, the discrete filters based on
polynomial construction automatically guarantee an N*" order commutation error.
To control the shape and other properties of the discrete filters, we can construct
a filter as a linear combination of as many polynomial based filters as we want,
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while preserving the commutation properties of the filter. The same idea can be
easily extended to n dimensions using an n-dimensional polynomial. This simple
idea gives us all the flexibility we need to construct filters with the desired shape
and properties in any dimension, yet it is very straightforward to implement.

In general, with an N** order numerical scheme, the filtering operation must
commute to order N. Reducing error further has no significant impact on overall
accuracy because the discretization error is also of order N. As in the case for
a structured mesh, the filters developed here must have N — 1 zero moments to
commute to order N. In developing filters for an unstructured mesh, we will begin
by assuming a second order finite difference scheme. However, as discussed above,
the extension to a higher order method is straightforward. With this second order
scheme in mind, we proceed with the goal of developing filters which ensure a
second order commutation error. A two-dimensional discrete filter based on first
order polynomial interpolation can be constructed using a triangle where (zq,yo)
is the point where we want the filtered value. A triangle is chosen because in
two dimensions three points are needed for exact reconstruction of a first order
polynomial. Weights are calculated by fitting a polynomial to the vertices of the
triangle and then used to find a weighted average at the central point (zo,yo)-
The shape of the resulting filter in wavenumber space is very well defined, and
the number of points used can be the same at each mesh point because any three
close points can be chosen to make up a triangle. The method for finding the filter
weights using a triangle in two dimensions is presented here, but it will later be
extended to three dimensions in Section 3.3. Details on choosing which points to
use in the filter are discussed in Sections 3.2 and 3.3.

The vector of interpolating weights, w, is calculated as follows. Let (x1,y1),
(z2,y2), and (x3,y3) be coordinates of the points where the function is given and
(0, yo) be the coordinates of the point to interpolate to. Let

P(x,y) = aoo + a0 (x — o) + ao1 (¥ — %o) (29)

be a first order polynomial interpolant. Requiring that interpolant (29) goes through
the data points f; (¢ =1,...,3), we obtain the following set of linear equations

f1 = aoo + a0 (x1 — x0) + ao1 (Y1 — o)
fa = ago + a0 (z2 — x0) + ao1 (Y2 — Yo) » (30)
fa = apo + a0 (3 — x0) + a1 (Y3 — Yo) -

Note that interpolant (29) is chosen such that agg is the value of interpolant at
point (zg, yo). This value is also the weighted sum of the functional values given by

P(x0,y0) = w1 f1 + wafa +ws fs, (31)

where w; are the filter weights.
Some manipulation shows that the weights can be simply calculated with a single
matrix inversion. If
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Example of mesh used for filter development.

FIGURE 1.

Y1 — Yo

1 r1 — Xo

(32)

and

(33)

b=(1 0 0)

the vector of weights, w, is given by

(34)

b-A""

W =

We now have weights which make up a two-dimensional discrete filter which satisfies

commutation to second order. The three-dimensional equivalent is straightforward

and requires four points instead of three to satisfy commutation. The extension to
3.1 Two-dimensional filters

three dimensions is discussed in Section 3.3.
3. Implementation of commutative filters

dimensional filters

with second order commutation error using polynomial interpolation. The result
was a set of discrete triangular filters with weights assigned to each vertex and the

central point. Using these triangular filters as a basis, the topic of this section is

In Section 2 we demonstrated construction of discrete two
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FiGUurE 2. Example of filter constructed with triangles on an unstructured grid.

the construction of commutative filters which combine multiple triangles into one
filter and allow for a variable filter width.

Although one triangular filter satisfies the properties of commutation, it is unde-
sirable because it offers no flexibility in filter width or shape. Also, an ideal filter
would include more neighboring points to obtain a nice distribution. To take advan-
tage of the predictability of simple triangle based filters while adding flexibility in
filter width, it is possible to use a linear combination of multiple triangular filters.
This method offers the advantage of a predictable and well defined transfer function
shape while ensuring that the resulting filter will satisfy commutation to the same
order as the basis triangles.

Figure 2 shows an example of a 2-D filter constructed from three triangles. The
corresponding transfer function, which has very nice characteristics, is shown in
Fig. 3. To achieve flexibility in filter width, each triangle as well as the central
point is assigned a weight which applies equally to all vertices of the triangle. We
will refer to the weights on triangles as 3; whereas the filter weights on individual
vertices calculated in Section 2 are w;. The value of 3; can be varied from 0 to 1
as long as the sum total is 1. The optimum value of 3 for the central point is 1/2
because this results in the most desirable filter shape.

3.2 Implementation in two dimensions

We are now ready to discuss details of filter construction in two dimensions. The
first task for the filter construction algorithm is to choose the set of points to include
in the filter. Each included point is part of a triangle which will later be linearly
combined with other triangles to form the total filter as discussed in Section 3.1. The
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FiGURE 3. Typical transfer function shape.

number of triangles included in each filter may be specified by the user; however,
the filters presented in this paper consist of three triangles because this provides
a nice distribution of points on a regular unstructured mesh in two dimensions.
After the set of points is chosen, the next step is to calculate the weights associated
with each mesh point included in the filter. From these, we calculate the transfer
function G and apply the filter to the discrete data.

Points to include in the filter are selected based on chosen criterion for the trian-
gles which make up the filter. Given a point to filter about, surrounding points are
searched in groups of three until a set of triangles to use in the filter is settled on.
It is obviously undesirable to search points on the entire mesh because of compu-
tational cost. Because of this, the first step in the algorithm is to come up with a
set of neighboring points to include in the search. In the present formulation this
involves defining a box around the central point and sorting mesh points to pick out
those which lie in the box. However, for cost reasons the final algorithm will take
advantage of the mesh connectivity for this purpose. Figure 1 shows an example
mesh which was used in testing and developing the filtering scheme.

Having sorted the surrounding mesh points into a “box”, the next step is to
calculate the distance to each point in the box as well as the angle from the x axis.
The points are then sorted according to angle into three zones of 120 each. The
zones are created to ensure that the chosen points have a nice distribution of angles
about the central point. Figure 4 shows these three zones. Within each zone, the
points are sorted by distance from the central point.

Triangles are systematically formed by taking a point from each zone, starting
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FIGURE 4. Mesh nodes sorted by angle.

with the closest point in each, and then seeing if the chosen triangle meets the cri-
terion for being included in the filter. For each triangle formed, we must determine
whether to use it in the filter or continue the search by trying the next combination
of three points. When three triangles have been found, the choice of points for the
filter is complete.

Triangles must satisfy two criterion to be selected for use in the filter. First, the
central point must be inside the triangle, and second, the central point must be as
close to the centroid of the triangle as possible. Both criterion involve drawing lines
from the central point to each vertex of the triangles to form three sub-triangles. If
the summed area of the sub-triangles exceeds that of the larger triangle, the central
point is outside. If the area of any of the sub triangles is a large percentage of the
total area of the triangle, the central point is too close to the side of the triangle.
The allowable percentage is a user specified parameter. If one of these checks is
true, the triangle is rejected and we try another set of three points, continuing until
the desired number of triangles has been found.

This procedure has one drawback. When the best choice of triangle has two
points in the same region, usually very close to the region boundaries, it is never
tried as a possibility for the filter. As a solution to this problem, the next step in
the algorithm is to rotate the zone boundaries as shown in Fig. 5 and the procedure
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FIGURE 5. Mesh nodes sorted by angle, rotated from Fig. 4.

of choosing triangles is performed again, returning a new set of triangles. The set
of triangles whose collective weights are closest to one third is then chosen to make
up the final filter.

We now have a set of three triangles to make up the filter which can be linearly
combined to create the complete filter as described in Section 3.1. Flexibility is
gained by applying the same filter over again with different triangle weights, 3;, to
capture low and high wavenumbers and achieve a nice transfer function shape. In
addition, by applying the same filter more than once, it is possible to increase the
filter width until the desired value is reached. With this method it also becomes
possible to exactly specify the filter ratio for use in the dynamic model.

3.8 Three-dimensional filters: An extension

The extension of the filtering procedure outlined in Section 3.2 to three dimensions
is quite straightforward. While three points are required in two dimensions for
commutation, four points are required in three dimensions as shown by the following.
For reconstruction of a first order polynomial we have four coefficients.

f = apoo + a100x + ap10y + @012 (35)

The base filter shape now becomes a tetrahedron instead of a triangle, but filter
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construction algorithm is completely analogous to the two-dimensional method pre-
sented in Section 3.2 Four zones are created in three dimensions, and points in each
zone are ordered by distance from the central point. Tetrahedrons are systemat-
ically formed by taking a point from each zone starting with the closest point in
each. To determine whether a given tetrahedron meets the criterion for use in the
filter, we need to know if the central point is inside the tetrahedron and if it lies
far enough away from the sides. Analogous to the two-dimensional case, a line is
drawn from the central point to each vertex to create four smaller tetrahedrons. If
the point is inside, the volume of these tetrahedrons will equal the volume of the
larger tetrahedron. Once this condition is met, the next check is that none of the
smaller tetrahedrons have a volume which is too great a percentage of the larger
tetrahedron.

Once the desired number of tetrahedrons has been reached, a rotation is per-
formed, and a new set is found as in the two-dimensional case. The set of tetrahe-

drons whose collective weights are closest to one fourth is then chosen to make up
the final filter.

4. Conclusions and future plans

A method of constructing commutative filters for unstructured LES has been de-
veloped and demonstration of the commutative properties is currently underway.
One important feature of the method of filter construction presented here is that
it has no requirements on the type of mesh used. Because the filter can be con-
structed simply from a set of points in two- or three-dimensional space, there are
no constraints on the shape of mesh elements or the connectivity. It is possible to
use connectivity to improve the efficiency of the algorithm, but the method remains
general to any mesh. In addition, the filters presented have a consistent filter shape
and flexible filter width. This allows the filter width ratio to be exactly specified
for use in the dynamic model.

It would be relatively straightforward to extend the filter construction procedure
developed here to higher order accuracy. For example, if one desired to use a third
order finite difference scheme, the polynomial interpolant would have to be second
order, requiring six neighboring points in two dimensions.
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