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Exploration of fundamental matters of
acoustic instabilities in combustion chambers

By O. M. Umurhan

1. Motivations and objectives
The excitation of acoustic oscillations in combustion chambers is well-known as

an unwelcome phenomenon that impedes efficient burning and promotes structural
stresses that can lead to engine and combustor failure. Understanding, categorizing,
and ultimately controlling thermoacoustic excitation is an important goal and is of
current interest to designers and theoreticians alike. To this day, however, accurate
predictions for the onset of acoustic-combustor instabilities are difficult to make,
and models created to account for these difficulties (Crocco’s time-lag prescription)
make use of parameters that are specific to the combustor in question and whose
mathematical origins are usually shrouded in mystery.

It is our aim to study this problem and shed a little light upon it by means of
numerical tools (LES of combustion) and theoretical means (asymptotic analysis)
in order to clarify and predict the conditions leading to the ubiquitously observed
acoustic-combustor instabilities. The focus of this review will be on the latter efforts
while the former approach will be discussed in the section on ongoing and future
work.

In particular, we wish to lay out the general groundwork for current and future
stability analysis to be used to predict acoustic amplification in real combustors
and to develop some fundamental physical notions behind the source and nature
of wave instabilities in heat releasing environments. In this latter respect there are
two fundamental physical questions initially of interest:

• The first of these is: if a combustor is designed in which the Rayleigh criterion
is used as the barometer or gauge to control thermoacoustic instability, does this
necessarily imply that all possibly self-excited oscillations are suppressed? In
other words, if the combustor does not violate the criterion, does that mean all
self-excited sound will be suppressed in the combustion? The answer to this first
question appears to be “no” unless isentropic conditions can be maintained at
the inlet boundary of the system.

• Second: how sensitively is the Rayleigh criterion itself effected by the introduction
of non-isentropic boundary conditions at the combustor inlet? The current answer
to this is that the stability profiles are profoundly altered due to introduction of
an entropy or drift-mode into the acoustic dynamics.

In the following we lay out a brief background about nonadiabatic acoustic in-
stabilities and the conditions in combustors in which to consider these instabilities.
We will then follow this by investigating these effects and issues in an idealized
one-dimensional scenario for a combustor.
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1.1 Background

Sound in a chamber where burning occurs may be self-excitated under two con-
ditions. The first of these is the classic Rayleigh mechanism, which states that an
acoustic mode will be rendered unstable when the phase of the unsteady burning of
the chamber coincides with the sound’s pressure fluctuation (Rayleigh, 1896). Typ-
ically, this condition is quantified by evaluating the Rayleigh criterion (Rayleigh,
1896) for infinitesimal fluctuations,

CP −CV
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where the integral is taken over the domain volume V and acoustic mode period
T . P0 and P ′ are the pressure steady state and fluctuation while Q′ is the heat
release fluctuation. Once Q′ and its spatial distribution is determined along with
the knowledge of the domain geometry, one may evaluate whether or not a chamber
sound mode will be stable to infinitesimal perturbations.

The other mechanism involves the interaction of a so-called entropy mode (also
referred to as a drift-mode ) with the flow field (Dowling, 1995, Umurhan, 1999a).
Dowling considers this an important yet commonly ignored feature for acoustics in a
flow field since the entropy mode can non-negligibly influence a chamber’s acoustic
mode frequency (Dowling, 1995) and illicit instability (Umurhan, 1999a) through
coupling at a chamber’s inlet and outlet boundaries and at the flame position.
A necessary integral condition for the stability of linearized acoustics in a one-
dimensional flow field is expressed by,
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where ρ′ is the fluctuating density which carries the entropy mode signature (Bloxsidge
et al. 1988, Dowling 1995, Umurhan 1999a).

We will consider longitudinal one-dimensional disturbances in a combustion cham-
ber shaped as a simple cylindrical tube of length L and an input velocity u at some
speed less than the sound speed but not necessarily infinitesimally small. (See
Fig. 1.) We wish to isolate the effects of the entropy mode and demonstrate how it
renders oscillations unstable. To this end, we will pay attention to (but not limited
to) results under circumstances where there are no variations of the heat production
term in the evolution equations describing acoustic propagation.

2. Model problem

2.1 One-dimensional linearized equations of motion

We begin the following analysis of the nondimensionalized Euler equations sup-
plemented with an energy equation and an equation of state for thermodynamic
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Figure 1. Schematic of model problem. In a general sense, the burning takes
place over the entire domain of tube. In the special case where the burning is
distributed on a plane, we call it a flame whose position is given by 0 < β < 1.

pressure. After perturbing those equations around a steady state, we find that the
equations describing acoustics disturbances are

∂tρ
′ +DΩ′ =0 (1)

γρ0∂tu
′ + γMDu′ + γΩ′Du0 =−DP ′ (2)

∂tP
′ + u0DP

′ + u′DP0 + γP ′Du0 =− γP0Du
′ + (γ − 1)Q′ (3)

P ′ =ρ0T
′ + T0ρ

′ (4)

where derivatives with respect to the spatial coordinate x are given byD. P ′, ρ′, u′, T ′

denote pressure, density, velocity, and temperature perturbations respectively while
Q′ denotes unsteady heating. The term Ω′ refers to the perturbed mass flux and is
defined by ρ0u

′ + u0ρ
′. The quantities u0 , ρ0, P0 , and T0 are defined below.

A few words about what was used to obtain the nondimensional equations are
presently in order. The dimensional density was scaled by a characteristic value
at the inlet, ρin , while the dimensional temperature was similarly scaled by Tin .
Lengths were scaled by the tube size, L, while velocities were scaled by the sound
speed, ca , at the inlet, or (γRTin)

1/2; here R is the gas constant and is where
the other constant, γ = CP /CV , is the ratio of specific heats of the ideal gas
in consideration. Time scales are characterized by the fundamental acoustic period
scale of the tube given by L/ca . The usual energy conservation equation is rewritten
in the form of an evolution operator on the pressure with the aid of the equation
for mass conservation and the ideal gas law.

The inlet velocities in our nondimensional scalings will be described by an inlet
Mach number,

Min = M =
uin√
γRTin

,

where uin is the dimensional inlet velocity. M will be one of our main tuning
parameters. The “0” subscripted terms refer to steady state quantities which satisfy

ρ0u0 =M (5)
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P0 + γMu0 =1 + γM2 (6)
u0DP0 + γP0Du0 =(γ − 1)Q0 . (7)

Since Eqs. (1, 2, 3) form a third order system in spatial derivatives, we require
imposition of three boundary conditions. To this end we use the rather simplified
requirements that pressure fluctuations be fixed at both the inlet (x = 0) and outlet
(x = 1). The third condition will be that the mass-flux is constant at the inlet, which
implies that the fluctuating mass-flux, Ω′, is zero at x = 0. We note that enforcing
the mass flux condition introduces non-isentropicity into the acoustic evolution. An
alternate third condition would be to require no entropy fluctuations at the inlet.
This isentropic condition removes the driftmode effect observed by Bloxsidge (1988),
Dowling (1995), and Umurhan (1999a) in studies of acoustic-flame couplings. In
the subsequent analysis, we will usually adopt the former condition.

2.2 Integral relationship
An integral relationship may be simply derived for the total perturbation acoustic

energy of the set (1)-(5). If we multiply Eq. (2) by u′ and, similarly, multiply Eq. (3)
by P ′/γP0 , add the two resulting equations together followed by an integration over
the domain length we find,
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where we have used the boundary conditions specified in the previous subsection.
We note that aside from boundary terms (which are certainly relevant) that would

arise from non-homogeneous boundary conditions, the terms containing the integral
relations in (8) are general.

The meaning of Eq. (8) when the RHS vanishes is that the acoustic energy
within the domain neither grows nor decays. Naturally, the elements on the RHS
of Eq. (8) represent the input/drain of energy throughout the system. The classical
Rayleigh criterion routinely used in literature is recovered when there is no steady
flow throughout the domain because those terms containing gradients of the steady
state pressures and velocity fields, DP0 , Du0 , and the Mach number M , vanish in
that limit.

2.3 Forms of Q0 and Q′ and corresponding analysis strategies
Classic thermoacoustic effects relating to the Rayleigh criterion rely on the fluctu-

ations in the heat release (inQ′). The process leading to instabilities associated with
the criterion are well known, and procedures in which to parameterize those effects
to carry out complex eigenmode analysis are frequently used (Crocco, Bloxsidge,
and others).
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In order to isolate the influence of the entropy mode upon the stability of the
chamber, we pay special attention to (but are not limited to) disturbances in which
there are no heat release fluctuations.

Case I: Q0(x) = εqn(x) , Q′ = 0
This is the simplest form of the heating law that can be expressed. The heating

is distributed over the domain but with an overall amplitude which is small, a
scaling which we can tune arbitrarily with the parameter ε. The advantage of this
prescription is that it allows for analytical calculations of the growth rates simply
by expanding all solutions in powers of ε.

We adopt several forms for the heat release; in particular, we adopt the following
forms

qn(x) =


1, if n = 0;
2x, if n = 1;
3x2, if n = 2;
6x(1− x), if n = 3;
3(1−x2)

2 , if n = 4.

The normalization constants in each expression above are chosen so that the total
integrated heat release in the chamber is equal to 1. Evidently, the shape of the
heat release over the course of the tube length dictate the character of the stability
profile.

By introducing the heating function as a small order ε quantity, we must corre-
spondingly expand both steady states and perturbation solutions in similar powers
of ε. In more concrete terms, if φ is some fluid quantity (density, velocity, etc.) and
if φ0 , φ

′ represents this quantity’s steady state and perturbations, then we formally
expand all these solutions as,

φ0 = φ00 + εφ01 +O
(
ε2
)

φ′
1

= φ′
0

+ εφ′
1

+O
(
ε2
)
,

whereupon we would reinsert these expansions into the acoustic disturbance set
Eqs. (1-4) and carry out a formal perturbation analysis.

Case II: Q0 = Q̂δ(x− β) , Q′ = Θ(T ′, u′)δ(x− β)
In this formulation, the burning region is compacted onto a a plane, appearing

as a discontinuity. Consequently, the basic states are uniform on either side of the
discontinuity and are connected to each other through the usual Rankine-Juegout
jump conditions for deflagration fronts (Williams, 1978).[

ρu
]β+

β−
= 0 (9a)[

γρu2 + P
]β+

β−
= 0 (9b)

ρu

[
1

γ − 1
T +

1
2
u2

]β+

β−
= (γ − 1)Q̂ (9c)



90 O. M. Umurhan

where β+, β− signify approaching the discontinuity x = β from either above or
below. These jump conditions are general and are appropriate for both steady
states and perturbations alike provided all the functional forms are well behaved
and integrable.

Note that for the steady state configuration, given an inlet pressure and temper-
ature while also given the heat release at the discontinuity, there is a critical inlet
Mach number (Mcr) for which the outflowing velocity is supersonic given by the
solution to

Q̂−
γ(M2

cr
− 1)2

2Mcr(γ2 − 1)
= 0. (10)

Perturbed disturbances are calculated for each region (burnt and unburnt) with
its corresponding uniform steady states. The disturbances are subsequently con-
nected to each other by satisfying the perturbed form of the jump conditions in
Eqs. (9a-c). The details and subtleties of this procedure can be found in Umurhan
(1999b).

The purpose of this case is to illustrate in very general terms the competition
between classical thermoacoustic processes (fluctuating heat release, the Rayleigh
mechanism) and the entropy wave mode of destabilization. In particular we repre-
sent the heat release fluctuation by

Q′ =
[
νT ′ + µu′

]
δ(x− β) (11)

where ν and µ are to be generally taken as tunable constants. This form of the
burning fluctuation was derived in Umurhan (1999b) as a simple model for spray
combustion and burning. In this model the spray droplets are introduced at the inlet
and convected along with the background fluid oxidizer towards the flame position,
the latter of which was kept fixed for simplicity. During the flameward convection
phase, fuel droplets experience evaporation variations on account of two processes:
(1) enhanced evaporation due to fluctuations of the ambient temperature and (2)
enhanced evaporation resulting from the fluctuations seen by the fuel droplet of the
difference between the fuel droplet speeds and the speed of the ambient oxidizing
fluid. In this model, all variations of ambient temperatures and fluid flow are
attributed to the passage of acoustic disturbances. To complete the model, the
total amount of burning/heat-release at the fixed flame position is set to be linearly
proportional to the total amount of evaporated fuel reaching the flame. Thus, we
can see that the total amount of evaporated (premixed) fuel reaching the flame will
be a function of the history of the fuel droplet beginning from initial injection up
to the point of flame crossing. Generally, the constants ν and µ will reflect this
aggregate history.

For this presentation we leave out the complexities involved with the form of ν
and µ (see Umurhan 1999b for details) and simply treat these parameters as freely
tunable constants.
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2.4 Normal mode stability results

One may embark on several paths to investigate the stability of acoustic dis-
turbances. We choose the standard normal mode method because it is the most
transparent of calculations. We adopt the following usual Fourier form for general
perturbations φ′,

φ′(x, t) = φ̂(x)eiωt

where ω is both the complex frequency and the eigenvalue for the boundary value
problem to be solved. A final note: unless otherwise indicated, we use the no
mass-flux fluctuation boundary condition at the inlet.

2.4.1 Case I

In Fig. 2 we present the results of the stability analysis for several forms of the
domain heat distribution. We find that as the Mach number is lowered, wiggles as a
function of Mach number appear in the nondimensional growth rate. The amplitude
of the growth rate appears to grow with an increased inlet Mach number. We also
find the low Mach number wiggles become more pronounced the closer to the outlet
the heat release is. We see that for all qn(x) there is a minimum Mach number
beyond which the standing acoustic mode in the chamber is unstable. Finally, we
observe that if the heat release is concentrated closer to the inlet, instability sets
in at lower Mach numbers than otherwise. When the fixed mass-flux boundary
condition at the inlet is relaxed and, instead, isentropic conditions are adopted, we
find that the acoustic modes neither grow nor decay, which is in concordance with
already known results of Munjal & Prasad (1986), Peat (1988), and Kumar & Sujith
(1997).

2.4.2 Case II

One noteworthy consequence of this delta function procedure has to do with the
nature of the normal modes themselves. In general each fluid quantity (irrespective
of which side of the flame one is on) is characterized by three waves: Exp(ik(+)x),
Exp(ik(+)x) and Exp(ik(0)x). The wavenumbers corresponding to k(+) and k(−)

represent the usual right and left propagating Doppler shifted acoustic waves. The
k(0) wavenumber represents the drift/entropy mode introduced through the presence
of the mean flow.

The analysis rather transparently shows that the pressure and velocity fluctua-
tions are characterized by a linear combination of the left and right propagating
acoustic waves but not the drift/entropy mode. However, the analysis also demon-
strates that the density and temperature fluctuations are represented by linear
combinations of the left and right propagating acoustic modes as well as the the
drift/entropy mode if the inlet boundaries are non-isentropic. Given isentropic inlet
boundaries, the drift/entropy mode is also absent from the temperature and density
fluctuations.

There are a number of results here worth looking at and the first that we present
is the asymptotic limit where the steady state nondimensionalized heat release QS

is small compared to the parameters µ and ν. This limit is much like the expansion
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Figure 2. The nondimensional growth rates vs. inlet Mach numbers for the
fundamental mode of the tube for burning rates given by Q0 ∼ εqn(x) along with
no fluctuating burning terms. The stability profile exhibits low Mach number os-
cillations. All modes become unstable for sufficiently large inlet Mach numbers.
× : q0 ∼ 1. : q2 ∼ x. • : q2 ∼ x2. ◦ : q3 ∼ 1 − x2.

: q4 ∼ x(1− x).

employed in Case I except that we take the fluctuating heat release to be very sensi-
tive to the ambient hydrodynamic quantities at the flame position. An approximate
first order correction for the fundamental mode can be obtained through a series of
Taylor expansions,

ω(correction) ∼i
[
(1 +M)e−2iπβ + (M − 1)

]
× (12)[

Mµ(1 + e−2iπβ)− (γ − 1)Mν(e−2iπβ − 1)− 2ψνe
−iπβ(1−M)

M

]
The parameter ψ denotes whether we adopt isentropic (ψ = 0) or fixed mass-flux
(ψ = 1) conditions at the inlet. Figures 3-4 exhibit typical solutions. We observe
the following features:

• That isentropic conditions result in fairly uniform stability boundaries.

• The instability here is purely thermoacoustic, but the pressure-temperature phas-
ing may be the reverse of what usual intuition would tell otherwise. Consider the
case where ν is positive and µ is zero. Consequently, in terms of the form of Q′
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Figure 3. Mode comparison for M = 0.18, µ = 0, and ν = 0.20 for different
inlet boundary conditions. Notice how extreme the the growth rates are for the
fixed mass-flux condition as opposed to the isentropic inlet. Fundamental mode:
fixed mass-flux, • ; insentropic, . First overtone: fixed mass-flux, ;
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used, positive temperature fluctuations correspond to positive fluctuating heat
release. By inspecting the generalized Rayleigh criterion in Section 2.2, we see
that the necessary condition for acoustic instability is guaranteed as long as the
the temperature and pressure fluctuations are in phase at the flame position.
However, the subtlety of the results of Figs. 3 and 4 can be recognized by not-
ing the different phasing relationships between disturbance types. If the acoustic
disturbances are isentropic, then indeed the necessary condition for instability
as predicted by the Rayleigh criterion is satisfied because temperature and pres-
sure fluctuations are everywhere in phase for isentropic inlet conditions. If the
disturbances are not isentropic, then the introduction of the drift/entropy mode
into the temperature perturbation profile yields a phase relationship between the
pressure and temperature fluctuation that is a function of position within the
combustor. Naturally, there are situations where the pressure and temperature
can be as extreme as π radians out of phase at the position of the flame.

• Heat release fluctuations that are dependent upon the velocity seen at the flame
position are insensitive to the entropy mode influence. This is because the velocity
fluctuations’ eigenfunctions do not carry any entropy mode signature, unlike the
density and temperature fluctuations as were commented on above.

• Like in the case of a moving flame (Umurhan 1999a) the stability boundaries
become highly oscillatory with respect to the flame position β as the Mach number
gets smaller. The implications of this are profound: the slower the inlet flow, the
more sensitive to flame position the acoustic stability becomes. Any flame that
moves about even slightly (in the extremely small Mach number limit) might find
itself drifting into acoustically unstable places in the combustor.
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inlet bc. Presented here is the limiting case in which Q0 → 0. The parameters are
ν = 0.52, µ = 0.0.

2.5 Weakly nonlinear analysis of Case I.
In the limiting situation of Case I, the frequencies of all harmonics of the tube’s

standing acoustic waves are commensurate. This means that a weakly nonlinear
analysis must terminate at quadratic powers of perturbation amplitude. Therefore,
we adopt a two-time multiple scale analysis (Bender & Orszag, 1978) in which the
time derivatives are written as

∂
t → ∂′

t
+ ε∂T

where T represents a long time scale. The steady states and perturbations are
expanded as

φ→ φ0(x) + εφ′(x, t)

with

φ0(x) = φ00(x) + εφ01(x) + ε2φ02(x) +O
(
ε3
)

φ′
1
(x, t) = φ′

0
(x, t) + εφ′

1
(x, t) + ε2φ′

2
(x, t) +O

(
ε3
)

We note that the slow-time (εT time scale) nonlinearity is introduced into the
amplitudes of the first order linear solutions,

φ′
0
(x, t) = A(T )f(x)eiωt + c.c.

where f(x) is the eigenfunction of the linear operator at that given order of ε and
where c.c denotes complex conjugate. Thus, at lowest order, f(x) appearing above
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is the same linear acoustic mode that we analyzed in Case I. Since linear boundary
value problems involving eigenvalues introduce an arbitrary constant in the form
of an amplitude, we choose this amplitude to reflect the long-time behavior of a
standing acoustic wave’s “envelope”.

Returning to the full (nonlinear) Euler equations with a heat source and adopting
Q0 = εqn , we perform a multiple scale analysis which yields, rather generally, a
countably infinite set of ordinary nonlinear differential equations for each acoustic
harmonic m.

∂TAm = βmAm +
∞∑
k=1

γmkAm−k |Ak |

In general, γmk are complex. For demonstration here, we present a reduced set
of these amplitude ode’s truncated at the second harmonic for the marginal case
M ≈ 0.52 (see Fig. 2) along with qn for n = 4.

∂tA = α1A+ γ21B|A|+ γ32C|B|
∂tB = α2B + γ11A

2 + γ31C|A|
∂tC = α3C + γ12AB

Figure 5 is a preliminary numerical analysis and sample solution of this set. We see
rather clearly that a steady amplitude is not attainable in this case; the amplitudes
for a given fundamental mode appear chaotic and intermittent.
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Figure 5. Nonlinear evolution of the truncated weakly nonlinear solutions for
Case I. Chaos and intermittency (phase chaos) appear readily. M = 0.52. (a) is the
amplitude and (b) is the phase diagram of the fundamental mode.

3. Immediate directions and current conclusions
The purpose of this presentation was to demonstrate the procedure one must

employ to test/evaluate the stability against general wave motions inside a combus-
tor. We have laid out the elements that must be addressed and taken into account,
and we have shown ways to handle and interpret their effects. In particular, we
have shown that ignoring the effects of entropy waves upon the overall wave dy-
namics (including wave responses with a flame) can significantly alter the predicted
frequencies and growth rates of chamber acoustic modes.
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Yet, we have utilized a highly idealized model for the heat release distribution
and its dynamical response to fluctuating flow variables. It is of practical import
to apply the stability analysis approach discussed in this work to real turbulent
combustors in which acoustic instabilities need to be understood and controlled.
Specifically, the form of heat release we used here was prescribed analytically either
from a perspective of mathematical convenience (Case I) or as being derivative from
a crude and idealized model of some burning process (spray combustion - Case II).

Real turbulent combustion defies such simplistic ease, and we must, consequently,
rely on semiempirical burning laws for these situations. To this end, work is cur-
rently being conducted in order to computationally derive heat release functionals
for combustors supporting diffusion flames. The philosophy behind the approach is
exactly that spearheaded by Poinsot and collaborators (see for example, Veynante
& Poinsot, 1997, and Schönfeld & Poinsot, this volume) for similar investigations of
low Mach number numerical simulations of premixed flames. The approach involves
observing the response of premixed flames inside a ducted combustor to periodic
pulsations of the duct’s inlet velocities and temperatures. The periodic modula-
tions are meant to mimic the passage of a (relatively) long-wavelength acoustic
wave through the combustor chamber. Their approach was motivated by real ex-
periments of turbulent premixed combustors where enhanced vortex creation and
shedding followed by subsequent enhanced fuel burning result from the passage of a
strong amplitude acoustic mode; in turn, the enhanced burning feeds the very same
acoustic wave and the process is maintained (Poinsot, et al. 1987).

This sort of analysis has not been systematically applied to simulations of diffusion
flames where the burning response ought to be much different in character than
that for premixed flames (Dowling, 1995, Kosaly, private discussions). We are
conducting low Mach number LES simulations of 3D jet diffusion flames using the
code developed by Charles Pierce and collaborators. We have been initially focusing
upon modeling one-step reactions characterized by infinitely fast burning rates. This
latter feature implies that the time scale of real burning is limited by the time and
efficiency by which the turbulence mixes fuel and oxidizer. This mixing (and, hence,
total heat release) will be enhanced by the generation of vortices which can occur
if the inlet conditions are modulated (for instance, a pulsed inlet velocity field).

The end goal is to derive radially averaged axial empirical burning functions for
such diffusion flame combustors for which we can apply the sort of stability analysis
developed in this work. See strategy diagram in Fig. 6.

Through the analysis we have presented here, we have gained a number of valuable
insights into previously overlooked mechanisms and culprits responsible for acoustic
generation in heat releasing tubes. Nonisentropic inlet boundary conditions can ef-
fectively alter the phase relationship between pressure and temperature fluctuations
(see the Rayleigh criterion) which can lead to wave instability. Whereas for isen-
tropic inlet boundaries the pressure and temperature fluctuations are in constant
phase with each other up to the position of the flame, nonisentropic conditions can
generally render the their phasing to be a function of position within the combustor.
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Figure 6. Strategy diagram.

On a speculative note: it appears that this phasing mechanism may be responsi-
ble for an interesting effect observed in spray combustion experiments performed
by C. Edwards and collaborators. Usual spray combustors such as the tube design
developed in C. Edwards’ lab exhibit chamber instability when fuel is injected into
the combustor uniformly. However, C. Edwards points out that the implementa-
tion of a combustor design in which spray fuel is injected into the combustor from
different positions and randomized in time prevents acoustic generation within the
combustor. It seems reasonable to suppose that the source of the instability is in
part related to the drift mode effect discussed in this review and that the reason
why the fuel injection randomization procedure works to control generating acous-
tics in the design discussed by C. Edwards is because the phase induced instability
is effectively averaged out over a sufficient period of time. There is not enough time
to build up a coherent acoustic mode because the chamber itself is slipping in and
out of acoustically unstable configurations through fuel mass-flux modulations at
the inlet.
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