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MHD simulations of flows around rotating and
non-rotating axisymmetric magnetic flux
concentrations

By T. Hartlep, F. H. Busset, N. E. Hurlburt} AND A. G. Kosovichev

We present results on modeling magnetic flux tubes in an unstably stratified medium
and the flows around them using 2D axisymmetric magneto-hydrodynamic (MHD) sim-
ulations. The study is motivated by the formation of magnetic field concentrations at the
solar surface in sunspots and magnetic pores and the large-scale flow patterns associated
with them. The simulations provide consistent, self-maintained models of concentrated
magnetic field in a convective environment, although they are not fully realistic or di-
rectly applicable to the solar case. In this paper, we explore under which conditions the
associated flows near the surface are converging (towards the spot center) or diverging
(away from the axis) in nature. It is found that, depending on the parameters of the
problem, the results can depend on the initial conditions, in particular for zero or low
rotation rates and Prandtl numbers smaller than unity. The solutions with a converging
flow usually produce more strongly confined magnetic flux tubes.

1. Motivation and Objectives

The mechanisms of how magnetic pores and sunspots form on the Sun are still poorly
understood. Observations and numerical simulations suggest that their structure is inti-
mately linked with characteristic surface and subsurface flows in and around the region
of magnetic field concentration. Fully developed sunspots exhibit a surface outflow in
their penumbra, the so-called Evershed flow, presumed to be caused by interaction be-
tween the near-surface granular convection and the highly inclined penumbral magnetic
field as suggested by Hurlburt et al. (1996) and the numerical simulations of Kitiashvili
et al. (2009). Observation (e.g., Zhao et al. 2010) have revealed downflows in the central
region of the sunspot and subsurface converging flows (inflows) below the granulation
layer, as well as outflows further below. The inflows around magnetic structures without
penumbra were also obtained in the realistic MHD simulations of Rempel et al. (2009)
and Kitiashvili et al. (2010). It is conjectured that this flow is fundamentally important
for maintaining the integrity of the magnetic field concentration.

These problems are the motivation for the present study but we do not try to closely
approximate solar conditions here. Simplified numerical models of subsurface magneto-
convection in axisymmetric configuration (Hurlburt & Rucklidge 2000; Botha et al. 2006,
2008) have been able to reproduce flow structures similar to those discussed above and
Botha et al. (2008) did in fact also find cases with a diverging flow over a converging flow.
The present paper extends their work, exploring in more detail the conditions under under
which diverging or converging flows can hold a magnetic flux concentration in place.
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2. Numerical method

We study magneto-convection in an axisymmetric cylindrical geometry using a code
originally developed by Hurlburt & Rucklidge (2000) for the two-dimensional (2D) case
and later extended by Botha et al. (2008). The model considers a layer of electrically
conducting, perfect monatomic gas subject to uniform gravitational acceleration, with
constant shear viscosity, magnetic diffusivity, and magnetic permeability, rotating with
constant angular velocity £ about the vertical. The model approximates the conditions
in the upper part of the solar convection zone but excludes the granulation layer, the very
top few hundred kilometers below the photosphere where the plasma is only partially
ionized and radiation would need to be modeled accurately.

The equations in non-dimensional form read:

Op=—V-(up), (2.1)
(?tu:—u~Vu—2Q£><u+QQ(2><r)xﬁ—%VP—i—@(m—l—l)i (2.2)
+ﬂv ST+ o K2Q x B,
p
@T_-ﬂ.vr—w—1ﬂv-u+%§vﬁwiﬁg%19(%wr+$QK%ﬂ,(2$
Ay = (ux B)g— Kjg, (2.4)
9By = [V x (ux B)|, + QK <V2B¢ - %) , (2.5)

where p, T, u and B are the density, temperature, velocity and magnetic field, B =
V x (qZ)A¢) + qZ>B¢, respectively. 7 and 7 stand for the current density and the rate of
strain tensor. We have used cylindrical coordinates with £ being the vertical direction
pointing downwards, # being the radial direction and qAS the azimuthal direction. The
quantities are non-dimensionlized using the depth d of the domain as a scale for length,
the sound speed at the top of the domain as a scale for velocities, and initial temperature,
density, pressure and magnetic field at the top of the domain as scales for their respective
quantities.

The control parameters in the simulation are the Rayleigh number at the mid-plane,
R, defined as
(m+1)(y—1)7 1+6/2)>m""
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the Prandtl number, o; the temperature contrast between the top and the bottom of the
domain, 6; the rotation rate, €2; the aspect ratio, the ratio between height and radius of
the cylindrical domain, I'; and the Chandrasekhar number, 2, a measure of the magnetic
flux in the system defined as

R=60*(m+1) [1-

(2.6)

2
Q= (BOd) ’ (2'7)
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where p the magnetic permeability, n the magnetic diffusivity, v the kinematic viscosity,
and By the scale of the initial magnetic field. The ratio between specific heats is chosen
to be v = 5/3, appropriate for a monoatomic ideal gas. The initial temperature and
density profiles in the simulations take the form of a polytrope, in non-dimensional form

T(z) =140z,p(z) = (1+6z)™, where z and m are the non-dimensional depth (ranging
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FIGURE 1. Flow velocities (arrows), magnetic field strength (gray scale, with dark indicating
stronger magnetic field) and magnetic field lines for the reference case, a case that forms a
diverging flow over a converging flow. See text for parameters. The rotation axis is on the left
at r=0.

from 0 at the top of the domain to 1 at the bottom) and the polytropic index, respectively.
Simulations are started with an initial uniform vertical magnetic field B = £ (in non-
dimensional units), and are run until the system reaches a more or less steady state, if
such a state can be obtained for the given set of parameters. The results presented in
this paper are for aspect ratio I' = 3.

For thermal boundary conditions, we prescribe a constant heat flux at the bottom and
Stefans law at the top. The side wall is perfectly electrically conducting and does not
allow for a heat flux across it. Top, bottom, and outside walls are impenetrable and stress
free. The magnetic field is vertical at the bottom and matched to a potential field at the
top.

The equations are solved numerically using a finite-difference scheme accurate to sixth
order and a fourth-order time marching scheme.

3. Results

This work is an extension of Botha et al. (2006) and Botha et al. (2008) in which we
are exploring under which conditions a stable magnetic flux concentration forms with an
outflow (away from the center) over an inflow or vice versa. Unless otherwise specified,
the simulation parameters for the results presented here are Q = 32, m = 1, I' = 3,
=02 9Q=010=1 0 =10, and R = 10°, referred to as the reference case
in the text below. This is a case in which a diverging (away from the rotation axis)
over a converging flow forms. Simulation results for the same parameters were originally
presented in Figure 17 of Botha et al. (2008). In both cases a small converging flow was
prescribed as initial condition. A visualization of the flow and the magnetic field is shown
here in Figure 1. Notice that the magnetic field is confined to the region near the axis
where the convection flow is mostly suppressed. A stationary diverging flow exists outside
of the strong magnetic field region.

Starting from this reference case, we performed a parameter study varying Prandtl
number, rotation rate and, for a limited number of cases, the Chandrasekhar number. We
have found that in many cases the initial conditions are important. For most parameter
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Converging flow Prandtl number o Diverging flow Prandtl number o
initial condition: 0.1 0.3 1.0 2.0 initial condition: 0.03 0.1 0.3 1.0
0.00l|C C C D 000l X D D D
. 002(C C D D . 002 X D D D
Rotation rate 2 0oslc ¢ D D Rotation rate 2 005/l X D D D
010/ C D D D 010 X X D D

TABLE 1. Resulting flow configurations as a function of Prandtl number ¢ and rotation rate €.
(C), tightly confined magnetic flux concentration with a converging flow around it; (D), a tightly
confined magnetic flux concentration with a diverging flow around it; and (X), a configuration
with poor confinement of the magnetic field according to the criterion described in the text,
respectively. The left table is for the cases with an initial weak converging flow, the right side
for an initial diverging flow. The other simulation parameters in all cases are Q = 32, R = 10°,
0=10,vy=5/3, m=1,( =02, and I' = 3.

sets we therefore performed both a simulation with a weak converging circulation (flow
towards the rotation axis near the top boundary and away from the axis below) and
one with a weak diverging flow as initial conditions. The resulting flow configurations
for Chandrasekhar number Q = 32 and varying Prandtl number and rotation rate are
presented in table 1. The resulting configurations are classified as either a tightly confined
flux tube with a diverging flow at the top, a flux tube with a converging flow near top, or
as not tightly confined. Examples for these three cases are shown in Figures 1, 4 and 5,
respectively.

Of course, the definition of what is a well-confined magnetic structure is somewhat
arbitrary. Here, we used the following quantitative definition to determine the diameter
of the magnetic field concentration around the center of the domain at the top boundary:

" B(z =0,r)|r2d
D =2, [210g2J0 Bl =0 1)r*dr. (3.1)
0 |B(z=0,r)|dr

where 7; is the smallest radius that fulfills the condition

|B(z =0,17) < (5/100) rrn<éa)l({|B(z =0,7)[}. (3.2)

This conditions makes sure that only the inner-most magnetic structure is taken into ac-
count in cases where there is additional magnetic field somewhere outside. The threshold
of 5/100 is quite arbitrary but seems to work well for our purposes. We then compute
the average magnetic field inside the radius r < D/2 and outside:

D/2 r
Blo<np= [ 1BG=0mlrdr/ [ v (3.3)
0 D/2
I I
|Blr>p/2 = / |B(z =0,7)|rdr/ rdr. (3.4)
D/2 D/2

We consider the magnetic field region as tightly confined if the ratio |B|,<p/2/|Blr~p/2
is larger than 4, meaning the magnetic field inside the region is at least four times larger
than the ambient field outside. Both quantities, the field strength ratio and the diameter,
are plotted in Figures 2 and 3 for the cases forming tightly confined magnetic structures.
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FIGURE 2. Horizontal diameter, D, of the
magnetic field concentration (top panel) and
ratio between mean magnetic field strength
inside the field concentration and outside
(bottom panel) as a function of the rotation
rate ). The symbols correspond to Prandtl
number 0.03 (diamonds), 0.1 (upward tri-
angles), 0.3 (squares), 1.0 (circles), and 2.0

FIGURE 3. Same quantities as in the Figure
on the left but as a function of Prandtl num-
ber o. Here, the different symbols represent
rotation rates 0.0 (diamonds), 0.02 (upward
triangles), 0.05 (squares), and 0.1 (circles),
respectively. Again, open symbols are for re-
sulting converging flows and solid symbols for
diverging flows, respectively.

(downward triangles). Open symbols are for
resulting converging flows and solid symbols
for diverging flows, respectively.

The results in Table 1 show that diverging flow configurations are preferred at higher
values of the rotation rate as well as the Prandtl number. At lower Prandtl numbers
and/or lower rotation rate, the results depend on the initial conditions, i.e., the resulting
flow is diverging if a weak diverging flow was prescribed as initial condition, and vice
versa. Of course, the strength and size of the magnetic field concentration varies depend-
ing on the parameters of the problem. For instance, it seems intuitive that the magnetic
field strength would decrease and the size would increase with increasing rotation rate,
and this is indeed the case as seen in Figure 2. Although the changes are not very large,
the size D does increase and the field strength ratio decreases in most cases. The depen-
dence on the Prandtl number is shown in Figure 3. Field strength ratio decreases and
structure size increases quite strongly with increasing Prandtl number. It is important
to note that in all but one case converging flows produce more tightly confined magnetic
structures with smaller D and larger field strength ratio.

For a small number of cases, we have also varied the value of () which defines how much
magnetic flux is in the system. The parameters for these cases are Q2 = 0, 0 = 0.03 and
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FIGURE 5. Same parameters as the reference case (Figure 1) except for rotation rate Q = 0.

Q = 8,16,32,64 and 128. All other parameters are the same as the reference case. With
increasing Chandrasekhar number @, the field strength ratio broadly increases, but the
ratio is close to or above 4 only for the highest two values of @, i.e., a strongly confined
magnetic field region realized.

Lastly, the strength of the convection, governed by the Rayleigh number R, must also
play a role in the formation of magnetic field concentrations. So far, this has not been
explored in detail but we can show an example for which we increased the strength of
the convection compared to the reference case. Then, a converging over diverging flow
as shown in Figure 4 forms instead of the diverging flow in the reference case. Instead
of a single circulation, a weak secondary convective cell is formed in this case further
away from the axis. The horizontal size of the magnetic field strength concentration is
significantly smaller and the field strength ratio higher than in the reference case.

4. Conclusions

The simulations presented here are somewhat limited because of the simplifications
and the restricted geometry, but they nevertheless can give us some insight into the
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mechanisms that are involved in maintaining a tightly concentrated magnetic field near
the solar surface inside structures such as magnetic pores or sunspots. Due to the simplic-
ity of these simulations, a whole range of parameters can be explored rather easily. The
simulations have shown that, depending on the parameters, stable, tightly concentrated
magnetic structures can exist with both types of flow configurations: an inflow (towards
the spot axis) above an outflow deeper below, or vice versa. In many of the studied cases,
the initial conditions turned out to be important. In more realistic situations, e.g., if
non-rotationally symmetric disturbances were allowed, such a strong sensitivity to ini-
tial conditions might disappear. An important result is also that for parameter sets that
allow for both types of solutions, the solution with a converging flow near the surface
almost always maintains a more strongly confined magnetic field with both a smaller
structure size and higher ratio between the magnetic field strength inside the region and
the ambient field outside.
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