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Application of machine learning algorithms
to flow modeling and optimization

By S. Müller 1, M. Milano 1 AND P. Koumoutsakos

1. Motivation and objectives
We develop flow modeling and optimization techniques using biologically inspired

algorithms such as neural networks and evolution strategies. The applications pre-
sented herein encompass a variety of problems such as cylinder drag minimization,
neural net modeling of the near wall structures, enhanced jet mixing, and parameter
optimization in turbine blade film cooling. The unifying concept is the utilization
of automated processes for the solution of these problems, devised from machine
learning algorithms.

The results presented herein encompass a wide variety of problems such as drag
minimization, neural net modeling of the near wall structures, enhanced jet mixing,
and parameter optimization in turbine blade film cooling.

Flow control has been a fundamental concept in fluid mechanics research in this
century. In the early 1900’s research was focused on the development of experi-
mental procedures that would elucidate the governing flow phenomena in order to
devise efficient control devices. A number of empirical methods were proposed such
as rotating cylindrical sails for ship propulsion and the placement of wires around
wing profiles (a precursor of riblets) for drag minimization. In the second half of
the century, developments such as the discovery of coherent structures in the wake
of bluff body flows and the understanding of the processes of flow separation led
to a number of devices (e.g vortex generators, splitter plates, mass transpiration,
etc.) for the efficient manipulation of flow structures in experiments and realistic
engineering configurations. In the 80’s and 90’s the advent of Direct Numerical
Simulations (DNS) provided us with a thorough understanding of fundamental pro-
cesses such as the mechanisms of skin friction drag in turbulent flows (Kim et al.,
1987). DNS of turbulent flows have been used as the testing grounds for a num-
ber of control algorithms such as the opposition control scheme (Choi et al., 1984),
feedback control using models derived via POD (Lumley et al., 1998) or neural
networks (Lee et al., 1997), the feedback control of vorticity generation (Koumout-
sakos, 1997 and 1999), and optimal (Bewley, 1999) and suboptimal control (Lee et
al., 1998) strategies. These simulations have provided us with valuable insight into
the behavior of controlled flows. Moreover, these algorithms have demonstrated
that the effective control of turbulence in engineering applications requires strate-
gically placed, micro/nano devices that would be capable of sensing and actuating
frequencies in the order of a few MHz.
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Recent progress in manufacturing has provided us with an unprecedented array
of such potent devices such as MEMS (Ho et al., 1996) capable of sensing and effect-
ing the detailed structure of a turbulent flow. However, the proper integration of
control devices and control algorithms in realistic applications remains a challeng-
ing problem. While a wealth of different possible geometry modifications and/or
open loop actions have been proposed, little effort has focused in trying to devise a
concise optimization algorithm to adjust the diverse control parameters. The devel-
opment of low order models that can be used in conjunction with control theories is
a challenging problem that, when solved, could lead to drastically improved designs.

We envision neural network approaches as an effective way of developing such
models and incorporating them in feedback control algorithms. In section 2 we
present some preliminary results from the application of neural networks as a
method to construct low order models, describing the near wall dynamics in turbu-
lent flows. Neural networks are viewed as a general procedure of model formation
encompassing schemes such as the Proper Orthogonal Decomposition.

Another key issue in the effort to reduce time to market of new engineering de-
signs is the optimization of the design parameters in an efficient manner. The design
cycle usually involves multi-objective and multi-disciplinary optimization problems,
requiring the iterative solution of empirical formulas, the appropriate integration of
numerical simulations, and the incorporation of physical understanding of the vari-
ous aspects of the problem. At the same time, the optimization cycle of the physical
problem must take into consideration financial and manufacturing constraints. In
flow related problems, this optimization cycle has benefited from advances in op-
timization theory which usually aim at tackling the most costly aspects of the
optimization problem such as the solution of the Navier-Stokes equations. Powerful
techniques such as the adjoint procedure have been implemented successfully in the
design cycle of aircrafts (Reuther et al., 1999).

However, such optimization strategies are usually based on the efficient calcula-
tion of gradients of functions relating the quantity to be optimized to the parameters
of the problem. Such gradients are not always readily available as often the opti-
mization cycle would involve empirical formulas and cost functions that are difficult
to express analytically in terms of the optimization problem. Moreover, gradient
based algorithms are usually converging to local extrema. Therefore, the result
strongly depends on the initial selection of parameters.

Evolution strategies (Rechenberg, 1973) are optimization techniques that avoid
the problems associated with the use of gradients as they require only the calcula-
tion of the cost function at each point in the parameter space. They operate based
on natural principles of evolution such as mutation, recombination, and selection.
These operations are adapted so that the algorithm automatically develops and at-
tempts to optimize a model landscape relating the cost function to its parameters.
Compared with gradient based techniques, their convergence rate is usually much
lower, thus requiring large numbers of iterations that could be unrealistic for some
problems of engineering interest. On the other hand, they are highly parallel algo-
rithms that efficiently exploit today’s powerful parallel computer architectures and
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they are more likely than gradient based algorithms to identify a global optimum.
This latter aspect makes them attractive in many engineering applications where
the fitness landscape cannot be assumed unimodal. In the next section we report
results from the application of evolutionary algorithms to a number of diverse areas
such as drag minimization in cylinder flows, jet mixing optimization, and turbine
blade film cooling.

2. Accomplishments

2.1 Neural networks as near wall flow models
Feedback control algorithms can be devised using a low order model representa-

tion of the flow field. In this context we examine the reconstruction of the near wall
structures using wall only information with the aid of linear and nonlinear neural
nets.

The POD as a linear neural network
A model reduction can be accomplished by projecting the model equations, i.e. the

Navier-Stokes equations, on a properly selected lower dimensional phase subspace.
A reasonable choice for a “proper” selection criterion for the base of this manifold
is the maximization of the energy content of the projection. This can be done by
applying the Karhunen-Loeve decomposition to a data set that is representative of
the dynamics of the system that we wish to approximate. This operation is called
Proper Orthogonal Decomposition (POD) (Berkooz et al., 1993), or Linear Principal
Components Analysis (PCA).

The linear POD is an approximation of the flow vector v by a finite expansion
of orthonormal functions φn such that: v = V +

∑n
i=1 an(t)φn(x). where V is

the time averaged flow, φn is the set of the first n eigenvectors of the covariance
matrix C = E[(vi−V )(vj−V )]; when this representation for v is substituted in the
Navier Stokes equations, the original PDE model is transformed in an ODE model,
composed by n equations.

The POD can be expressed as a multi-layer feed-forward neural network. Such a
network is defined by the number of layers, the specification of the output function
for the neurons in each layer, and the weight matrices for each layer. Baldi and
Hornik Baldi et al., 1989) have shown that training a linear neural network structure
to perform an identity mapping on a set of vectors is equivalent to obtaining the
POD of this set of vectors. A neural network performing the linear POD can be
specified as a 2 layer linear network:

x = W1v; v̂ = W2x

where v̂ is the reconstructed field, v is the original flow field, having N components,
x is the reduced order representation of the field, having n components, and W1

and W2 are the network weight matrices, of sizes N · n and n · N respectively.
Non-linearity can be introduced by a simple extension to this basic network:

x = W2tanh(W1v); v̂ = W4tanh(W3x)
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Fig. 1. Reconstruction of the velocity field in Burger’s equation, using POD (top)
and Neural Networks (bottom).
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Fig. 2. Streamwise and spanwise averaged profile. o : original, x : reconstruction
using linear POD, + : reconstruction using NN

This corresponds to a neural network model with 4 layers: the first one, with an
m · N weight matrix W1, nonlinear; the second one, with an n ·m weight matrix
W2, linear; the third one, also nonlinear, with an m · n weight matrix W3, and the
last one, linear with an N ·m weight matrix W4. However, the resulting system of
ODEs is more involved as compared to the one resulting from the application of the
linear POD.
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A simple comparison of POD and nonlinear NN is provided by the reconstruction
of the velocity field in the stochastically forced Burger’s equation — a classical 1D
model for turbulent flow (Chambers et al., 1998). The linear POD was used to
obtain a set of 256 linear eigenfunctions using 10000 snapshots extracted from a
simulation. Using the first 7 eigenfunctions it is possible to reconstruct the original
flow field, keeping the 90 percent of the energy. A nonlinear neural network was
trained on the same data set to perform the identity mapping: this network is
composed by 256 inputs and 4 layers having respectively 64 nonlinear neurons,
7 linear neurons, 64 nonlinear neurons, and 256 linear neurons. For validation
purposes, a data set of 1000 snapshots, not used in the training phase, was used.
In Fig. 1 it is possible to appreciate the reconstruction performances of both the
approaches; the proposed nonlinear NN clearly outperforms the linear POD.

We have also used neural networks to reconstruct the near wall region of a tur-
bulent flow. By making a Taylor series expansion of the velocity field for small
distances above the wall, one can reconstruct a second order model of the velocity
field using wall only information such as the shear stresses and the pressure at the
wall. For the streamwise velocity field we have that:

u(x, t) = ωwz y +
Re

2
∂Pw

∂x
y2 +O(y3)

where ωwz = Sw are the shear stresses, Pw is the wall pressure. This model has been
found to be accurate only up to y+ = 10 for a wide range or Reynolds numbers. It
can be improved by using a neural network to approximate the higher order terms
as functions of wall quantities:

u(x, t) = ωwz y +
Re

2
∂Pw

∂x
y2 + M(Pw, Sw)

where M(Pw, Sw) denotes a linear (i.e. a POD) or nonlinear neural network model
using as input information the wall pressure and shear stresses.

This model has been applied to a turbulent channel flow with Reτ = 250, based
on the channel half height. In Fig. 2 we present a snapshot of the streamwise and
spanwise averaged u+ profile, comparing a POD reconstruction and a nonlinear
model reconstruction, using 2 neurons in the inner layer, 1280 inputs containing
the shear stresses and wall pressures measured on the bottom of a minimal flow
unit, and 49920 output neurons carrying the estimated velocities. The snapshot in
Fig. 2 results from a simulation using samples that the neural network did not use
in the training phase, thus showing the good generalization of this model.

2.2 Evolutionary optimization algorithms

Neural networks are machine learning algorithms that attempt to generate low
order models from existing data in an automatic fashion. Other constituents of
machine learning algorithms are evolution strategies and genetic algorithms. Evo-
lution strategies (ES) and Genetic Algorithms (GA) operate on a population with
a number of individuals, each of them represented by a real or binary vector. For
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an optimization problem with n parameters, each vector comprises n elements.
Three operators are defined to modify the population members: I. Recombina-
tion/crossover, that generates new trial solution points (offsprings), using some
elements drawn from the population; II. Mutation, that randomly changes some
of the offsprings components; III. Selection, that chooses the population elements
that will be used by the crossover. For each population element a fitness function
is defined, measuring in a quantitative way how close a given solution is to the de-
sired goal. Based on their fitness, the old population members are compared with
the newly generated ones, and the solutions with the better fitness constitute the
new population members. In this way, iterating the selection-crossover-mutation
process, the population evolves towards the optimal solution.

We have developed self-organizing genetic algorithms particularly suitable for
finding clusters of good solutions (Milano and Koumoutsakos, 1999) — a desirable
scheme when seeking non-sharp, non-single point optima. A variable mutation
operator, depending on the local fitness value and on the global success history of
the population, allows the population to avoid local optima. The algorithm operates
in a hierarchical fashion by identifying well correlated clusters of population, leading
to optimization schemes employing few strategically placed actuators.

In our research efforts we have been concerned with the convergence rate of
evolution strategies. A crucial parameter is the adaptation of the step size of the
evolution strategy as, in effect, this reflects the properties of the environment to
the parameter population. A powerful control scheme for step size adaptation is
the covariance matrix adaptation (CMA) (Hansen and Ostermeier, 1996). With
this method, the step sizes are adapted using prior information. The adaptation of
the mutation distribution with the CMA is independent of the coordinate system
and — in combination with the adaptation of the global step size — yields a high
convergence rate.

A further speed-up is achieved by combining the CMA-ES with an intermediate
recombination that averages the variable vector elements of some of the parents.
This combined method is called (µ/µI , λ)-CMA-ES where µ/µI denotes the recom-
bination of µI out of µ parents.

In the (µ/µ, λ)-CMA-ES, the parameter vectors x(k+1)
k , k = 1, ..., λ in generation

g + 1 are computed by

x(g+1)
k = 〈x〉(g)

µ + δ(g)B(g)D(g)zk,

where the center of mass of the selected individuals is given by

〈x〉(g)
µ =

1
µ

Σµj=1x
(g)
j .

B and D are computed from the covariance matrix C such that the eigenvectors of
C become the columns of B and such that the square roots of the eigenvalues of C
become the diagonal elements of the diagonal matrix D, mathematically expressed
by

C(g) = B(g)D(g)(B(g)D(g))T.
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Fig. 3. Worst fitness/drag in the population as a function of the optimization
iterations. The horizontal line is the desired target drag coefficient.

The covariance matrix is based on the evolution path, s, by the following scheme:

s(g+1) = (1− c) · s(g) + cu ·
√
µ

δ(g)

(
〈x〉(g+1)

µ − 〈x〉(g)
µ

)
C(g+1) = (1− ccov) ·C(g) + ccov · s(g+1)(s(g+1))T,

where 1/c represents the accumulation time for the evolution path and where 1/ccov
represents the averaging time for the covariance matrix. The accumulation time
parameter, c, can be written in normalized form as cu =

√
c(2− c).

2.3 Optimization results
These evolutionary optimization algorithms have been applied to a number of op-

timization problems with sufficient success. The self-organizing genetic algorithm
was applied in order to optimize the parameters of a prototypical cylindrical con-
figuration (Milano and Koumoutsakos, 1999). In this configuration the surface of
the cylinder is subdivided into 16 equal segments that are allowed to move inde-
pendently tangentially to the surface of the body. Using a hierarchical clustering
approach, the evolutionary algorithm was able to identify automatically the critical
points of the flow (near the uncontrolled flow separation points) while resulting in
about 50% drag reduction for two-dimensional flow at Re=250. In Fig. 3 we show
the convergence of the algorithm as a function of the number of iterations.

The CMA-ES strategy was applied to the parameter optimization of scalar mix-
ing in DNS of jet flow at Re=1500 (Hilgers et al., 1999, Koumoutsakos et al., 1999).
This is a challenging problem for evolution strategies as each iteration requires
lengthy computations. Using various cost functions it was possible to identify pre-
viously unknown effective parameters that induce various types of behavior to the
jet (Figs. 4, 5, 6).
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Fig. 4. Contours of scalar concentration in jet flow at Re = 1500. No control.

Fig. 5. Controlled flow - bifurcating jet.

Fig. 6. Controlled flow - flapping jet.



Machine learning algorithms 177

11
49

6433

100

11

50

Fig. 7. Initial position of rows: ◦ . Final position of rows (plus number of holes
per row): .

Furthermore, the CMA-ES algorithm was implemented in the realistic design
cycle of a gas turbine blade film cooling (Müller and Koumoutsakos, 1999). This
optimization cycle involved the optimization of parameters used in empirical alge-
braic formulas along with a heat conduction simulation program for the film cool-
ing problem. The optimization goals were to reduce the coolant mass flow and at
the same time achieve a homogeneous surface temperature while observing certain
constraints in the range of the temperature distribution. Starting from a number
of initial configurations, the optimization algorithm was always able to produce a
number of improved designs, improving initial engineering estimates up to 25%.
It should be emphasized that, besides classical designs requiring large numbers of
cooling rows in the leading edge of the blade, the optimization algorithm was also
able to identify novel designs involving certain ratios and placement of a number of
rows on the two sides of the blade (Fig. 7).

3. Future plans
Our near future research is directed to the development of low order models using

neural networks and their integration in feedback control algorithms. Evolutionary
algorithms are being further developed aiming at the production of a multidisci-
plinary optimization tool.

Applications of interest involve the optimization of control parameters in jet flows
and three-dimensional bluff-body flows as computed using LES formulations.
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