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Evaluation of the use of second generation
wavelets in the Coherent Vortex Simulation

approach

By D. E. Goldstein†, O. V. Vasilyev†, A. A. Wray‡ AND R. S. Rogallo‡

The objective of this study is to investigate the use of the second generation bi-orthogonal
wavelet transform for the field decomposition in the Coherent Vortex Simulation of tur-
bulent flows. The performances of the bi-orthogonal second generation wavelet transform
and the orthogonal wavelet transform using Daubechies wavelets with the same number
of vanishing moments are compared in a priori tests using a spectral direct numerical
simulation (DNS) database of isotropic turbulence fields: 2563 and 5123 DNS of forced
homogeneous turbulence (Reλ = 168) and 2563 and 5123 DNS of decaying homogeneous
turbulence (Reλ = 55). It is found that bi-orthogonal second generation wavelets can
be used for coherent vortex extraction. The results of a priori tests indicate that second
generation wavelets have better compression and the residual field is closer to Gaussian.
However, it was found that the use of second generation wavelets results in an integral
length scale for the incoherent part that is larger than that derived from orthogonal
wavelets. A way of dealing with this difficulty is suggested.

1. Introduction

A new adaptive second generation wavelet collocation method for DNS of turbulent
flows has recently been developed (Vasilyev & Bowman (2000), Kevlahan et al. (2000)).
The adaptive wavelet collocation method is appropriate for high Reynolds number tur-
bulence since wavelets (which are localized in both space and scale) adapt the numeri-
cal resolution naturally to the intermittent structure of turbulence at small scales. The
wavelet method thus allows turbulent flows to be calculated with a greatly reduced num-
ber of modes with little loss in accuracy. Furthermore, the computational cost of the
algorithm is independent of the dimensionality of the problem and is O(N ), where N is
the total number of collocation points actually used in the simulation.

The efficiency of the adaptive wavelet collocation method can be greatly enhanced by
combining it with the recently developed Coherent Vortex Simulation (CVS) approach
(Farge et al. (1999)), which is closely related to the standard large eddy simulation
(LES) method. In contrast to LES, in which the velocity field is decomposed into large-
and small-scale fields, in CVS the velocity field is decomposed into coherent (filtered)
and incoherent (residual) fields. The filtered scales, which represent the coherent non-
Gaussian part of the flow, are obtained numerically from the filtered vorticity-transport
equation, while the effect of the residual scales, which represent the incoherent Gaussian
part of the flow, needs to be modeled. The success of the CVS approach depends on how
close the residual field is to Gaussian white noise and how few modes are required for
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the filtered field representation. It was shown by Donoho (1993) that wavelet coefficient
thresholding is an optimal method for separating Gaussian white noise from a signal. Thus
the filtering can be performed in wavelet space using wavelet coefficient thresholding,
which can be considered as a non-linear filter that depends on each flow realization. This
wavelet filtering is achieved by performing the following three steps:

1. Perform the forward wavelet transform of ~ω.

2. Set to zero those wavelet coefficients, whose magnitude is below the given a priori
prescribed threshold ε, i.e. ||~̃ω||2 ≤ ε, where ~̃ω is the wavelet transform of ~ω.

3. Apply the inverse wavelet transform.
As a result of this operation, the filtered vorticity field can be captured by a small fraction
of the wavelet coefficients. The anticipated advantages of CVS over current methods
are, first, the use of wavelet bases to significantly compress the vorticity field and so
require simulation of only a small fraction of the degrees of freedom (those that contain a
significant amount of energy and enstrophy), and second, one can presumably model the
discarded modes more accurately than in LES since they are closer to Gaussian white
noise than those resulting from the linear low pass filters used in LES. Initial work done
by Farge et al. (1999) on a two-dimensional CVS method shows significant potential.
It is anticipated that CVS applied to three-dimensional turbulent flows will provide
substantial improvements in computational speed and accuracy over existing methods.

The final goal of our work is to develop a 3D CVS code that is able to simulate realistic
scientific and engineering problems in complex domains. An adaptive wavelet collocation
solver (Vasilyev & Bowman (2000), Kevlahan et al. (2000)) will be used to numerically
solve the CVS equations on the adaptive grid. This adaptive wavelet collocation solver
uses second generation bi-orthogonal wavelets, enabling it to solve problems in complex
domains. It would be logical to use the same second generation wavelets for both the
vorticity field filtering and the wavelet collocation solver. However, the use of second
generation bi-orthogonal wavelets for coherent field extraction has not been explored up
to now. Therefore, the objective of this study is to investigate in a priori tests the use of
these wavelets only for the filtering of the vorticity field for coherent vortex extraction.

The rest of this paper is organized as follows. Section 2 gives a brief introduction to
second generation wavelets. The CVS approach is then introduced in Section 3. Finally, in
Section 4 results are presented of a parametric study of two different wavelet transforms
applied to both forced and decaying homogeneous turbulence fields.

2. Second generation wavelets

Wavelets are basis functions which are localized in both physical space (due to their
finite support) and wavenumber space (e.g. Fig. 1). In contrast, the Fourier transform is
based on functions (sines and cosines) that are well localized in frequency but do not pro-
vide localization in physical space due to their global support. Because of this space/scale
localization, the wavelet transform provides both spatial and scale (frequency) informa-
tion while the Fourier transform only provides frequency information.

Although the wavelet transform with its space/scale localization is an attractive tech-
nique to apply to the solution of problems with localized structures such as the sim-
ulation of turbulent flows, traditional wavelet transforms have difficulties dealing with
boundaries. Traditionally, wavelets ψjk are defined as translates and dilates of one basic
wavelet ψ, i.e. ψjk(x) = ψ(2jx− k). These first generation wavelets are defined either in
infinite or periodic domains.
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Second generation wavelets (Sweldens (1996), Sweldens (1998)) are a generalization
of first generation wavelets (Daubechies (1988), Cohen et al. (1992)) that supplies the
necessary freedom to deal with complex geometries, arbitrary boundary conditions, and
irregular sampling intervals. Second generation wavelets form a Reisz basis for some
function space, with the wavelets being local in both space and frequency and often
having many vanishing polynomial moments, but without the translation and dilation
invariance of their first generation cousins. Despite the loss of these two fundamental
properties of wavelet bases, second generation wavelets retain many of the useful features
of first generation wavelets, including a fast O(N) transform.

The construction of second generation wavelets is based on the lifting scheme that
is discussed in detail in Sweldens (1996), Sweldens (1998). Here we just summarize the
main advantages of second generation wavelets:

1. Wavelets are constructed in the spatial domain and can be custom designed for
complex multi-dimensional domains and irregular sampling intervals.

2. No auxiliary memory is required and the original signal can be replaced with its
wavelet transform.

3. The second generation wavelet transform is a factor of two faster than the first.

4. With lifting, the inverse wavelet transform is constructed by simply reversing the
order of operations and interchanging addition and subtraction operations.

5. The programming of the second generation wavelet transform is considerably sim-
pler.

6. Second generation wavelets are naturally suitable for wavelet collocation meth-
ods, which have been shown to be superior to the wavelet Galerkin approach in
handling general boundary conditions and nonlinearities in the equations.

For this study we use a set of second generation wavelets known in the literature
as lifted interpolating (LI), or Donoho, wavelets (Sweldens (1996), Vasilyev & Bowman
(2000)). In particular, a priori tests are done using the lifted interpolating wavelet, here-
after called LI3, that has five vanishing polynomial moments. The LI3 wavelet and its
Fourier transform are shown in Fig. 1. For a more in-depth discussion on the construction
of these wavelets the reader is referred to the following papers: Sweldens (1996), Sweldens
(1998), Vasilyev & Bowman (2000). For a more general discussion of wavelets the follow-
ing references can be consulted: Daubechies (1992), Mallat (1999).

3. Coherent Vortex Simulation

In a CVS the vorticity field is separated into two parts using a wavelet thresholding
filter:

~ω = ~ω> + ~ω≤ (3.1)
where ~ω> is the filtered part of the flow defined on an adaptive grid and ~ω≤ is the
Localized Residual Scales (LRS) field that is made as close to Gaussian white noise as
possible. We use the term Localized Residual Scales to highlight the fact that there is no
particular scale associated with the residual field, i.e., the spectral content of the LRS
varies in time and location, unlike in LES of a homogeneous flow.

The formulation for CVS then begins with the vorticity-transport equation:

∂~ω

∂t
= −(~V · ∇)~ω + (~ω · ∇)~V + ν∇2~ω. (3.2)
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Figure 1. Lifted interpolating wavelet ψ and its Fourier transform Ψ(ξ).

As in LES, after application of the wavelet filter we obtain the following CVS equation
that describes the evolution of the filtered field:

∂~ω>
∂t

= −(~V> · ∇)~ω> + (~ω> · ∇)~V> + ν∇2~ω> + ~f (3.3)

where
~f = [(~V · ∇)~ω]> − [(~ω · ∇)~V]> − (~V> · ∇)~ω> + (~ω> · ∇)~V> (3.4)

is the LRS forcing that needs to be modeled. The localized nature of the LRS will
have to be considered in defining residual-scale models for use with CVS. It has been
shown that, when a non-linear wavelet thresholding filter is applied to a moderately
high Reynolds number isotropic turbulence field, the residual field is closer to being
statistically Gaussian than when a Fourier cutoff filter with the same number of modes
is used. This has been shown in Farge et al. (1999) in 2D and will be shown in Section
4 below in 3D. Thus it is expected that the LRS can be modeled more accurately than
for Fourier filtering, but this has not been proven and is a current topic of research.

Solution of the filtered vorticity equation on an adaptive grid can be done using any
appropriate solution method. In Farge et al. (1999) a 2D CVS method was implemented
using an adaptive wavelet-vaguelette algorithm (Fröhlich & Schneider (1997)). In our
work we implemented a 3D CVS method using an adaptive wavelet collocation method
discussed in Vasilyev & Bowman (2000), Kevlahan et al. (2000) that has been shown to
work well in 2D flows and can be extended to 3D with little modification. This solver uses
the second generation bi-orthogonal LI wavelets discussed in Section 2 and is capable of
solving problems in complex domains.

The adaptive wavelet collocation method is ideally suited for the CVS of turbulent
flows since every wavelet is uniquely associated with a collocation point. Thus the grid
adaptation can be based on the same criterion as in coherent vortex extraction, i.e., at
any given time the computational grid consists of points corresponding to wavelets whose
coefficients are above an optimal CVS threshold, i.e. we do not retain those collocation
points whose wavelet coefficients were set to zero in the wavelet filtering operation. With
this adaptation strategy a solution is obtained on a grid that “tracks” the coherent
vortices.

The CVS method requires at least two major operations per time step:

1. Apply the wavelet thresholding filter to define the adaptive grid.
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a) Spectra of forced isotropic turbulence,
data set F256, Reλ = 168.
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c) Enstrophy of forced isotropic turbu-
lence, data set F256, Reλ = 168.
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Figure 2. Energy and enstrophy spectra of forced isotropic turbulence for data sets F256 and
F512. Spectra of the full field: ( ). Spectra of the LRS field after optimal wavelet compres-
sion using DB6 wavelets: ( ) and LI3 wavelets: ( ). The Fourier cutoff filter with
compression equivalent to optimal DB6 wavelet filter: ( + ) and to optimal LI3 wavelet
filter: ( ◦ ).

2. Numerically solve Eq. 3.3 on the adaptive grid.

Using the same wavelets for these two steps would be most computionally efficient. This is
why we are interested in investigating the use of second generation bi-orthogonal wavelets
for coherent vortex extraction.

Although in this paper we do not discuss the solution of the wavelet filtered vorticity
equation (3.3), it is good to point out that since the CVS equations are solved on an
adaptive grid, we cannot use spectral methods for the solution of the Poisson equation
that relates the vorticity field to the velocity field. The development of an efficient wavelet
collocation based method for the solution of the Poisson equation on an adaptive grid is
currently a subject of study.
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f) Vorticity integral length scale.

Figure 3. Filtered and LRS field statistics for isotropic turbulence fields F256 and F512 after
application of wavelet thresholding filter using LI3 and DB6 wavelets. LRS field statistics of
F256 using DB6 wavelets: ( ) and LI3 wavelets: ( ). LRS field statistics of F512 using
DB6 wavelets: ( ) and LI3 wavelets: ( ). In plots c) through f) the lines with (+) are
the same statistics for the filtered fields. (Note: The filtered statistics are mostly constant until
almost 100% compression so these lines are obscured by each other.)
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Figure 4. PDF of forced isotropic turbulence field F256: ( ). Gaussian PDF with same
mean and variance: ( ).
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(a) Optimal compression DB6 wavelet filter.
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(b) Equivalent Fourier cutoff filter.

Figure 5. PDF of forced isotropic turbulence field F256 using DB6 wavelet filter at 50% compres-
sion (a) and Fourier cutoff filter at the equivalent compression (b). Filtered field: ( ), with
its associated Gaussian: ( ). LRS field: ( ), with its associated Gaussian: ( ).
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(a) Optimal compression LI3 wavelet filter.

-500 -400 -300 -200 -100 0 100 200 300 400 500
10 6

10 5

10 4

10 3

10 2

10 1

   
  

ω
(b) Equivalent Fourier cutoff filter.

Figure 6. PDF of forced isotropic turbulence field F256 using LI3 wavelet filter at 86% compres-
sion (a) and Fourier cutoff filter at the equivalent compression (b). Filtered field: ( ), with
its associated Gaussian: ( ). LRS field: ( ), with its associated Gaussian: ( ).
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Figure 7. Energy and enstrophy spectra of forced isotropic turbulence data set F512, Reλ = 168.
Spectra of the full field: ( ). LRS field spectra after optimal decomposition with DB6
wavelets with 6 levels: ( + ). The rest of the lines are the LRS field spectra after optimal
wavelet compression with LI3 wavelets with varying number of decomposition levels: 2 levels:
( � ), 3 levels: ( ◦ ), 4 levels: ( ∗ ), 5 levels: ( ), 6 levels: ( ).

4. Results and discussion

For the CVS method to work, we want to find the optimal value of ε such that the
wavelet filter decomposes the vorticity field into a filtered field that contains all the co-
herent vortices of significant energy and an LRS field that is as close to Gaussian white
noise as possible. One way to find the optimal value of ε is to use Donoho’s de-noising
theorem (Donoho (1993)) that states that if there is a Gaussian white-noise component
in the vorticity field and somehow we know its variance, we can extract it using wavelet
thresholding with orthogonal wavelets. Donoho’s de-noising theorem says that the thresh-
old required to extract the Gaussian white-noise component is εDonoho =

√
2σ2 log(N),

where σ2 is the variance of the Gaussian white noise and N is the number of points in the
field. However, the variance of the Gaussian white-noise component of the vorticity field
is not known. One way to find the LRS field with maximum Gaussianity is to iterate
on εn+1 =

√
2σ2

LRSn
log(N), with σLRS0 taken as the variance of the full field (Farge

et al. (1999)). If there exists an LRS field that is Gaussian white noise, then the iterative
process should converge to εDonoho. However, since Donoho’s theorem does not directly
apply to bi-orthogonal wavelets, another way to find the optimal ε needs to be found.

In order to prove the existence of an optimal value for ε for second generation wavelets
and, possibly, find an efficient way of finding it, a series of parametric studies were
performed by varying ε to achieve a range of compression from 0% to 100%. The results
for the second generation bi-orthogonal (LI) wavelets were compared to the orthogonal
Daubechies DB6 wavelets (Daubechies (1992)). Both of these wavelets have five vanishing
moments and an effective filter length of 12. We carried out these parametric studies using
a number of forced and decaying isotropic turbulence fields from a database of spectral
DNS. Due to space restrictions the results from only two representative forced isotropic
turbulence fields F256 and F512 (Reλ = 168) will be presented in detail. We also will
refer to two decaying isotropic turbulence fields CBC256 and CBC512 (Reλ = 55). More
detailed information about these data sets can be found in Jimenez & Wray (1993).

The energy and enstrophy spectra of data sets F256 and F512 are shown in Fig. 2. Fig-
ure 3 shows various statistical quantities (as a function of compression) of the filtered and
LRS fields after wavelet thresholding with DB6 and LI3 wavelets. In this paper we define
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Figure 8. Comparison of LRS field statistics after wavelet filtering of forced isotropic turbulence
data set F512, Reλ = 168. LRS field statistics using DB6 wavelets with 6 levels: ( ) The
rest of the lines are the LRS field statistics after optimal wavelet compression with LI3 wavelets
with varying number of decomposition levels: 2 levels: ( • ), 3 levels: ( + ), 4 levels:
( ), 5 levels: ( ), 6 levels: ( ).
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Figure 9. Wavelet threshold from Donoho’s de-noising theorem scaled by the actual threshold
used with DB6 wavelet thresholding. The % compression at minimum flatness is marked for
each field by solid vertical lines. The resulting compression when Donoho’s theorem is applied
to the full vorticity field is shown by vertical lines, 2563 field: ( ), 5123 field: ( ).

the compression as N>
N × 100%, where N> is the number of retained wavelet coefficients

for a given threshold ε. In Fig. 3a we can see that in each case there is a minimum for
the flatness. This minimum is interpreted as the optimal wavelet compression of the field
in terms of Gaussianity of the LRS field. Figure 3b shows the scaled L∞ error between
the PDF of the LRS field and a Gaussian PDF with the same mean and variance. It can
be seen that the minima in Figs. 3a and 3b coincide, showing that the flatness is a good
indicator of the Gaussianity of the field. It can also be seen from these plots that the
optimal compression of both fields is better for the LI3 wavelets than the DB6 wavelets.
However, this does not show the whole story. In Fig. 3c we see that the total kinetic
energy in the LRS field is greater for both fields when the LI3 wavelets are used, while
the difference is much less if we look at the total enstrophy in Fig. 3d. It is significant
that the velocity (Fig. 3e) and vorticity (Fig. 3f) integral length scales of the LRS field
are considerably larger for the LI3 wavelets. This indicates that the LI3 wavelets are ex-
tracting a more Gaussian LRS field at a higher optimal compression ratio, but this LRS
field is more coherent than that from DB6 wavelets. Since the goal of the CVS approach
is to extract an incoherent Gaussian white noise, this is considered unfavorable for the
LI3 wavelets.

It is also interesting to note that for the LI3 wavelets the optimal compression is con-
siderably greater for the F512 data set when compared to the F256 case (see Figs. 2a and
2b). In fact, the number of wavelets used to represent the filtered fields is approximately
the same for both F256 and F512 data sets, which means that additional scales are ap-
proximated with virtually no extra cost. However, this is not true for the DB6 wavelet
filter.

Figure 4 shows the PDF of vorticity for data set F256 and the Gaussian PDF with the
same mean and variance. In Fig. 5, for data set F256, the PDFs of the filtered and LRS
vorticity fields at optimum wavelet compression using DB6 wavelets are compared to
those from a Fourier cutoff filter that retains the same number of modes. The difference
in the Gaussianity of the LRS field of the two filters can most clearly be seen in the tails.
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With both LI3 and DB6 wavelet thresholding the LRS field is clearly more Gaussian in
the tails than the residuals from the Fourier cutoff filter. In both cases there is a large
difference around zero between the PDF of the LRS field and the corresponding Gaussian
PDF; this difference dominates the L∞ error.

As a possible way to improve the performance of the LI3 wavelets for coherent vortex
extraction, we studied the effect of diminishing the number of multiresolution levels used
in the wavelet transform. For a resolution of 5123, the maximum number of levels that
can be used with the LI3 and DB6 wavelets before the support of the scaling functions
start to overlap at the coarsest level is 6 (see Daubechies (1992) for a more in-depth
discussion of the wavelet transform). Figure 7 shows the energy and enstrophy spectra
for data set F512 and the LRS fields after optimal wavelet compression using DB6 wavelets
with 6 levels in the transform, as in Fig. 3. Also shown are the energy and enstrophy
spectra of the LRS fields after optimal wavelet compression using LI3 wavelets with 2
through 6 levels of resolution. Note that, as the number of levels of resolution used in the
LI3 wavelet transform decreases, the LRS field contains less energy and approaches the
energy retained by the DB6 wavelet filter. In Fig. 8 we compare the the same statistics
as we did in Fig. 3 for the DB6 wavelet transform to the LI3 wavelet transform with a
range of levels of resolution. It can be easily seen in Figs. 8a and 8b that as the number of
levels used in the wavelet transform decreases, the LRS field becomes less Gaussian. We
also see that the LI3 wavelet transform with four levels results in a LRS field with better
Gaussianity (compared to the DB6 wavelet filter) with an optimal compression ratio
of 96% vs. 60% for the DB6 wavelet filter. Comparing the total energy and enstrophy
(Figs. 8c and 8d) for the LI3 wavelet transform with four levels of resolution to the DB6
wavelet transform, it can be clearly seen that the difference in total kinetic energy is
minimal and total enstrophy is almost identical. An interesting trend can be seen in the
velocity (Fig. 8e) and vorticity (Fig. 8f) integral length scales: using fewer levels in the
LI3 wavelet transform results in less coherence of the LRS field.

Finally, let us discuss the application of Donoho’s de-noising theorem to find the opti-
mal wavelet compression using DB6 orthogonal wavelets. Figure 9 shows the normalized
threshold coefficient (εDonoho/ε) derived from Donoho’s de-noising theorem for the LRS
field vs. the % compression of the field. Recall, that a given vorticity field εDonoho, which
is a function of the variance of the LRS field, is uniquely defined by the value ε used in
wavelet filter. The solid vertical lines show the optimal compression as determined by the
minimum flatness and L∞ error. We can see that because the LRS fields are never really
Gaussian white noise, the optimal compression and the points where εDonoho/ε = 1.0
do not coincide. In fact, for the decaying isotropic turbulence data sets CBC256 and
CBC512, which have a lower Reλ (Reλ = 55), εDonoho/ε never reaches 1.0. We have also
superimposed vertical lines that show the optimal compression ratio obtained if Donoho’s
de-noising theorem is applied using the variance of the full field. We can see that this
results in a much higher compression than at the point of maximum Gaussianity (see
Fig. 3).

5. Conclusions

The performance of the bi-orthogonal second generation wavelet transform and the
orthogonal wavelet transform using Daubechies wavelets with the same number of van-
ishing moments is compared in a priori tests using a spectral DNS database of isotropic
turbulence fields: 2563 and 5123 DNS of forced homogeneous turbulence (Reλ = 168)
and 2563 and 5123 DNS of decaying homogeneous turbulence (Reλ = 55). The results of
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these a priori tests indicate that lifted interpolating bi-orthogonal wavelets are able to
extract a more Gaussian LRS field at a higher optimal compression ratio than orthog-
onal DB wavelets. However the extracted LRS field is more coherent than when using
orthogonal DB wavelets. This problem can be overcome by reducing the number of levels
of resolution in the wavelet transform. In addition, it was found that the optimal wavelet
compression did not coincide with the theoretical compression predicted by Donoho’s
de-noising theorem. The most probable explanation for this is that the LRS field never
actually becomes Gaussian white noise.

Future work in this area will include comparing the second generation wavelets wavelets
to other orthogonal wavelets and implementing the CVS approach in the adaptive second
generation wavelet collocation method.
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Fröhlich, J. & Schneider, K. 1997 An adaptive wavelet-vaguelette algorithm for the
solution of pdes. J. Comput. Phys.. 130, 174-190.
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