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Turbulent boundary layer structure
identification via POD

By J. R. Baltzer†, R. J. Adrian† AND X. Wu‡

Proper orthogonal decomposition (POD) is applied to the direct numerical simulation
(DNS) of a turbulent boundary layer performed by Wu & Moin (2010), and the resulting
POD modes of various scales are examined. The modes include structures resembling
those observed in instantaneous flow fields, such as large-scale motions of streamwise
velocity with ramp-like wall-normal growth. Other modes correspond closely to near-
wall streaks. In addition, POD modes that are constant across the spanwise domain
width are observed to grow from the wall with the mean boundary layer thickness. The
results support the existence of boundary layer coherent motions described by the hairpin
packet model (Adrian 2007).

1. Introduction

Coherent motions in wall-bounded turbulent flows have been the subject of recent
study, but questions remain about the organization and form of coherent structures
(Adrian 2007). One method of extracting coherent structures is POD (Lumley 1981;
Holmes et al. 1998). POD extracts modes that are linearly combined to form each flow
field snapshot, with the reconstruction by partial sums of POD modes converging faster
than by any other set of orthogonal functions in a mean energy sense (Liu et al. 2001).

POD has been successfully applied to wall-bounded turbulent flows including three-
dimensional DNS data sets. Moin & Moser (1989) calculated POD modes for a Reτ = 180
turbulent channel DNS simulation and focused on obtaining compact structures. Since
the resulting POD modes span a wide range of spatial scales as large as the domain,
they were interpreted using a method proposed by Lumley (1981) in which characteristic
eddies were assembled from POD modes with phases chosen to make the eddies compact.
The method assumed characteristic eddies to be scattered randomly in the homogeneous
streamwise and spanwise coordinates.

Recent attention has focused on large-scale motions (LSMs) and very large-scale mo-
tions (VLSMs), also known as superstructures, observed in wall-bounded shear flows (e.g.
Kim & Adrian 1999; Hutchins & Marusic 2007). Examining these motions requires inter-
pretations of POD modes that preserve the large scales instead of assembling compact
motions. Liu et al. (2001) employed POD to analyze two-dimensional velocity measure-
ments of a turbulent channel including studying the LSMs and VLSMs. They examined
individual POD modes and considered projections of fields onto sets of modes (partial
reconstructions). Although POD in a homogeneous direction is simply a Fourier mode,
this is appropriate for analyzing these motions because LSMs and VLSMs are often de-
fined in terms of Fourier spectra. The results indicated that a set of several large-scale
POD modes were associated with large contributions to the turbulent kinetic energy and
Reynolds stress. The patterns of motion revealed by projections onto sets of POD modes

† School for Engineering of Matter, Transport and Energy, Arizona State University
‡ Department of Mechanical Engineering, Royal Military College of Canada



56 Baltzer, Adrian & Wu

were consistent with the hairpin packet paradigm (Adrian et al. 2000), in which hairpin-
shaped vortical structures are understood to arrange in streamwise x-aligned packets, and
thereby contribute to long structures. Adrian et al. (2000) frequently observed ramps of
retarded streamwise velocity with wall-normal growth angles of approximately 10-20◦

relative to +x as evidence of hairpin packets in turbulent boundary layers.
While POD has also been applied to DNS of turbulent pipes (e.g. Duggleby & Paul

2010), there have been no recent three-dimensional applications to turbulent boundary
layer flows, although structures in transition were studied with POD by Rempfer & Fasel
(1994). Recent incompressible zero-pressure-gradient flat-plate turbulent boundary layer
simulations of Wu & Moin (2009) periodically introduced blocks of isotropic turbulence
into the laminar flow at the inlet and allowed the boundary layer to progress through
transition. Hairpin-shaped vortical structures were more clearly visible in this simulation
compared to previous simulations with artificially generated turbulent inflows. Wu &
Moin (2010) extended the simulation to a longer streamwise domain so the flow would
evolve from Reθ = 80 to 1950 and increased the spanwise domain width. With the clear
structures observed in this simulation, POD is an appropriate tool to extract structural
information from this data set.

We apply POD to the entire DNS fields of this simulation including the transition
region. The choice of domain is relevant because the POD equation and orthogonality
between POD modes are defined by an inner product over a specified domain (§2). The
POD modes decompose the fluctuating velocity field. The inner product involves all
three velocity components, so the resulting POD modes also include contributions of all
velocity components.

2. Method

POD is performed on the flow using the conventional norm such that optimality
of convergence exists in the energy sense. The standard POD equation for the three-
dimensional vector field of velocity fluctuation u based on an expansion of the form
u(x) =

∑N
n=1 anΦ(x) is

∫

D
R(x,x′)Φ(x′)dx′ = λΦ(x), (2.1)

with the two-point spatial correlation R(x,x′) = 〈u(x) ⊗ u
∗(x′)〉 (Holmes et al. 1998).

The boundary layer is homogeneous and periodic in z, so POD modes converge to
trigonometric functions in z, and it is appropriate to enforce this behavior by expressing
the velocity components ui as Fourier series expansions,

ui(x, y, z, t) =

Nz/2
∑

kz=−Nz/2+1

û
(kz)
i (x, y, t)e2π

√
−1 kzz

Lz . (2.2)

This procedure has been employed in several applications (e.g., Freund & Colonius 2009;
Duggleby & Paul 2010), and has been shown to improve the statistical convergence of
POD because it incorporates information from all possible shifts of the homogeneous co-

ordinate. Then, a POD expansion is used to represent the Fourier coefficients û
(kz)
i (x, y, t):

û
(kz)
i (x, y, t) =

N
∑

n=1

â(kz ,n)(t)φ̂
(kz ,n)
i (x, y). (2.3)

The inhomogeneity of both x and y results in a direct POD (2.1) problem with a
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very large correlation matrix of averages calculated over the series of flow field snapshots
spaced in time. The number of snapshots is significantly fewer than the number of points
involved, so calculating the POD modes using the method of snapshots (Sirovich 1987)
greatly reduces the computation necessary. While mathematically equivalent, the eigen-
problem is performed on time correlations instead of spatial correlations. This method
is derived (Sirovich 1987) by expressing the POD modes as linear combinations of the

Nt snapshots φ̂
(kz ,n)
i (x, y) =

∑Nt

j=1 c(kz ,n,tj)û
(kz)
i (x, y, tj). Then, the eigenproblem (2.1)

becomes an eigenproblem to solve for the coefficients c

Nt
∑

j=1

M
(kz)
hj c

(kz)
j = λ(kz)c

(kz)
h , (2.4)

where the M
(kz)
hj matrix contains the time correlations. For the present problem, these

time correlations are between Fourier coefficients

M
(kz)
hj =

∫ Ly

0

∫ Lx

0

û
(kz)
i (x, y, tj)û

∗(kz)
i (x, y, th) dx dy =

(

û
(kz)(x, y, tj), û

(kz)(x, y, th)
)

(2.5)
(summation assumed on repeated indices) (Freund & Colonius 2009). Integration is ap-
proximated by the trapezoidal rule, which is satisfactory for POD (Moin & Moser 1989).

The POD modes obtained from the snapshot method are normalized to satisfy or-

thonormality as
∫ Ly

0

∫ Lx

0 φ̂
(kz ,m)
i (x, y)φ̂

∗(kz ,n)
i (x, y)dxdy = δmn. The POD coefficients to

reconstruct each velocity field in (2.3) are obtained from

â(kz ,n)(t) =

∫ Ly

0

∫ Lx

0

û
(kz)
i (x, y, t)φ̂

∗(kz ,n)
i (x, y) dx dy. (2.6)

Due to the conjugate symmetry φ̂
(kz ,n)
i (x, y) = φ̂

∗(−kz ,n)
i (x, y), computing only the non-

negative kz modes is sufficient to reconstruct the real-valued velocity. Mode indices n are
numbered by decreasing eigenvalue, with n = 1 contributing most energy.

As discussed in Wu & Moin (2010), a Blasius profile with momentum thickness θ0 is
specified at the inlet. The computational domain dimensions are 12750θ0, 2250θ0, and
562.5θ0 in the streamwise x, wall-normal y, and spanwise z coordinates, respectively.
The corresponding numbers of grid points are Nx = 8192, Ny = 500, and Nz = 256.
The POD modes were calculated from a collection of Nt = 54 DNS flow field snapshots
separated in time by at least 150θ0/U∞. The mean velocities were obtained using frequent
sampling during the original simulation run and are better converged than if they were
obtained from the 54 fields available. Both time averaging and spatial averaging in the
homogeneous z coordinate are used to calculate the mean velocities for obtaining the
fluctuation velocities.

3. Results

The fluctuating velocity of a DNS field is reconstructed by (2.2) and (2.3):

ui(x, y, z) =

Nz/2
∑

kz=−Nz/2+1

N
∑

n=1

â(kz ,n)φ̂
(kz ,n)
i (x, y)e2π

√
−1 kzz

Lz =

Nz/2
∑

kz=−Nz/2+1

N
∑

n=1

u
(kz,n)
i (x, y, z).

(3.1)
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kz n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 1−16 n = 1−54
0 2.95% 2.72% 0.38% 0.36% 0.34% 0.30% 9.04% 11.36%
±1 1.11% 0.77% 0.64% 0.58% 0.53% 0.50% 7.49% 12.64%
±2 0.67% 0.60% 0.52% 0.49% 0.47% 0.41% 6.27% 11.71%
±3 0.73% 0.40% 0.37% 0.35% 0.33% 0.32% 4.99% 9.81%
±4 0.35% 0.32% 0.28% 0.27% 0.25% 0.24% 3.66% 7.85%
±5 0.23% 0.23% 0.22% 0.21% 0.20% 0.19% 2.85% 6.36%

Table 1. Eigenvalues (λ/E).

Each mode’s contribution is u
(kz,n)
i = â(kz ,n)φ̂

(kz ,n)
i e2π

√
−1 kzz

Lz = â(kz,n)φ
(kz ,n)
i . Liu et al.

(2001) discussed visualization and interpretation of individual POD modes, and similar
principles apply to the present results. The POD coefficient â specifies the magnitude
and phase (which corresponds to a spanwise shift of the entire field in physical space) of
each modal contribution, so visualizing only the real part reveals all of the features for

each mode. Liu et al. (2001) show that the imaginary part of φ
(kz ,n)
i is equal to the real

part of φ
(kz ,n)
i after applying a π/2 phase shift, which is a spatial shift of Lz/(4kz). The

mode contributions u
(kz,n)
i are linear combinations of the real parts of φ

(kz ,n)
i with and

without the shift, so examining only the real part is sufficient. The real part of φ
(kz ,n)
i is

equal to the u
(kz,n)
i contribution of a ±kz mode pair with â(kz,n) = 0.5.

Figure 1 contains isosurfaces of streamwise velocity for this real part of a representative
selection of individual POD modes. The sign of velocity is arbitrary because the sign is
dictated by â(kz ,n), and a phase shift of π reverses the sign of velocity at a given location.
With this sinusoidal dependence, velocity structures of opposite sign and the same shape
are present in spanwise locations between the structures shown in the isosurfaces. The
oblique perspective from above the flat plate highlights the organization of the u velocity
structures that take the form of long streamwise streaks. Figure 2 contains similar plots
for kz = 20.

Contour plots of u in x-y planes for two kz = 0 modes are presented in Figure 3.
The boundary layer thickness δ(x), defined as the y where mean velocity is 99% of free-
stream, is included as a line. The n = 1 mode (a,b), which is responsible for the largest
mean energy contribution to the flow, consists of alternating regions of positive and
negative u velocity fluctuations with wall-normal growth closely matching the boundary
layer thickness. The n = 2 mode (not shown) is similar except that the streamwise
positions of the structures are shifted by one quarter period, and n = 1 and n = 2 mode
eigenvalues are comparable. This is similar to the sinusoidal modes that would occur
if the flow were homogeneous in x (as in the case of a channel) but with wall-normal
growth for the boundary layer and decay in strength. These features are also consistent
with modes for traveling waves, as discussed by Aubry et al. (1992). Although blocks of
isotropic turbulence were periodically introduced at intervals of 3131.45θ0/U∞ for this
simulation (Wu & Moin 2010), the streamwise period of the structures in the mode is
significantly shorter. The n = 4 mode (c,d) includes similar structures of alternating u
fluctuation in the transitional region but with shorter wavelength. These structures are
less distinct in the second half of the domain (d). This mode also includes contributions
associated with the isotropic turbulence blocks that are apparent above the boundary
layer thickness.
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Figure 1. Streamwise velocity isosurfaces of POD modes arranged in sets of constant kz, with kz = 1, 5, 10 shown from left to right. Within each
group, mode numbers n = 1, 5, 10, 20 are shown. Approximately two spanwise periods are shown for compactness, except for the kz = 1 modes
where the entire domain in shown. Visualizations of the other fields have the same scale. The modes are viewed obliquely from above the flat
plate.
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Figure 2. Streamwise velocity isosurfaces of POD modes for kz = 20 and n = 1, 5, 10, 20 (top to bottom).

Figure 3. Planes of the n = 1 (a,b) and n = 4 (c,d) kz = 0 modes shaded by streamwise velocity for each streamwise half of the domain. The
dotted white line indicates the boundary layer thickness δ(x).
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Figure 4. (a) kz = 1, n = 1, (b) kz = 5, n = 1, (c) kz = 5, n = 5, (d) kz = 10, n = 1, (e) kz = 10, n = 5, and (f) kz = 20, n = 1 mode velocity.
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Figure 5. u isosurfaces for (a) kz = 5, n = 1 and (b) kz = 20, n = 1 POD modes.
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Figure 6. POD mode eigenvalues.

Figure 7. Negative u isosurfaces (shaded by y) of one DNS field (a,b) and its reconstruction with kz = 0 − 5 and n = 1 − 16 POD modes (c,d).
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Figure 4 presents vector plots of planes extracted at spanwise locations where the neg-
ative u structures are strongest. Boundary layer thickness δ(x) is also included as a gray
line. As spanwise wavenumber index kz increases, the wall-normal height of u structures
decreases for the most energetic mode numbers (n = 1 and 5 shown). The shorter ramps
are clearly apparent in the u isosurfaces of Figure 5. The kz = 5 structures are consistent
with the ramp structures associated with hairpin packets, which are discussed by Adrian
et al. (2000). The vector plots (Figure 4b,c) indicate the negative velocity structures are
associated with positive wall-normal velocity. Steeply inclined regions of these quadrant
2 ejections below a swirling hairpin head pattern are identified as the signature of hairpin
vortices which organize to form hairpin packets (Adrian et al. 2000). These modes contain
evidence of such structures with streamwise lengths of several δ (consistent with large-
scale motions), but other modes that include finer scales also contribute to details of the
vortices. Although POD is used instead of linear stochastic estimation, this analysis is
similar to that of Christensen & Adrian (2001), in that statistically important structures
are extracted and shown to be consistent with hairpin packet structures. The present cal-
culation is successful in extracting relevant structures, although statistical convergence
of the POD modes would improve with additional snapshots.

For the mode with kz = 20 and n = 1, the strongest structures are centered about
y/θ0 ≈ 5, which corresponds to y+ = 15 in this region, although they can extend up to
y+ = 75. The spanwise wavelength associated with the kz = 20 modes is approximately
100+, which is the accepted near-wall streak spacing λ+. These features suggest that this
mode corresponds to the near-wall velocity streak motions.

The spectrum shown in Figure 6 contains the eigenvalues, with values representing the
mean energy of pairs with wavenumber indices ±kz because modes must contribute in
pairs for the velocity to be real valued. The n index is responsible for the various scales
in both the inhomogeneous streamwise and wall-normal directions, whereas kz represents
scale in only the spanwise coordinate. Therefore, the eigenvalue decay is slower in n than
in kz. E represents the mean turbulent kinetic energy, and the sum of all λ/E displayed
is unity. The spectrum indicates much of the energy is contained in low kz modes, and
Table 1 summarizes the contributions with n = 1−54 including all POD modes.

From the projection of one DNS field onto the POD modes, a partial reconstruction is
generated using a set of the most energetic modes with kz = 0−5 and n = 1−16. Omit-
ting spanwise Fourier modes effectively applies a low-pass cutoff filter. Figure 7 compares
negative u fluctuation isosurfaces for the original DNS field and POD partial reconstruc-
tion. Since the omitted modes of smaller scales contribute to the velocity peaks, a lower
threshold is chosen to plot the isosurfaces of the reconstructed field. The reconstruction
indicates how large-scale motions evolve from transition to the fully turbulent regions.
It is apparent from the reconstruction that the kz = 0 modes with no spanwise variation
(discussed in connection with Figure 3) make significant contributions to the flow, which
is consistent with their large eigenvalues.

4. Conclusions

POD modes for a turbulent boundary layer reveal structures that can be identified with
features observed instantaneously in the flow. The velocity structures include near-wall
streaks and ramps consistent with the hairpin vortex paradigm. The POD modes reveal-
ing these structures are useful because they represent patterns of these structures that
are statistically significant and likely appear frequently. The negative u ramp segments
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for the kz = 5 modes shown in Figure 1 may indicate characteristic lengths of hairpin
packets and the spatial patterns suggest how packets organize. The spanwise drifts and
staggering are physically significant and show that POD modes contain useful spanwise
information despite the trigonometric behavior. POD also identified modes consistent
with traveling waves that decay and grow in scale, and further analysis can address how
their form may be affected by the isotropic turbulence introduced at the inlet and how
this influences the structure downstream. Tracking the time evolution of the POD mode
coefficients and partial reconstructions would reveal further flow physics.

The authors wish to acknowledge the generous support of the Center for Turbulence
Research. This research was also supported by NSF Award CBET-0933848.
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