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Problems of astrophysical turbulent convection:
A simple model of the Evershed effect

By F. H. Bussef

The Evershed effect is an outflow in the penumbra of sunspots. It has been proposed
that this flow is generated locally by the interaction of convection and an inclined mag-
netic field. The oscillatory instability of convection rolls in a low Prandtl number fluid
gives rise to the generation of Reynolds and Maxwell stresses that cause a shear flow in
the form of the Evershed effect.

1. Introduction

Since its discovery by John Evershed (1909) more then 100 years ago the strong outflow
observed in the penumbra of sunspots has been a puzzling phenomenon. Numerous the-
oretical partially conflicting models have been proposed and the observations also have
been controversial in many instances. Recently, computer capacities have become large
enough that realistic simulations of flows in sunspot penumbrae can be attempted (Ki-
tiashvili et al. 2009) and high-resolution observations from space crafts (Ichimoto 2009)
have become available. These developments have encouraged the author to return to
an old analytical model of the Evershed effect (Busse 1988) which appears to be useful
for understanding the basic physics of the problem in light of new information that has
become available.

The idea of the model is to use a minimum of ingredients that are sufficient to gen-
erate, without further assumptions, a mean flow such as the Evershed effect. For this
reason, effects of compressibility will be neglected and the Boussinesq approximation for
the description of thermal convection will be employed. The assumption of stress-free
boundaries of the layer allows for simple solutions of the equations of motion in terms
of trigonometric functions. Through this procedure, analytical expressions of nonlinear
properties such as Reynolds and Maxwell stresses can be obtained from which the Ever-
shed effect originates. A quantitative comparison with observations is not attempted.

The problem to be studied in this paper is also of interest from a general point of
view. Turbulent states of fluids often exhibit coherent structures in the form of large-
scale flows that are absent in the corresponding laminar state of the problem. Such
flows often originate from mean Reynolds stresses generated by small-scale turbulence.
Such stresses would vanish, of course, in the case of isotropic turbulence, but they may
become finite in the case of anisotropic systems. An example is the mean shear generated
by three-dimensional convection in a plane-horizontal fluid layer rotating about an axis
that is inclined with respect to the vertical (Busse 1982, 1983; Hathaway & Somerville
1983). In this case no mean flow is generated close to the onset of convection because
the two-dimensional convection rolls align themselves with the direction of the horizontal
component of the rotation vector. The rolls thus do not differ from the rolls that would
be found in the case of a purely vertical rotation vector. But as a transition to a three-
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dimensional form of convection occurs at higher values of the Rayleigh number, the
anisotropy of the rotating layer manifests itself in the generation of a mean shear.

In the problem considered by Busse (1988) and extended in the present paper, the role
of the rotation vector is replaced by the role of an imposed uniform inclined magnetic
field. The inclination is essential in both cases because it breaks the symmetry in the
horizontal directions and creates the horizontal anisotropy.

In the following section the mathematical problem is described. Solutions for finite
amplitude convection rolls are given in section 3. The oscillatory instability is discussed
in section 4 and its evolution at finite amplitudes is analyzed in terms of a perturbation
approach in section 5. The paper ends with a discussion of the results in section 6.

2. Mathematical formulation of the problem

We consider an infinitely extended horizontal fluid layer of height d with the fixed tem-
peratures Ty and Ty (T2 > T1) at the upper and lower boundary, respectively. The fluid
layer is electrically conducting and is intersected by a homogeneous magnetic field with
a flux density By at an angle x with respect to the horizontal. We adopt the Boussinesq
approximation, i.e., all material properties are assumed to be constant except for the
temperature dependence of the density, which is taken into account only in connection
with the gravity term. Using as scales the length d; the time d?/v, where v is the kine-
matic viscosity of the fluid; the temperature (7> —T7)P/R; and the magnetic flux density
By we obtain the dimensionless equations of motion for the velocity vector u, the heat
equation for the deviation © from the static temperature distribution, and the equation
of magnetic induction for B

(D +u - Vu) = =V + ROk + Viu + %B - VB, (2.1a)
V- u=0, (2.1b)

P(0,0 +u-VO) = Ru -k + V36, (2.1¢)
8tB+u-VB:B-Vu+%V2B, (2.1d)
V-B=0, (2.1¢)

where 0; denotes the partial derivative with respect to time ¢ and where all terms in the

equation of motion that can be written as gradients have been combined into V7. The

dimensionless parameters, the Rayleigh number R, the Chandrasekhar number @, and
the Prandtl number P are given by
3

oW TIE e, Pl (2.2)

VK K

where + is the coefficient of thermal expansion, g is gravity, and « and A are the thermal

and magnetic diffusivities, respectively. We use a cartesian system of coordinates with

the z-coordinate and the unit vector k in the direction opposite to gravity and the z-

coordinate in the direction of the horizontal component of the imposed magnetic field.

We use stress-free boundary conditions for the velocity field and require that © vanishes
at the upper and lower boundaries,

1
u, =02u, =0 =0 at 2=+, (2.3)
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In order to eliminate the continuity Eqgs. (2.1b) and (2.1e), we introduce the general
representations for the solenoidal vector fields w and B,

u=u+VXx(Vxkd)+Vxkp=u+dp+ny, (2.4q)
B =icosy +ksinx + [b+ V x (vth)+V><kg]§

=idcosy + ksiny + [b+ 6h + ng] (2.4b)

v
)\ )
where overbars in @ and b denote the average over the z, y—plane of w and of the
modification b = b + 8h + ng of the imposed magnetic field. The functions ¢, h and 1,
g describing the poloidal and toroidal components of the velocity and of the magnetic
field, respectively, are uniquely defined if the conditions ¢ = h = 1) =g = 0 are imposed.
After the application of the differential operators § and 1 onto Egs. (2.1a) and (2.1d )
we arrive at the following equations for ¢ and v and for h and g,

VA + A0 + Q(icos x + ksiny) - VVZAqh = 2v2A2¢ +d-(u-V)u, (2.5q)

ot
V2A21) + Q(icos x + ksinx) - VAgg = %Agd) +n-(u-V)u, (2.5b)
V2Agh = —(icosx + ksinx) - VA, (2.5¢)
V2Asg = —(icos x + ksiny) - VAgip, (2.5d)

where we have neglected all terms multiplied by v/ because we assume the limit v << A.
We return to this assumption later in this paper. Equations for the mean flow w and the
mean distortion of the magnetic field b are obtained by averaging the x- and y-components
of Egs. (2.1a) and (2.1d ) over the z — y plane,

0? 0 0 0 . -

0? —

Wb = —sinxk - Va. (2.6b)
z

Because there is no z-component of the mean flow, the average of the z-component of
Eq. (2.1a) determines the z-derivative of the mean pressure.
Eq. (2.1c) can now be written in the form

0
V20 + RAzp = (8¢ +mip + 1) - VO + EG' (2.7)
In writing Egs. (2.6a) and (2.6b ) we have introduced the horizontal gradient, Vo =
V — kk - V, and the horizontal Laplacian, Ay = V3 - Va. In line with (2.3), Egs. (2.5)
must be solved subject to the boundary conditions
82
922
There is no need to specify a boundary condition for h because V2Aqh in Eq. (2.5a) can
be replaced by —(icos x + ksin x) - VAg¢ according to Eq. (2.5¢).
It is well known that the solution of Egs. (2.5) and (2.7) corresponding to the low-

est value of R is independent of the z-coordinate, i.e. it assumes the form of steady
rolls aligned with the horizontal component of the imposed magnetic field. The solution

1

9
0= 550=50=0=g=0 at z=zg. (2.8)
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satisfying the boundary conditions (2.8) can be written in the form

$o = AcosaycosTz + O(A>P?), (2.90)
Q0 = [(7® 4+ a?)? + Qn?sin® y] (¢o + PA%a*sin2mz/87) + O(A®P?),  (2.9b)
R=[(m*+a®)?+Qn*sin®x] ((n° + o®)/a® + P?A%a?/8) + ... (2.9¢)

The term independent of the amplitude A in the expression for R gives the critical value
of the Rayleigh number after it has been minimized with respect to the wavenumber «.
For large values of @, the critical wavenumber a.. approaches the value 7(Q sin? x/2)%/4.
The fields 9, g, and b vanish for the solution (2.9 ).

3. The oscillatory instability of convection rolls

The steady solution (2.9) becomes unstable as R is increased beyond the critical value
R, for onset of convection. Among the instabilities that induce a transition to a three-
dimensional form of convection, the oscillatory instability predominates at low Prandtl
numbers. Following the analysis of Busse (1972) in the case where Q = 0, we superimpose
disturbances of the form

¢ = (G0 + b1 + b2pa + ... ) explibx + ot} (3.1a)
o =09+ boy + b%os + ... (3.1b)

where the quantities qgn are functions of y and z only. The expressions for ﬁn, Jn, O, and
h., are analogous to that for qgn The expansion in powers of the wavenumber b has been
introduced because the oscillatory instability assumes relatively small values of b at low
values of the Prandt]l number P on which our analysis is focussed. In fact, the oscillatory
instability can be regarded as a modification of the shift mode, which describes a neutral
translation of the convection roll pattern in the y-direction, i.e.,

o100 5 109 5 1 0h (3.2a)
0 aA Oy’ 0 aA Oy’ 0 ad Oy’ o
oo = 0. (3.20)

Another property that contributes to the instability is the presence of a horizontal motion
independent of z and of y given by ¥y = const., which is thus barely damped by viscous
dissipation. These properties remain unchanged as @ is increased from zero if electrically
insulating boundaries are assumed,

oh _ Oh° 1

= qg = t = 4+ .
P 55 g=0 at z 5 (3.3)

where h¢ denotes the potential magnetic field outside the conducting layer which must

be matched to the poloidal field inside. In lowest order these conditions lead to the result
~ msinysinay [ . sinh oz . 1 22, ~

P = — _ - =(= - . (34

0 2 + a2 (SID Tz cosh % + sinh %) ) g0 (8 92 )7’ COS Xd}() ( )

The analysis in the higher orders b™ follows the procedure described by Busse (1972).

01 is purely imaginary and determines the frequency of the oscillatory instability, whereas

a positive o9 is obtained for sufficiently large values of A. Because there is no space here

to describe the complex analysis in detail, we refer to the numerical analysis of Busse

and Clever (1990) where the critical Rayleigh number R, and the Rayleigh number Ry
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for onset of the oscillatory instability have been computed for various values of @, x, and
P. While the critical value R, increases strongly with @ sin y, the difference R, — Ry
depends only weakly on ) at low values of P.

Instead of pursuing the general analysis we focus here on the generation of a mean
flow that becomes possible as the amplitude A of the growing disturbances Eq. (3.1a)
becomes finite. For this purpose the equations for ¢1, ©; and h; must be solved,

ViAsdr — AyOy + QsinXgV2A2fL1 =1iQ cosxsinxagquzo, (3.50)
z z

V20, — RAy¢, =0, (3.5b)

VQAQill + SinX;AQ&l = —1 COSXAQQEO. (356)

To simplify the analysis, terms proportional to A have been neglected in Eqgs. (3.5a, b,
¢). Those terms will generate additional contributions to the solutions of gbl and @1 of
different symmetry, but they will not change qualitatively the following derivations. After

eliminating ©1 and Iy from Egs. (3.5a, b, ¢) and using expression (3.2a) for (;30 we obtain
the following equation for ¢q,

2 ~
(V6 — Qsin? x%v2 — RAg) é1 = iQsin2x(7? + a?)wsinaysinz. (3.6)
z

The solution of this equation satisfying the boundary conditions can be written in the
form

- <. 8
¢1 = isinaysin 2y g 427TL1D,L sin 2nmz. (3.7)
nZ —
n=1

where the coefficients D,, are given by

D, = Q(-1)"(7* + a?) ((4n27r2 +a?)3 + Q(4n*n® 4 o?)4n’n? sin? y — Ra2) . (3.8)

In the following the antisymmetry of expression (3.7) with respect to the mid-plane,
z = 0, and the positivity of the coefficients D,, will be the most important properties.
For later use we also derive the solution for hq,

By o= isi sin 2 i 16n*r D, 082 cosh az
= isinaysin nmwz —
' Y anl (4n? — 1)(a? + 4n2n?) a(cosh § + sinh §)

4 sin ay cosh az (3.90)
icosx—— | cosmz — 9a
a2 afcosh § +sinh §) /

which satisfies the boundary condition (3.3).

4. Reynolds and Maxwell stresses of oscillatory convection

The straight convection rolls described by expressions (2.9a, b, ¢) are qualitatively
identical to convection rolls in the absence of a magnetic field. As the convection pattern
becomes three-dimensional with growing amplitude A of the disturbances (b w, O, h, and
g, finite Reynolds stresses develop that tend to generate a shear flow w = U (2 ) in the
z-direction. Connected with this shear is a mean distortion of the magnetic field, b = B,.
No mean flows or mean magnetic fields in other directions are generated. The interaction
between the basic steady convection rolls and the oscillatory disturbances does not give
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rise to any mean effects. The Reynolds stresses are a nonlinear effect of the disturbances
and are thus proportional to (4)? in lowest order. In addition, we want to consider the
effect of Maxwell stresses. These turn out to be of the order v/A and thus might be
negligible according to our previous assumption. But because they are also proportional
to @, it is of interest to consider the terms of first order in Qu/\.

According to Egs. (2.6a, b), the equations for U and B, are given by

N TN s - o v

U = U = B Aod—— = Qsin By + 5 oMy, (4.1a)
0 .

EBI = —SIDXU + XMQ, (41b)

where the Maxwell stresses M; and the corresponding induction terms M, have been
added, although terms with ¢ and g have been neglected because they do not contribute
to the average. We have used the integrated form of the equation of induction since it
can be presumed there is no mean electric field in the z-direction. Because the horizontal
average is time independent and because we are interested in the steady state we neglect
the time derivative in the following. The expressions M; and Mj are given by

~ 02 2 02 -
_ 2 12
M, = A QAgha a2 h A“Q (Aghoa 92 hl +A2h18 azh()) + ... (426&)
M: A h N
2 = 2¢ 2hs 5 ¢
- 02 - - 02 - - 02 o2
2 - _ _Z
<A2¢)0 8I82h1 Ashg 3x32¢1 + Agpy—— 9702 Aghla oz (b ) +..(4.20)

In evaluating Reynolds and Maxwell stresses it must be taken into account that only the
real parts of expressions (3.1a, b) for the disturbances have physical meaning. Accordingly
we obtain after elimination of B, from Eqs. (4.1a, b)

82

WU — Qsin® U =A%b?a? sin 2y Z nD,, (sin(2n + 1)7z + sin(2n — 1)72)
2

n=1

v — @ sin xMa). (4.3)

(5

The solution of this equation in the limit 5 = 0 is given by

+

—A%%02 sin 2y Z nD,

n=1

( sin(2n + 1)7z sin(2n — 1)7z >
(2n 4+ 1)272 + Qsin’ x ~ (2n — 1)272 + Qsin?x /)
(4.4)

This result shows that U is antisymmetric with respect to the mid-plane z = 0, and it is
positive for z > 0 for positive x. The terms proportional to ¥ give rise to contributions
that are symmetric with respect to the plane z = 0 as can be seen from the inspection of
the expressions (4.2a, b). All of these contributions vanish when integrated over z such
that boundary condition B, = 0 at z = £1/2 can be satisfied.

A physical interpretation for the property that the Reynolds stress exhibits the same
sign as x can be given on the basis of the magnetic analogue of the Taylor-Proudman-

Theorem (see, for instance, Chandrasekhar 1961). Any circulation in the z, z-plane will
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FI1GURE 1. Sketch of the shear flow U generated by oscillating convection rolls in the presence
of an imposed inclined magnetic field

be elongated in the direction of the imposed magnetic field. It thus carries positive z-
momentum upward and negative z-momentum downward thereby creating the shear flow
(4.4). Figure 1 illustrates this process. The action of the Reynolds stress is balanced by
the viscous stress exerted by the shear and by the Maxwell stress of the mean magnetic
field.

5. Discussion

The Evershed effect has been a well known phenomenon in solar physics for more
than 100 years and several theoretical models have been proposed for its explanation.
In his review of sunspots Thomas (1981) noted that there are two schools of thought.
Meyer and Schmidt (1968) created the ”siphon”-model in which the Evershed flow is
driven by a pressure difference. For more recent developments in the spirit of this model
we refer to Schlichenmaier et al. (1998). The latter paper also deals with the nature
of the bright and dark filaments in the penumbra. The second school of thought goes
back to Danielson (1961), who derived a penumbra model based on radially oriented
convection rolls. Galloway (1975) used this model and outlined a theory of the Evershed
effect in which the flow is driven by the Lorentz force originating from the curvature of
the magnetic field lines in the dark filaments. A detailed analysis based on this suggestion
has not been carried out, however. The self-consistent theory of Busse (1988) shares with
the proposal by Galloway that the generation of the Evershed flow occurs locally. The
main addition to the theory of Busse (1988) given in the present paper is the derivation
of the Evershed flow for a different magnetic boundary condition and the elucidation of
the role of Maxwell stresses.

It has already been emphasized that the model presented in this paper is too idealized
for a quantitative comparison with observations. An unrealistic feature of the model is
the limit of small A/v. Without this assumption the accumulation of magnetic flux at
the boundaries along the lines of flow convergence can not be described, which could
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explain the increased strength of the Evershed flow in the dark regions between the
bright filaments. Another effect that could contribute to the stronger flow in the dark
regions arises from the property that the inclination y of the magnetic field plays a dual
role. The stabilizing effect of the magnetic field, as expressed by the term Q sin? x in the
denominators of expression (4.4) and of D,,, increases in proportion to sin? x, whereas the
destabilizing effect in the numerator of expression (4.4) grows in proportion to @ sin x for
small x. Thus a stronger Evershed effect must be expected in the dark filaments where
the inclination of the magnetic field is observed to be smaller than in the bright filaments.

REFERENCES

Bussg, F. H. 1982 Generation of mean flows in a rotating convection layer. Zeitschrift
Naturf. 37a, 752-758.

Bussg, F. H. 1983 Generation of mean flows by thermal convection. Physica D 9, 287—
299.

Bussk, F. H. 1988 A new mechanism for the Evershed effect, pp. 187-195 in The Role of
Fine Scale Magnetic Fields on the Structure of the Solar Atmosphere, E.H. Schroeter,
M. Vazques and H. Wyller, eds., Cambridge: Cambridge University Press.

Bussg, F. H., & CLEVER, R.M. 1990 Finite amplitude convection in the presence of
an inclined magnetic field. Fur. J. Mech., B/Fluids 9, 225-238.

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford: Claren-
don Press.

DANIELSON, R.E. 1961 The structure of sunspot penumbras II, Theoretical. Astrophys.
J. 134, 275.

EVERSHED, J. 1909 Radial movement in sunspots. Monthly Not. Roy. Astr. Soc. 69, 454.

GALLOWAY, D.J. 1975 Fine structure and Evershed motions in the sunspot penumbra.
Solar Phys. 44, 409.

HatHAwAy, D.H. & SOMERVILLE, R.C.J. 1983 Three-dimensional simulations of con-
vection in layers with tilted rotation vectors. J. Fluid Mech. 126, 75-89.

IcaimoTo, K., AND THE SOT/HINODE TEAM 2009 The Evershed effect with
SOT/Hinode, to appear in Magnetic Coupling between the Interior and the Atmo-
sphere of the Sun, S.S. Hasan and R.J. Rutten, eds., Berlin, Heidelberg: Springer-
Verlag.

KirriasaviLl, I. N., KosovicHEV, A.G., WRAY, A.A., MANSOUR, N.N. 2009 Travel-
ling waves of magnetoconvection and the origin of the Evershed effect in sunspots.
Astrophys. J. 700, L178-1183.

MEYER, F., AND ScaMIDT, H.U. 1968 Magnetisch ausgerichtete Stromungen zwischen
Sonnenflecken. Zeitschrift angew. Math. Mechanik 48, T218.

SCHLICHENMAIER, R., JAHN, K., AND ScHMIDT, H.U. 1998 Magnetic flux tubes evolv-
ing in sunspots: A model for the penumbral fine structure and the Evershed flow.
Astron. Astrophys. 337, 897-910.

THOMAS, J.H. 1981, pp. 345-358 in The Physics of Sunspots, L.E. Cram & J.H. Thomas,
eds., Sacramento Peak Observatory Report.



