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Transition modeling using data driven approaches

By K. Duraisamy† AND P.A. Durbin‡

An intermittency transport-based model for bypass transition is constructed by com-
bining inverse modeling and machine learning. Data on the intermittency field for laminar
to turbulent transition is extracted by adjoint-based optimization. This information is
converted to modeling knowledge using machine learning techiques. The key significance
of this approach is that it accounts for the operational role of intermittency within the
context of RANS equations and thus does not suffer from inconsistencies that arise in
a priori or a posteriori data extraction methods. The primary objective of this work is
to demonstrate the potential for model-based, optimum data extraction and machine
learning as valuable tools for turbulence and transition modeling.

1. Introduction

Accurate prediction of transition to turbulence in wall-bounded flows continues to be
a pacing item in the computational modeling of fluid flows in many disciplines of science
and engineering. A key difficulty in constructing models for transition (and turbulence)
arises from the fact that intermediate dependent variables that appear in the model may
take numerical values that are different from their physical values (as measured in an
experiment or as computed from a Direct Numerical Simulation). Examples include the
dissipation rate of kinetic energy ε or the intermittency function γ. Such quantities cannot
be determined directly by data – either experimental or DNS - but must be inferred from
the context of how these fields appear in the model. In this work, we propose a new
way of extracting modeling information from data using inverse solutions and then using
Machine Learning to convert information into modeling knowledge. This approach is
applied to the case of modeling bypass transition using intermittency transport models.
Specifically, we will use data from the T3-series of flat plate experiments (Roach &
Brierley (1992)). This data set consists of two zero-pressure gradient test cases (T3A and
T3B, with 3.5% and 6.5% turbulence intensity levels) and T3C1-C5 which have pressure
gradients and turbulence intensities in the range of 3.4%-10%. The length-based Reynolds
numbers for these test cases are in the range of 105 − 106.

2. Bypass transition and intermittency transport models

When free-stream turbulence levels are about 1% or more, boundary layers typically
proceed from laminar to fully turbulent states without the occurrence of linear instabil-
ity of the base state: this mode of transition is referred to as bypass transition. Models
of bypass transition for general CFD codes are a relatively recent development (Menter
2006) compared to natural transition. At a fundamental level, the bypass process oc-
curs as turbulence diffuses into the laminar boundary layer and generates disturbances
known as Klebanoff modes. These grow in amplitude, and transition to turbulence occurs
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Figure 1. Result of inverse problem to match the experimental skin friction for the T3A test
case (Roach & Brierley 1992). The initial condition assumes fully turbulent flow.

(Durbin & Wu 2007). Closure models, at RANS level, are very loosely based on this
mechanism. One method is to use the concept of intermittency γ to blend the flow from
the laminar to the turbulent regions. Intermittency is associated with the spottiness of
turbulence and manifests itself as a non-Gaussian behavior in turbulent flows. An inter-
mittency factor can be formally defined as a fraction of the time turbulence is active,
and modeling strategies are roughly based on this definition.

Consider the k−ω closure (with values of the constants given by Wilcox (2006)) and the
Reynolds-averaged Navier-Stokes equations. Transition can be introduced by multiplying
the production term of the k equation by a function γ(x). γ is zero in laminar flow, and
ramps up to unity in fully turbulent flow. γ appears within the turbulence model only
as a factor in the production term of the turbulent kinetic energy transport equation,

Dk

Dt
= 2νT |S|2γ − Cµkω + ∂j

[(
ν +

νT
σk

)
∂jk
]
, (2.1)

Dω

Dt
= 2Cω1|S|2 − Cω2ω2 + ∂j
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ν +

νT
σω

)
∂jω

]
. (2.2)

Here the eddy viscosity is given by νT = k/ω.

The model developed by Ge et al. (2014) is based on the idea that, in bypass transition
under free-stream turbulence, non-zero γ diffuses into the boundary layer, allowing k to be
produced, thereby creating eddy viscosity and further enhancing the diffusion of γ. In this
way, transition occurs by penetration of free-stream turbulence into the boundary layer
via molecular and turbulent diffusion. An intermittency transport equation is defined
with a source term, Pγ , that contributes to producing intermittency inside the boundary
layers. A sink term, Eγ , ensures that the boundary layer initially is laminar. The form
of the model is

Dγ

Dt
= ∂j

[( ν
σl

+
νT
σγ

)
∂jγ
]

+ Pγ − Eγ . (2.3)

A detailed description of the model can be found in Ge et al. (2014).
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(a) T3A (b) T3B (c) T3C1

(d) T3C2 (e) T3C3 (f) T3C5

Figure 2. Inverse solution to match skin friction for T3-series of test cases. Symbols: data;
lines: computation.

3. Inverse modeling approach

We begin with the question of determining the intermittency field that will be required
within the context of Eq. (2.2) to match given data on transitional flows. For our problems
of interest, skin friction measurements are available and thus we will choose an objective
function of the form

G(γ) =

∫
w

[
τdataw (s)− τmodelw (s)

]2
dS,

where the subscript w denotes the region of the wall surface that has available skin
friction measurements. We will start with a fully turbulent assumption (i.e., γ(x) = 1)
and attempt to minimize G(γ) by considering every grid point value of γ as parameters
in an optimization problem. A sample result of this inverse problem is shown in Figure 1.
The output of the problem minγ G is thus a data field γ(x) that is suited to the k − ω
model. Note that intermittency is defined operationally, in terms of the model and the
mechanism of ramping up the production term. It is not a physical variable that can be
obtained from data, independently of its use. We consider this a paradigm for extracting
data that are peculiar to a particular model, given other experimental or DNS data that
the model predicts. This can be viewed as a method to introduce specific empiricism into
models.

The optimization problem uses a gradient-based Quasi-Newton method employing
the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm (Dennis &
More (1977)). Since the optimization problem is extremely high dimensional (as the
number of parameters equals the number of mesh points), an adjoint solver is required
to efficiently compute gradients. Consider the discretized governing equations (includ-
ing boundary conditions) RH = 0 along with a discrete objective function GH =
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(a) T3B: Optimal γ (b) T3B: Model γ

(c) T3C1: Optimal γ (d) T3C1: Model γ

(e) T3C5: Optimal γ (f) T3C5: Model γ

Figure 3. Comparison of inferred intermittency field and the model of Ge et al. (2014) for
selected cases, with the mean flow imposed from the inferred solution. The line is an iso-contour
of 99% of the inlet free-stream velocity.

∑Nw

j=1

[
τdataw,j − τmodelw,j

]2
∆sj . The discrete adjoint equation (Giles & Pierce (2000)) for

the vector of adjoint variables ΨH is given by[
∂RH

∂QH

]T
ΨH = −

[
∂G.H
∂QH

]T
. (3.1)
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(a) Inferred source term (b) Predicted source term

Figure 4. Comparison of inferred source term and neural network prediction for T3C1.

In this work, the software suite ADOL-C (Griewank (1996)) has been used for auto-
matic differentiation of the complete set of dependencies including the scalar transport
variables. Given the adjoint solution, the gradient of the cost function with respect to
the intermittency γi at every mesh point can computed as

dGH

dγi
= ΨT

H

∂RH

∂γi

and used in the optimization loop.
Figure 2 shows the result of the inverse solution on the T3-series of test cases, con-

firming the effectiveness of the approach. The left column in Figure 3 shows the inferred
intermittency field. The right column shows the intermittency field obtained using the
transition model of Ge et al. (2014) with the mean flow imposed from the inferred solu-
tion. The most significant difference in the T3A and T3B cases is that the inferred field
extends higher in the boundary layer near the inlet. This difference explains the the over
prediction of Cf near the inlet in the original Ge et al. (2014) model and suggests that
the sink term in Eq. (2.3) needs improvement.

The T3C1 case has a high level of free-stream turbulence and shows a prompt transi-
tion. Again the inferred field shows the low intermittency extending higher in the bound-
ary layer, near the entrance, than the model. The T3C2 case has a lower free-stream
intensity and lower Reynolds number than T3C1 and the Cf prediction in Ge et al.
(2014) is fairly accurate; correspondingly, the inferred and modeled fields were confirmed
to be fairly close. The cases presented here are representative of the other T3 cases: The
inferred intermittency field shows the region of γ < 1 extending higher into the bound-
ary layer near the inlet and the γ = 1 region is achieved farther inside the downstream
boundary layer. The model postulates a sink term that is a function of Rt ≡ νT /ν and
Rν ≡ d2|Ω|/2.188ν. It is not clear that the discrepancy between the model and inferred
fields can be parametrized by these terms. In the next section, a new parametrization,
based on machine learning is proposed to improve the model.

4. Machine Learning

The inverse approach presented in the previous sections results in an intermittency
field γ(x) that matches the experimental Cf data in each test case. This information
can be translated into modeling knowledge by introducing a transport equation for the
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Figure 5. Intermittency field at selected streamwise stations for inferred, predicted and model
for T3C1. Locations are x=0.1,0.2,0.4,0.6,1.0,1.5.

intermittency variable and supplementing the equation with terms that will be derived
using machine learning techniques. This is a two-step process. For the first step, we write
Eq. (2.3) as

Dγ

Dt
= ∂j

[( ν
σl

+
νT
σγ

)
∂jγ
]

+ Sγ . (4.1)

Thus, the production and destruction of intermittency will be computed by assuming
that Eq. (4.1) is satisfied by the optimal intermittency field; in other words,

Sγ =
Dγ

Dt
− ∂j

[( ν
σl

+
νT
σγ

)
∂jγ
]

(4.2)
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Figure 6. Skin friction prediction for T3C1.

In the second step, Sγ(x) will be expressed, to some degree of approximation, as Sγ(ξ),
where ξ = {ξ1, ξ2, ..., ξM} is an M-dimensional parameter vector composed of local vari-
ables. Using supervised learning algorithms based on Artificial Neural Networks (ANN)
as well as Gaussian Process Regression (GPR), we have chosen the combination

ξ = {k, ω, γ, ∂ui
∂xj

, ν}

as a comprehensive parameter set. Figure 4 compares the predicted source term Sγ(ξ)
(using ANN) versus the actual source term Sγ(x) via the inverse solution for the T3C1
transition case. The close agreement confirms the validity of the new parametrization.
The inferred, predicted and model Ge et al. (2014) intermittency profiles are shown in
Figure 5. The inadequacy of the model in predicting the high levels of intermittency
required in the context of the k − ω closure is again confirmed. Note that, to attain the
intensity of turbulence in the fully developed region, the intermittency variable needs to
assume a value greater than unity. Figure 6 shows the ability of the machine learning
method to reproduce the inferred skin friction results.

5. Summary

The results highlight the potential of inverse modeling and machine learning techniques
to quantify and account for deficiencies in transition modeling. The optimal intermittency
field is inferred from data and a transport equation is built to reproduce the inferred
intermittency field. The proposed techniques are general enough to be applied in any
modeling situation in which appropriate data is available. Continuing work is aimed at
applying the methodology to a wider set of problems and operating the framework in a
predictive mode.
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