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CVS decomposition of 3D homogeneous
turbulence using orthogonal wavelets

By Marie Farget, Kai Schneider}, Giulio Pellegrino€],
A. A. Wray|| AND R. S. Rogallo||

This paper compares the filtering used in Coherent Vortex Simulation (CVS) decom-
position with an orthogonal wavelet basis, with the Proper Orthogonal Decomposition
(POD) or Fourier filtering. Both methods are applied to a field of DNS data of 3D forced
homogeneous isotropic turbulence at microscale Reynolds number Ry = 168. We show
that, with only 3%N retained modes, CVS filtering separates the coherent vortex tubes
from the incoherent background flow. The latter is structureless, has an equipartition
energy spectrum, and has a Gaussian velocity probability distribution function (PDF)
and an exponential vorticity PDF. On the other hand, the Fourier basis does not extract
the coherent vortex tubes cleanly and leaves organized structures in the residual high-
wavenumber modes whose PDF's are stretched exponentials for both the velocity and the
vorticity.

1. Introduction

Since the work presented in this paper has been performed at NASA-Ames, we recall
the comments on turbulence research made by Hugh L. Dryden, the first director of
NACA (later NASA) (Dryden (1948)).

Dryden begins his paper by saying:

There have been mo notable advances in the theory of fully-developed turbulent mo-
tion during the last decade. [...] In the period 1934-1938 Taylor developed his statistical
theory of turbulence, which was so fruitful in treating the problem of isotropic turbu-
lence. Von Kdrmdn extended the theory, clothed it in more elegant mathematical form,
and attempted, with incomplete success, to treat the problem of shear flow. [...] At the
Fifth International Congress of Applied Mechanics in 1938 [...] Tollmien and Prandtl
suggested that the turbulent fluctuations might consist of two components, one derivable
from a harmonic function and the other satisfying an equation of the heat conduction
type, i.e. a nondiffusive and o diffusive component or viscosity independent and viscosity
dependent type.

Tollmien and Prandtl’s suggestion to split the turbulent fluctuations into non-diffusive
and diffusive components is very similar to the concept behind CVS which we introduced
in Farge, Schneider & Kevlahan (1999). CVS tracks the nonlinear dynamics using an
adaptive wavelet basis which captures the regions of strong vorticity gradients at all
scales (Schneider Kevlahan & Farge (1997), Schneider & Farge (1998)) and discards the
diffusive components which have reached a statistical equilibrium as characterized by

1 Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, Paris, France

1 Centre de Mathématiques et d’Informatique, Université de Provence, Marseille, France
9 Instittut fiir Chemische Technik, Universitat Karlsruhe (TH), Germany

|| NASA Ames Research Center, Moffett Field, CA



306 M. Farge, K. Schneider, G. Pellegrino, A. A. Wray & R. S. Rogallo

a Gaussian velocity probability distribution and energy equipartition spectrum (Farge,
Schneider & Kevlahan (1999), Farge & Schneider (2000)). This will be shown in this
paper.

Later, Dryden affirms that:

The mizing length concept seems wholly inadequate [...], the “mean free path”, mizing
length, or scale of the turbulent processes is large compared with the thickness of the
boundary layer. Considerable masses of fluid move as more or less coherent units. The
process cannot be smoothed by averaging over a small volume because it is not possible to
choose dimensions small compared with a single fluid element. The mixing length idea,
that the turbulent fluctuations and the turbulent shear stress are directly related to the
mean speed at a point and its derivatives at that point, must be abandoned. Shall the
flow then be regarded as a mean flow that merely transports and distorts large eddies
superposed on the flow, these eddies being of varying size and intensity?

This comment of Dryden, stating that the turbulent flows are composed of coherent
units of varying size and intensity which cannot be smoothed by averaging, supports our
proposal for using the wavelet representation to study turbulent flows (Farge & Rabreau
(1988), Farge (1992)). We showed, using the continuous wavelet transform, that coherent
vortices in two-dimensional turbulent flows are multiscale eddies with activity covering
the entire inertial range. Later on, during the CTR Summer Program 1990, we confirmed
that the same is true for three-dimensional turbulent flows and that coherent vortices are
responsible for the for flow intermittency (Farge, Guezennec, Ho & Meneveau (1990)).

Finally Dryden concludes by saying that:

The rapidly developing theory of random functions (Bass (1945)) may possibly form
the mathematical framework of an improved theory of turbulence. However it is necessary
to separate the random processes from the non-random processes. It is not yet fully clear
what the random elements are in turbulent flows. The experimental results described
suggest that the ideas of Tollmien and Prandtl, that the measured fluctuations include both
random and non-random elements, are correct, but as yet there is no known procedure
either experimental or theoretical for separating them.

Over the last ten years (Farge (1992), Farge, Goirand, Meyer, Pascal & Wickerhaiiser
(1992), Farge, Schneider & Kevlahan (1999)), we have developed the filtering process that
forms the basis of the CVS method to separate the turbulent fluctuations into organized
and random components. It is based on a nonlinear filtering of the vorticity projected on
an orthogonal wavelet basis. We derived this procedure using theorems of Donoho and
Johnstone, proving optimality of the wavelet representation for denoising signals in the
presence of Gaussian white noise, in the sense that wavelet-based estimators minimize the
maximum L2-error for functions with inhomogeneous regularity(Donoho (1993), Donoho
& Johnstone (1994)).

In this paper we use CVS filtering to decompose a 3D forced homogeneous isotropic
turbulent flow into organized and random components. The microscale Reynolds number
is Ry = 168 and the simulation has resolution N = 256°.

2. CVS decomposition

We consider the vorticity field &(%) = V x ‘7, computed at resolution N = 23/ N
being the number of grid points and J the number of octaves in each of the three spatial
directions. Each component is developed into an orthogonal wavelet series with largest
scale lnee = 2° and smallest scale I, = 277! using a 3D multi-resolution analysis
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FIGURE 1. Coiflet 12. Top: Scaling function ¢. Bottom: Corresponding wavelet . (Left: in
physical space, right: in Fourier space.)

(MRA) (Daubechies (1992), Farge (1992)):
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where ¢;; and 1);; are the one-dimensional scaling function (see Fig. 1 top) and the
corresponding wavelet (see Fig. 1 bottom), respectively. Due to the orthogonality, the
scaling coeflicients are given by @g,0,0 = (w, ¢0,0,0) and the wavelet coefficients are given
by @F; . i ={w. ¥, ;). where (-,) denotes the L2-inner product.

For the orthogonal wavelet basis we use Coiflets 12 (Daubechies (1992)), i.e. wavelets
with M = 4 vanishing moments and a filter length of 3M = 12 (see Fig. 1 bottom). The
advantage of the Coiflets is that they are almost symmetric and that the corresponding
scaling functions (see Fig. 1 top) have also M vanishing moments.

We then split the vorticity field into coherent vorticity & (Z) and incoherent vorticity

&1(Z) by applying nonlinear thresholding to the wavelet coefficients. The choice of the
threshold value € is based on theorems derived by Donoho and Johnstone (Donoho (1993),
Donoho & Johnstone (1994)) and is € = (4/3Z log;, N)'/2. Note that ¢ only depends on
the total enstrophy Z and the number of grid points N, and there are no adjustable

(2.2)
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FIGURE 2. Total field: vorticity modulus (isosurfaces |&| = 30,40, 50, o being the variance).

parameters. The coherent vorticity field &W¢ is reconstructed from the wavelet coefficients
whose modulus is larger than € and the incoherent vorticity field &; from the wavelet
coeflicients whose modulus is smaller than or equal to €. The two fields thus obtained, W
and dJj, are orthogonal, which ensures separation of the total enstrophy into Z = Z¢+ Z;
because the interaction term (&¢,dr) vanishes.

Finally we use the Biot-Savart law V = V x (V~2@) to reconstruct the coherent (Ve)
and incoherent V; velocity fields from the corresponding vortices. Since wavelets are
almost eigenfunctions of the Biot-Savart kernel (Daubechies (1992)), i.e. their localization
in both physical and spectral space is well preserved (see Fig. 1), the total energy may
be written E = E¢ + Er —e, with E = (V, V) and & < 0.6%FE (see Table I).

The implementation of the CVS decomposition is based on the fast wavelet transform
of each vorticity component, thresholding of the coefficients, and the inverse fast wavelet
transform for the reconstruction of the coherent and incoherent vortices. The computa-
tional cost of the fast wavelet transform is O(N), where N is the number of grid points.
The constant of the leading order term corresponds to the filter length 3M and depends
on the wavelet we use.

3. Application to 3D homogeneous turbulence

We now apply the CVS decomposition to 3D forced homogeneous isotropic turbulence,
computed by direct numerical simulation (DNS) at microscale Reynolds number Ry =
150 with resolution N = 256 (for details see Jimenez & Wray (1993)).

In Fig. 2 we plot the modulus of the vorticity fluctuations in the total flow field on a
642 subcube. We observe that the field contains well defined vortex tubes, as has been
previously observed in laboratory and numerical experiments (Douady, Couder & Brachet
(1991), Vincent Meneguzzi (1991)), which are responsible for much of the intermittency
of this flow. After decomposing the vorticity field into an orthogonal wavelet series,
we calculate the square of each wavelet amplitude, which corresponds to the enstrophy
retained in that mode. Subsequently, we sort them by decreasing order of magnitude and
compute their partial sum to obtain the compression curve of the wavelet basis. In Fig. 3
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FIGURE 3. Compression curve: % retained enstrophy versus % number of retained wavelets.
The star corresponds to the Donoho-Johnstone threshold.

we plot the percentage of retained enstrophy versus the fraction of retained wavelet
modes. This curve shows that very few wavelet modes contain most of the enstrophy
and that, above 10% of the modes, it saturates rapidly. This saturation corresponds to a
quasi-equipartition of the enstrophy, which is characteristic of random fields. In Fig. 3 we
indicate by a star the Donoho-Johnstone threshold. This cutoff retains 3% of the wavelet
coefficients and 79% of the enstrophy. The coherent vorticity ¢ is then reconstructed
from the retained wavelet coefficients, and the incoherent vorticity &; is the remainder.

In Table 1 we find that only 3% wavelet modes correspond to the coherent flow, which
retains 98.9% of the energy and 79.1% of the enstrophy, while the remaining 97.1%
incoherent modes have only 0.5% of the energy and 21% of the enstrophy. The ratio
of statistical moments show that the velocity and vorticity skewness is negligible and
that this property is preserved by the CVS decomposition. The coherent velocity has the
same flatness (F' = 2.9) as the total velocity, but the incoherent velocity presents a much
smaller flatness (F' = 3.4). The coherent vorticity has a strong flatness (F = 9.6) while
the incoherent vorticity, likewise, has a reduced flatness (F' = 4.8).

In Fig. 4 we display the modulus of the coherent (left) and incoherent (right) vorticity
fields. Note that the values of the vorticity isosurfaces are the same for the total and
the coherent fields while they have been reduced by a factor 2 for the incoherent field
since its amplitude is much smaller. In the coherent vorticity (Fig. 4, left) we recognize
the same vortex tubes as those present in the total field. In contrast, the incoherent
vorticity (Fig. 4, right) is structureless and does not exhibit any organized structures.
Hence, the CVS decomposition disentangles the intermittent from the non intermittent
contributions, with all the vortex tubes retained in the coherent modes whatever the
scale where they are active.

The energy spectra for the total, coherent and incoherent velocity fields, computed
using the Biot-Savart law from the corresponding vorticity fields, are plotted in Fig. 5
(left). The spectrum of the coherent contribution is nearly identical to the spectrum of
the total flow in the inertial range, i.e. it has k~%/3 behavior. Only in the dissipative
range does the coherent spectrum decay more rapidly than the incoherent one, since we
conjecture that some of the coherent energy is transferred into incoherent energy which
is then dissipated. The incoherent contribution exhibits a k2 scaling which corresponds
to energy equipartition. The incoherent velocity field is decorrelated, which makes sense
since the incoherent vorticity is structureless (see Fig. 4, right).

To check the dynamical behavior of the coherent and incoherent contributions, we
computed their energy transfer in wavenumber space. For practical reasons this has been
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quantity total coherent incoherent large scales small scales
% of coefficients 100 % 2.9 % 97.1 % 2.9 % 97.1 %

@ nle D1 @, Ws
Enstrophy Z 4895 3872 1024 3455 1440
Enstrophy (percentage) 100 % 79.1 % 209 % 70.6 % 29.4 %
Skewness S -.048 -.056 0.000 -.041 -.002
Flatness F' 8.7 9.6 4.8 6.1 9.6

‘7 ‘70 ‘71 VL VS
Energy E 43.01 42.56 0.23 42.69 0.33
Energy (percentage) 100.0 % 989 % 0.5% 99.2 % 0.8 %
Skewness S 0.051 0.052 0.000 0.053 0.003
Flatness F 2.9 2.9 3.4 2.8 6.8

TABLE 1. Statistical properties of the vorticity and velocity fields for CVS (left) and POD
(right) decompositions.

done at reduced resolution N = 1282. Figure 5 (right) shows that the coherent flow is
responsible for most of the energy transfer, giving an energy cascade from large to small
scales, and almost vanishes in the viscous range. In contrast, the incoherent flow does not
contribute to the energy transfer in the inertial range, but dominates in the dissipative
range. From these observations, we put forward the following scenario for the turbulent
cascade: the energy injected into the large scales is nonlinearly transferred towards the
small scales by nonlinear interactions between the vortex tubes. At the smallest scales,
this becomes transfer of coherent energy into incoherent energy which is then dissipated
at small scale. We conjecture that, on the contrary, the incoherent background flow does
not transfer energy into the coherent flow as it is structureless and well decorrelated. To
confirm this we are planning to analyze the nonlinear and the linear terms of 3D Navier-
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FIGURE 4. CVS decomposition: coherent (left) and incoherent (right) contributions
(isosurfaces |J| = 30, 40, 50 and 3/20, 20,5/20, respectively).
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FIGURE 5. Energy spectra E(k),left (Total: ———— ; coherent: ; incoherent: —-— ;
Fourier cut: ———) and energy transfers d; E(k), right (coherent: ; incoherent: ———- )

Stokes equations in wavelet space, as we have done for 2D Navier-Stokes equations in
the turbulent regime (Schneider & Farge (1998)).

Figure 6 (left) shows the PDF of the velocity in semilogarithmic coordinates. The
coherent velocity has the same Gaussian distribution as the total velocity. The PDF of
the incoherent velocity is also Gaussian, but its variance is reduced by a factor 13. In
contrast to the velocity, the PDF of vorticity (Fig. 7, left) is a stretched exponential with
significant tails. The coherent vorticity has the same PDF as the total vorticity including
the tails, while the incoherent vorticity has an exponential PDF with much weaker tails.

Since the CVS filtering is based on wavelet denoising and decorrelating without any
dynamical assumption or pattern recognition procedure, we now check a posteriori that
we have actually separated the vortex tubes from the background flow. The coherent vor-
tex tubes can be described as local steady solutions of Euler equations which correspond
to regions where there is a depletion of nonlinearity, which happens when the vorticity
and velocity vectors are aligned. This situation maximizes the flow helicity H = V.a
and corresponds to flow Beltramization (Moffatt H. K. (1985)). To study this tendency
towards alignment of the vorticity & and the velocity ‘7, we plot in Fig. 8 the PDF of
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Beltramization as the total flow, which is characterized by the two maxima encountered
in both PDFs for a@ = 0° (alignment) and 180° (anti-alignment). In contrast, the in-
coherent contribution is more evenly distributed with a maximum at a = 90°, which
indicates a tendency towards a local two-dimensionalization since the probability that
the vortex stretching term & - VV vanishes is large. This observation, together with the
evidence for strong dissipation in the incoherent contribution (see transfers in Fig. 5),

cosq = We observe that the coherent contribution has the same tendency towards
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agrees with a remark of Moffatt: Fuler flows contain blobs of mazimal helicity (positive or
negative) which may be interpreted as ‘coherent structures’, separated by regular surfaces
on which vortex sheets, the site of strong viscous dissipation, may be located (Moffatt
H. K. (1985)). Following this picture the coherent vorticity corresponds to the coherent
structures, which tend to maximize helicity where vorticity and velocity vectors tend to
align with each other, while the incoherent vorticity corresponds to foliated regions which
tend to maximize dissipation.

The results discussed here confirm those we obtained for the CVS decomposition of 3D
forced homogeneous isotropic turbulent flow computed by DNS at microscale Reynolds
number Ry = 150 (Vincent Meneguzzi (1991)) with resolution N = 240 (Farge, Schnei-
der & Pellegrino (2000), Farge & Schneider (2000), Farge, Pellegrino & Schneider (2000)).

4. Divergence problem

Due to the fact that the CVS filtering is nonlinear and the vector valued wavelet
basis we have used here (the Coifman 12 wavelet, see Fig. 1) is not divergence-free, i.e.
V. 1/_)' # 0, the CVS filtering does not yield coherent and incoherent vortices that are
divergence-free. We found that, for the case studied here, the divergent contribution of
the vorticity field remains below 3% of the total enstrophy. The same problem is also
encountered for vortex methods applied to 3D turbulent flows (Winckelmans (1995)).
However, the corresponding coherent and incoherent velocity fields are divergence-free
since they were reconstructed using the Biot-Savart kernel.

There are several ways to insure that the coherent vorticity remains divergence-free:

e use divergence-free orthogonal wavelets (Lemarié (1992)),

e decompose w into w = wyiv—=0 + Vo. Then ¢ can be calculated by taking the diver-
gence which leads to a Poisson equation V2¢ = V - w,

e apply the previous decomposition, not to the solution, but to the wavelet basis
itself, which can be done as a precalculation since the wavelet decomposition is a linear
transformation.

We are planning to explore these solutions in future work. It may also be that the
divergent contribution of the coherent vorticity field does not significantly affect the flow
evolution. To check this we will compare two CVS decompositions for the same flow, one
using divergence-free wavelets and the other one using the Coifman 12 wavelet as here,
and compute the contribution of the divergent coherent vorticity to the nonlinear terms
to see if it remains small.

5. Comparison between CVS and POD decompositions

The procedure CVS decomposition uses to separate turbulent flows into organized and
random fluctuations differs from the POD (for details see Berkooz, Holmes & Lumley
(1993)). POD, also called Principal Component Analysis (PCA) or Karhunnen-Loeve
decomposition, computes the auto-correlation tensor of an ensemble of realizations, then
diagonalizes it and retains only those eigenmodes corresponding to the N- largest eigen-
values. This yields the best basis for the ensemble of realizations with respect to the
L?-norm.

In the POD procedure the retained modes are defined a priori for all realizations. In
contrast, CVS performs the separation a prior: and selects from a given set of basis func-
tions, the orthogonal wavelets, those having the strongest coefficients. Hence the selection
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FIGURE 9. POD decomposition: low wavenumber (left) and high wavenumber (right)
contributions (isosurfaces |J| = 30, 40, 50 and 3/20, 20,5/20, respectively).

procedure is nonlinear, as the retained basis functions depend on the flow realization.
From a statistical point of view, the CVS method is based on a Bayesian approach while
POD is based on a non-Bayesian (also called frequentist) approach. For the time in-
tegration the CVS a priori retains the wavelets whose coefficients are larger than the
threshold € and some of their neighbors. This selection of the active wavelets is nonlinear
because it depends on the direction of the energy and enstrophy transfers in wavelet
space which evaluated at the previous time step. Note that the computational cost of
POD decomposition scales as N3, while it scales as N for the CVS decomposition.

For a homogeneous isotropic turbulent flow such as the one studied here, the POD
yields the Fourier basis since the correlation tensor is translationally invariant. So we
now project the vorticity field on a Fourier basis and split the flow into low and high
wavenumber contributions. Note that for this linear separation it doesn’t matter whether
we decompose the vorticity or the velocity fields, as the Fourier basis diagonalizes the
curl operator. To get the same compression ratio as CVS, i.e. 3% of the modes retained,
the cut-off wavenumber is k. = 48 (see Fig. 5, left). This is a particular case of LES
filtering, and the 97% high wavenumber modes are the LES subgrid scale modes.

In Fig. 9 we plot the modulus of vorticity for the POD decomposition. In the low
wavenumber modes (left) we observe some vortex tubes. If we compare them with those
retained in the CVS coherent vorticity (Fig. 4, left) we find that only a subset of the
vortex tubes is extracted and that their structure is smoothed due to the low pass fil-
tering produced by POD in this case. Consequently, the small scale contributions of the
vortex tubes are contained in the high wavenumber modes (Fig. 9, right), which exhibit
organized structures similar to those found in the total vorticity field (Fig. 2).

Table 1 shows that POD retains 99.2% of the energy, while CVS retains only 98.9%. On
the other hand, CVS retains 79.1% of the enstrophy, while POD retains only 70.6%Z.
The skewness of velocity and vorticity is negligible, a property preserved by both the
CVS and POD decompositions.

In Fig. 7 the vorticity PDFs show that both the large and small scale contributions
have strong variance, with the peak of the small scale PDF being slightly larger than that
of the large scale PDF. It is important to note that the vorticity PDF's are interchanged
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compared to the CVS decomposition. The vorticity PDF of the large scales retained by
POD is exponential (with flatness 6.1), while it is stretched exponential (with flatness
9.6) for the discarded small scales. The vorticity PDF of the coherent modes retained
by CVS is stretched exponential (with flatness 9.6), while it is exponential (with flatness
4.8) for the discarded incoherent vorticity.

Moreover, the velocity PDFs for POD (Fig. 6, right) show that, although the large
scale contribution is Gaussian (with flatness 2.9), this is not the case for the small scale
contribution which maintains a stretched exponential behavior as for the vorticity PDF
(with flatness 6.8). In contrast, the velocity PDFs for CVS (6, left) are Gaussian for
both the coherent and the incoherent modes. This non-Gaussian behavior of both the
vorticity and velocity PDFs of the POD/LES small scales may make modeling of its
effect on the resolved large scales difficult. This difficulty is much less acute with the
CVS decomposition since the PDFs of the incoherent contribution is Gaussian for the
velocity (6, left) and exponential for the vorticity (7, left).

Concerning the alignment properties between vorticity and velocity, we found that
both the large and small scale contributions have the same PDF of cosa as the total
flow (8, right). This is further evidence that coherent vortex tubes are present in both
components since, in contrast to CVS, the POD decomposition does not separate different
topological behaviors.

6. Conclusion

We have demonstrated that CVS decomposes a 3D forced homogeneous isotropic tur-
bulent flow into organized vortex tubes and a random incoherent background flow. For
the same 3D flow, POD, which in this case uses the Fourier basis and is essentially a LES
decomposition, does not extract all of the vortex tubes since a lot of organized structures
remain in the small scales. Furthermore, the small scales have a stretched exponential
probability distribution for both the velocity and the vorticity. In contrast, the incoher-
ent modes of the CVS decomposition have an exponential PDF for the vorticity and a
Gaussian distribution for the velocity. Moreover, they are structureless and their energy
spectrum shows an energy equipartition, which is not the case for the POD small scales.

In conclusion, we conjecture that modeling of the effect of the discarded modes on
the resolved modes may be better justified for CVS than for POD. One should keep in
mind that LES of turbulent flows is performed by integrating only one flow realization
at a time. The statistics are obtained afterwards by space, time, or ensemble averaging
several realizations over time if the flow is statistically steady. Therefore, POD, which is
by construction the best basis to represent with a reduced number of modes an ensemble
of flow realizations, is not necessarily the best decomposition for computing the flow
evolution realization by realization.

We think that the classical strategy of projecting the flow onto a basis and truncating
the series to a fixed number of resolved modes can be improved. CVS adopts a nonlinear
strategy, which adapts the number of resolved modes to each flow realization, by project-
ing the flow at each time step onto a wavelet basis, retaining only the strongest wavelet
coefficients. In this case all degrees of freedom which contribute to the flow nonlinearity,
i.e. the coherent modes, are computed whatever their scale, while the remaining degrees
of freedom, i.e. the incoherent modes, are discarded and modeled, perhaps by a linear
dissipation.

The CVS procedure that we have applied to 2D turbulent flows (Farge, Schneider &
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Kevlahan (1999)) can be generalized to 3D turbulent flows since we have shown that the
incoherent modes are structureless, decorrelated, have an energy equipartition spectrum,
and have a Gaussian PDF of the velocity.

A crucial step in the demonstration of the potential of the CVS method is to design an
adaptive wavelet solver for the 3D Navier-Stokes equations written in vorticity-velocity
formulation, which combines an Eulerian projection of the solution with a Lagrangian
procedure for the basis adaption. We have done this for 2D turbulent flows, and we are
presently developing it for 3D turbulent flows.
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