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A subgrid-scale model based on singular values for
LES in complex geometries

By H. Baya Todaf, O. Cabrit{, G. Balarac¥, S. Bose, J. Lee|, H. Choi||
AND F. Nicoud ft

An eddy-viscosity based, subgrid-scale model for Large Eddy Simulations is derived
from the analysis of the singular values of the resolved velocity gradient tensor. It is
shown that the proposed o-model has the property to automatically vanish as soon as
the resolved field is two-dimensional, including the pure shear and solid rotation cases.
In addition, the model generates no subgrid-scale viscosity when the resolved scales are
in pure axisymmetric or isotropic contraction/expansion. At last, it has the appropriate
cubic behavior in the vicinity of solid boundaries without requiring any ad-hoc treatment.
Results obtained for different physical configurations (isotropic turbulence, channel flows,
and periodic jet) are presented to illustrate the potential of the model. A dynamic version
based on a volume averaged procedure is also proposed.

1. Introduction

When dealing with Large Eddy Simulations (LES), the eddy-viscosity assumption is
by far the most used because it reduces the modeling effort considerably. In this view,
the subgrid-scale (SGS) tensor is written as T%GS — %TE,CGS&-J- = 2v3GgsSij, where S;; =
1 (9ij + g5i) and gi; = Ou;/Ox; is the velocity gradient tensor of the resolved scales. Note
that the (implicit) filter ~ is omitted throughout this paper for simplicity. From a simple

dimensional analysis, it is natural to model the subgrid-scale viscosity as
vsas = (CnA)? Dy (u), (1.1)

where C,, is the model constant, A is the subgrid characteristic length scale (in practice
the size of the mesh), and D, is a differential operator associated with the model,
homogeneous to a frequency and acting on the resolved velocity field u = (u;). The
most classical operator is by far the strain rate; this leads to the Smagorinsky (1963)
model for which D,, = D, = /25;;S;; and C,,, = Cs ~ 0.18. This operator is known
for not vanishing in near-wall regions. In the past, this major drawback (not the only
one of the Smagorinsky operator) motivated the use of damping functions (Moin & Kim,
1982) and the development of the dynamic procedure by Germano et al. (1991). It is
actually possible to overcome this weakness by using advanced models that naturally
vanish in pure shear regions such as the WALE (Wall Adapting Local Eddy viscosity)
and Vreman models (Vreman, 2004). However, all the models based on the eddy-viscosity
assumption, Eq. 1.1, share the drawback that the model constant C,, must be adapted
to the mesh refinement so that the proper amount of energy is drained from the resolved
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scales. This issue is well addressed by the introduction of a dynamic procedure that can
automatically adapt the model constant. In this view, the model constant C), can be
computed resorting to a least squares approach proposed by Lilly (1992),

WA = -
(Cnd)? = it

(1.2)
where L;; = u; u; — u; u; is the (modified) Leonard term based on the grid-based filter
(which is omitted for clarity, w; = u,) and test filter ~. In addition, M;; is directly related
to the differential operator and the eddy-viscosity model is based on

A2

Mij = 35 DmSij — Dm Sij;
where A stands for the test filter width. Unfortunately, the original dynamic procedure
most often requires some averaging in order to reduce the constant variability over space
and time. Several improved versions of the dynamic Smagorinsky model were proposed
in order to make it more robust and suitable for complex configurations where no homo-
geneous directions are present (Ghosal, 1995; Meneveau et al., 1996). Still, the common
practice when dealing with complex geometries is to apply the least mean square formula
over a small volume surrounding the current grid point and to clip the remaining negative
values of the dynamically computed constant. This means replacing Eq. 1.2 by
2 (LigMij) o0

(CmA)” = max 5 <Mz‘jMij>loc7O ) (1.3)
where (-), . stands for an integral taken over a small volume (typically a few grid cells)
surrounding the current grid point. Note that the model constant then depends on both
space and time.

The main motivation of the local dynamic procedure was to adapt the constant to
compensate the non-vanishing behavior of the Smagorinsky model in near-wall regions.
Recently, Ghorbaniasl & Lacor (2008) proposed to extend the dynamic procedure to the
WALE model. However, Baya Toda et al. (2010) reported that the combination of the
classical dynamic procedure with any SGS model that has the proper near-wall cubic
behavior leads to a paradox: the underlying differential operator rapidly goes to zero
near solid boundaries, which favors unstable computations. For the sake of robustness
while keeping an adaptation of the model coefficient to the grid resolution and numerical
errors, two concepts of global dynamic procedure emerged from the properties of the
Vreman model. The first one is based on the global equilibrium hypothesis (da Silva &
Metais, 2002) and was proposed by Park et al. (2006) and was later improved by You &
Moin (2007). The second one, based on the Germano identity, was also proposed by Park
et al. (2006) and was proven to be better suited for transient flows (Lee et al., 2010).
This global dynamic procedure amounts to change Eq. 1.3 to

_ <Lij Mij>dom (14)
2(MizMij) gom

dom

(OmA)2 =

where ()., stands for an averaging over the whole computational domain; the model
constant is then uniform over space by construction. It has the advantage of producing
mostly positive values for the dynamic constant, thus avoiding the clipping issue. The
price to pay is that the differential operator D,, must behave appropriately in basic
flow configurations because no compensation from the dynamic procedure can be ex-
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pected (the constant of the model is uniform over space). For example, such formulation
is not expected to provide good results if applied to the Smagorinsky model since the
eddy-viscosity would then not vanish near solid walls. The differential operators used in
the WALE and Vreman models are not very appropriate either. For example, it can be
shown analytically that the latter is linear with respect to the distance to solid bound-
aries instead of having a cubic behavior in near-wall regions. Also, they both produce non
zero eddy-viscosity in simple flow configurations such as solid rotation, and more gener-
ally two-dimensional and/or two-component (2C) flows, where no subgrid scale activity
is expected to occur. Indeed, although two-dimensional turbulence has been evidenced
experimentally and numerically (Lesieur, 2008), it is a phenomenon of fundamental in-
terest that “might thus be viewed as just a toy model” (Frisch, 1995). Given that two-
and three-dimensional turbulence are fundamentally different because of the absence of
the vortex-stretching term in the former, it seems appropriate to make sure that any
SGS model for three-dimensional turbulence switches off in the two-dimensional case.
The alternative would be to switch to a SGS model appropriate for two-dimensional tur-
bulence. Still, given the very little probability that a three-dimensional computation of
a two-dimensional turbulent flow remains two-dimensional without any external action
to maintain its two-dimensionality, this choice was not pursued. At the end, the main
objective of this paper is to define and test a new static model for three-dimensional
flows with better properties than the existing formulations. The analytical formulation
is provided in section 2, numerical results are discussed in section 3.

2. A singular values-based model

Several properties are desirable for an improved differential operator, although estab-
lishing a definite list of such properties would be a very difficult task. Similar to the
WALE and Vreman models, the operator should tend to zero in near-wall regions in
order to mimic the turbulence damping due to the no-slip condition. It can be shown
that the turbulent stress, thus the eddy-viscosity and the differential operator, would de-
cay as the distance to the solid boundary to the third power (Chapman & Kuhn, 1986)
(Property P1). At the same time, it would vanish in the case of a flow in solid rota-
tion, like the Smagorinsky model, and in the case of a pure shear, like the WALE and
Vreman models. More generally, the improved differential operator should be zero for
any two-dimensional flow (Property P2). Indeed, such a situation for the resolved scales
is not compatible with a subgrid-scale activity, which is presumably three-dimensional.
The same reasoning leads to the conclusion that the SGS viscosity should be zero in
the case where the resolved scales are either in pure axisymmetric or isotropic contrac-
tion/expansion (Property P3). The former case corresponds to the situation of a laminar
round jet impinging on a solid plate for which turbulent effect should indeed not be
present. The latter is representative of the velocity field near an acoustic monopole or a
spherical premixed flame, which again are not phenomena of turbulent nature.

Analyzing the spectral content of the velocity gradient tensor proves to be a proper
framework to investigate how these properties can be met by a single differential oper-
ator. Note, however, that the eigenvalues of g can be complex-valued in number of flow
configurations (in the case of a solid rotation, for example). One way to avoid this diffi-
culty is to consider the strain rate tensor instead of g. In this case, the three eigenvalues
are real-valued, although their sign is not known a priori. This route is explored in an-
other paper in this volume (Verstappen & Bose, 2010). In the present study, one relies on
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the singular value decomposition of g to build an improved differential operator for the
SGS eddy viscosity. Specifically, let us introduce o1 > g9 > o3 > 0, the three singular
values of g = (g;;). By definition, these values are always positive and equal the square
root of the eigenvalues of the matrix G = g'g (which are always positive because G is
symmetric semi-definite positive). The smallest singular value, o3, is null if and only if
one row or column of g is zero up to a rotation of the coordinate system. In other words,
o3 = 0 is a marker for two-dimensional and/or 2C flows, and any operator proportional
to this singular value would meet property P2. Similarly, the knowledge of the singular
values of g helps to detect the case where the resolved velocity field is in axisymmetric
contraction or expansion. Indeed, an appropriate rotation of the coordinate system then
makes the velocity gradient tensor diagonal:

g = dla’g (67 —Oé,—O[), (21)

where « is positive for a contraction and negative for an expansion. Depending on the
relative values of the parameters o and 3, the singular values of g read either o; =
|B] > 02 = 03 = |a| or 03 = |B] < 01 = 02 = |a|. In other words, the marker for
such flow situations is either oo = o3 or 01 = 09. Also a isotropic contraction/expansion
corresponds to o1 = o9 = o3, thus any differential operator proportional to (o1 —02)(02 —
o3) would meet property P3. Note that the divergence-free assumption was not made to
obtain the above results (§ not necessary equal to 2a).

From the above analysis, a differential operator proportional to o3(o1 — 02)(02 — 03)
would meet both properties P2 and P3. By analyzing the asymptotic behavior of the
singular values in the vicinity of a solid boundary, it is actually possible to show that

01=0@") ; o2=0@") ; o3=0(?). (2:2)

The algebra that leads to this result is not given in this report for the sake of simplicity.
Egs. 2.2 indicate that the product o3(01 —02)(02 —03) selected to meet properties P2 and
P3 is of order O(y?) near solid boundaries and thus meets property P1. The derivation of
the differential operator is finished by choosing a scaling factor so that it is a frequency
scale. A natural choice is the use the largest singular value o1, which is nothing but the
norm of g, and which would not change the asymptotic behavior of the ratio. Finally,
the proposed SGS model and associated differential operator read

VsSGs = (CUA)2 Dy ; Dy= %M- (23)
This model will be referred to as the o-model in the remaining of this paper.

Table 1 summarizes the properties of different differential operators and associated
models. Contrary to what is often mentioned, the asymptotic behavior of the Vreman
model is linear in y instead of being cubic. Thus, only the WALE and ¢ models comply
with property P1. Note however that the first order behavior of the Vreman model is
enough to make it more suitable for wall-bounded flows than the Smagorinsky model for
which the eddy-viscosity does not tend to zero because Dy = O(y°). Table 1 also shows
that the o-model meets properties P2-P3, contrary to the other formulations which all
fail at some point. It also shares with the three other models the common property that
involves only one-point velocity gradients; it is thus easy to implement in any general
purpose LES code. The value reported for the model constant C, is a rough estimation
generated by equating the averaged SGS dissipation obtained by feeding the Smagorinsky
model and Eq. 2.3 with a large sample of random velocity gradient tensors. Of course,
a more accurate assessment could be done by performing appropriate computations, for
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Model Smagorinsky WALE Vreman o-model
Smagorinsky (1963) Nicoud & Ducros (1999)  Vreman (2004) Present
Operator v/ 285555 Eq. 13 of above ref. Eq. 35 of above ref. Eq. 2.3
Model constant Cs ~0.18 Cw ~ 0.50 C, ~0.28 C,~1.5
Asymptotic 0(y") O(y®) O(y) O(y®)
P1 NO YES NO YES
Solid rotation 0 ~ 0.90 ~ 0.71 0
Pure shear 1 0 0 0
P2 NO NO NO YES
Axisym ~ 3.46 ~ 0.15 ~ 1.22 0
Isotropic ~ 2.45 0 1 0
P3 NO NO NO YES

TABLE 1. Properties of the SGS models considered. Labels Axisym and Isotropic refer to axisym-
metric and isotropic contraction/expansion respectively. The entries below the P1 row are the
values taken by the differential operators when all the velocity derivatives are zero except: Solid
rotation: dui/dxs = —1 and duz/dz1 = 1; Pure shear: duq/dz2 = 1; Axisym: dui /dx1 = £2,
duz /dx2 = F1, dus/dx3 = F1; Isotropic: dui/dx1 = %1, duz/dze = £1, dus/dzxs = +1

example, of decaying isotropic turbulence cases. This task is not pursued here since the
result of any tuning effort would depend on the grid resolution and numerics. Note,
however, that the random procedure used to assess C, leads to fair estimates of the
WALE and Vreman’s constant [Cy, ~ 0.63 and C, = 0.29, to be compared with the
values recommended by Nicoud & Ducros (1999) and Vreman (2004) and reported in
Table 1]. The chosen value C, = 1.5 is thus sufficient to assess the potential of the static
o-model. The proper way to reduce the influence of the selected value for the model
coeflicient is to use some kind of dynamic procedure able to compensate, at least partly,
for the grid resolution and numerical errors. Concerning this topic, a Germano-identity-
based global dynamic procedure applied to the o-model will be presented in section 3.

3. Numerical experiments

The o-model was implemented in several numerical tools for LES and tested over a
variety of academic flow configurations.

e Solver A: The general purpose AVBP code was developed at CERFACS and IFP
Energies Nouvelles. It is based on a cell-vertex formulation and embeds a set of finite
element/ finite volume schemes for unstructured meshes. In the present study a cen-
tered Galerkin finite element method (4™ order in space) with a 34 order Runge-Kutta
temporal integration is retained for the investigation of two configurations: the decaying
isotropic turbulence from the Comte-Bellot & Corsin (CBC) experiment and a turbulent
channel flow at Reynolds number Re, = 395. These flows were computed with the Dy-
namic Smagorinsky model and the present static o-model. The dynamic procedure was
applied locally, without averaging over homogeneous directions. Negative values of the
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dynamically tuned constant of the Smagorinsky model were clipped to ensure stability
(see Eq. 1.3).

e Solver B: a finite difference code dedicated to the computation of turbulent channels
and developed at the Center for Turbulence Research. It is based on a kinetic energy
conserving, 4" order scheme in space as proposed by Morinishi et al. (1998). A 3" order
Runge-Kutta scheme is used for the time integration, except for the diffusion terms in the
direction normal to the wall that are integrated thanks to an Crank-Nicholson scheme.
The divergence-free condition is met by a projection scheme. It was used to compute the
turbulent channel flow case at Re, = 590 with both the dynamic Smagorinsky model
and the present static o-model. Note that contrary to the implementation used in the
general purpose AVBP solver, the dynamic procedure is not applied locally in this case.
Instead, the Smagorinsky constant is computed as

(LijMij)
(CsA)? = ——— ke (3.1)
2 (MijMij) ane
where <'>p1anc stands for an integral taken over homogeneous planes parallel to the walls

of the channel. This avoids clipping while keeping the favorable dependence of the model
constant on the distance to the solid boundaries.

e Solver C: a dealiased spectral code developed at Seoul National University. It is based
on a 2" order semi-implicit scheme for time integration: diffusion terms are treated
implicitly using the Crank-Nicolson method, and a 3'¢ order Runge-Kutta scheme is
applied to convection terms. The decaying isotropic turbulence from the Comte-Bellot
& Corsin (1971) experiment was computed with a dynamic version of the o-model. The
Germano-based global dynamic procedure (Park et al., 2006; Lee et al., 2010) was used
(see Eq. 1.4), meaning that a single-model constant was computed for the whole domain
at each iteration. A divergence-free initial field was generated using the re-scaling method
proposed by Kang et al. (2003).

e Solver D: a pseudo-spectral code developed at the LEGI lab in Grenoble, France.
With this tool, the viscous terms are treated exactly using a 2°¢ order explicit Runge-
Kutta time-advancement. A classical two-third rule is used for dealiasing the non-linear
convection term. This tool was used to compute the case of a periodic plane jet as de-
scribed in da Silva & Pereira (2008). Several SGS formulations were considered, including
the global dynamic o and Smagorinsky models (both based on the procedure of Eq. 1.4),
a local dynamic Smagorinsky model with clipping (see Eq. 1.3), and a planewise dynamic
Smagorinsky model without clipping (see Eq. 3.1).

3.1. Isotropic decaying turbulence

We first validate the behavior of the o-model for the simple case of a freely decaying
isotropic homogeneous turbulence. The experiment by Comte-Bellot & Corrsin (1971) on
decaying turbulence behind a grid is simulated, where the mesh size of the grid turbulence
is M = 5.08 cm and the free-stream velocity is Uy = 10 m/s. The Taylor micro-scale
Reynolds number is Rey = upmsA/v = 71.6 at time tUy/M = 42 and decreases to
60.6 at tUp/M = 171. In a reference frame moving with the average flow velocity the
problem can be thought of as freely decaying isotropic turbulence. We model this by
considering the fluid to be inside a cube-shaped box with periodic boundary conditions.
The flow was first computed with the general purpose code AVBP (Solver A), where the
static o-model was implemented with C, = 1.5 . The grid resolution was 61% and Fig. 1
shows that the computed spectra are in fair agreement with the experimental data. The
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FIGURE 1. Time evolution of energy spectra for freely decaying isotropic turbulence with the
o-model. Symbols are experimental measurements corresponding to the three-dimensionless
times tUo/M = 42, 98 and 171. Left: Results from general purpose solver AVBP (Solver A)
with grid 61°. Static o-model. Right: Results from spectral code (Solver C) with grid 32°.
Global dynamic o-model.

biggest differences are obtained for the smallest scales; they are most probably from the
large numerical errors that characterize finite volume/finite element methods for large
wave numbers. This is confirmed by the results obtained from the spectral code Solver
C which are essentially in good agreement with the measurements, although the grid
is even coarser (32%). Note that the global dynamic o-model was used in this case; the
constant (homogeneous in space) varied only weakly with time during the simulation with
Cy =~ 1.5 — 1.7, in close agreement with the value retained from the random procedure
(see Table 1).

3.2. Turbulent Channel flow

The performance of the static o-model for wall-bounded flows was investigated by com-
puting LES of turbulent channel flows at friction Reynolds number Re, = 395 and 590
with solvers Solver A (general purpose) and Solver B (channel solver), respectively. In
both cases, the computed mean velocity profile is in good agreement with the DNS data
from Moser et al. (1999), as displayed in Fig. 2. The results are in fact slightly better than
what is obtained with the dynamic Smagorinsky model. The same trend is observed when
looking at the velocity fluctuations (not shown). The theoretical asymptotic behavior of
the o-model near solid boundaries (vsags = O(y?)) is also well retrieved numerically, as
shown in Fig. 3. Note that the amount of SGS eddy-viscosity is not negligible in front of
the molecular viscosity, at least in the core region. This reflects the fact that the grid res-
olution is far from what is required to perform DNSs of the same flows: Azt ~ 48, Ay™
in the range 1-17, Az™ ~ 10 for the LES at R, = 395 - Solver A; Az+ ~ 58, Ay™ in the
range 1-17, Az =~ 29 for the LES at R, = 590 - Solver B. This figure also illustrates that
the proper asymptotic behavior is obtained with the dynamic Smagorinsky model only
when the plane-wise procedure (Eq. 3.1) is applied, as for the case R, = 590 and Solver
B. Recall that this procedure can be used only for simple cases with homogeneous direc-
tions. Conversely, the asymptotic behavior is built in the o-model’s differential operator
itself and no specific dynamic procedure/homogeneous directions is required.

3.3. Turbulent Plane jet

Further LESs of a periodic planar jet configuration were performed in order to illustrate
the potential of the global dynamic o-model. The spectral code Solver D was used. The re-
sults from several 643 LESs are compared to 256 DNS data obtained by running the same
spectral code. The configuration is close to the one studied in da Silva & Pereira (2008)
except for the jet width-to-initial momentum thickness, which is 20 instead of 35. The
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FIGURE 2. Mean velocity profile from the static o-model ( ) and the dynamic Smagorinsky
model (---- ). Symbols correspond to the DNS data of Moser et al. (1999). Some symbols of

the DNS were removed for clarity. Left: Results from the general purpose solver AVBP (Solver
A) at Re, = 395. Right: Results from the channel code (Solver B) at Re, = 590.

=
S}
=
o

.
o
°
=
o
©

o

VSGS/Vlam
S,
T

=
:
vsGs/Viam
L
o

&

=

S
&
T

s

=
o,

=

o,

&
2

N
o,

10 10
y* y*

FIGURE 3. Scaled SGS eddy-viscosity from the static o-model ( ) and the dynamic

Smagorinsky model (-—-- ). The dotted lines correspond to the proper y® asymptotic be-

havior. Left: Results from general purpose solver AVBP (Solver A) at Rer = 395. Right: Results
from the channel code (Solver B) at Re, = 590.

computational domain is periodic in the three spatial directions and its size is four times
the initial jet width. The DNS initial field is generated by super-imposing divergence-free
random fluctuations to the mean velocity profile. The LES initial condition is obtained
from the DNS data by spectral interpolation. Because periodic conditions are imposed
in both the streamwise and spanwise directions, the flow is not statistically steady and
the jet keeps growing thicker and thicker as time increases. Figure 4 displays the resolved
kinetic energy and SGS eddy-viscosity. from the different LES performed at time 12 h/U
where h is the jet width and U is the maximum mean velocity. Note that the profiles
are not symmetric because only plane-averaging over the homogeneous directions was
applied and the flow is not statistically stationary. Regarding the dynamic Smagorinsky
model, the best agreement with the filtered DNS is obtained when the dynamic procedure
is applied planewise (see Eq. 3.1). This formulation permits the combination of accuracy
(the model constant depends on the position in the plane jet) and robustness (the planar
averaging stabilizes the procedure sufficiently to avoid clipping). When the dynamic pro-
cedure is applied locally to the Smagorinsky model, Eq. 1.3, a large amount of clipping
is required to stabilize the pointwise model constant, and the overall accuracy degrades.
On the other hand, when the global procedure, Eq. 1.4, is applied, the model constant
is uniform over space and no clipping is required. However, a high level of eddy-viscosity
is generated in the mean shear regions because the mean gradient contributes to the
strain rate. As a consequence, the resolved scales are over-dissipated and their kinetic
energy is under-estimated. Note that the over-estimation of vggg does not appear in Fig.
4 because the amount of fluctuation is already way too small at the instant considered.
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FIGURE 4. LES of a periodic plane jet with a 64% grid performed with the spectral code Solver
D. The global dynamic o-model ( ) at time 12 h/U is compared with the local (---- ),
planewise (-------- ) and global (—-— ) dynamic Smagorinsky models. Left: Resolved kinetic

energy. Symbols correspond to the filtered 256% DNS. Right: SGS eddy-viscosity scaled by the
molecular viscosity.

On the contrary, because the static o-model produces zero eddy-viscosity for the mean
shear associated with the jet, applying the same global dynamic procedure to this model
leads to much better results, comparable to the planewise dynamic Smagorinsky model.
Note, however, that the global dynamic o-model can readily be extended to any com-
plex geometry because neither averaging over homogeneous directions nor clipping are
required.

4. Conclusions

A differential operator based on the singular values of the velocity gradient tensor is
proposed as a basis for an improved SGS eddy-viscosity model. It is shown that the pro-
posed static o-model generates zero eddy-viscosity for any two-dimensional or 2C flows,
as well as for axisymmetric and isotropic situations. It also has the proper cubic behav-
ior in near-wall regions. Owing to its unique properties, this model is well suited for the
global dynamic procedure, which adapts the overall coefficient to the grid resolution and
numerical errors. The o-model was implemented in several academic and general purpose
CFD codes, under either its static or global dynamic version. The results presented in
this report are promising because of the relative ease of implementation. It is anticipated
that the o-model could be useful in the current effort to make LES even more suitable
for complex flow configurations.
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