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The turbulent flow over a permeable wall

By W.P. Breugem † AND B.J. Boersma †

In this paper we discuss some turbulence statistics that are obtained from a Direct Nu-
merical Simulation (DNS) of a turbulent flow in a channel of which one wall is permeable
(porous, with zero net transpiration) and the other is impermeable. The flow within the
porous wall is modeled using the Volume-Averaged Navier-Stokes equations (VANS).
Among others, it is shown that wall permeability causes a considerable increase in the
total drag, and an increased production of all Reynolds stresses when compared to an
impermeable wall.

1. Introduction

There are many real-life cases of turbulent flows over porous media. Examples of this
are flows over plant canopies, Finnigan (2000), and over river beds. In general it is
assumed that these porous media increase the drag that the flow experiences, and enhance
turbulent mixing near the wall. Not much is known about the physical mechanism that
causes the drag increase.

In the present paper we study the flow over porous media in simple, two-dimensional
geometries. First, we investigate the flow in a channel, which has one permeable and
one impermeable wall. The second case is the spatially-developing boundary layer over a
permeable wall. For the first case we will present statistics including the budgets in the
transport equations for all Reynolds stresses. For the second case we will present only
some preliminary results.

In the literature a porous medium is often represented simply by specifying boundary
conditions at the wall, see e.g. Jiménez et al. (2001) and Hahn et al. (2002). In the
paper of Jiménez et al. (2001), the wall-normal velocity component is assumed to be
proportional to the wall-pressure fluctuation, whereas a no-slip condition is imposed for
both the streamwise and the spanwise velocity components. In the paper of Hahn et

al. (2002), the wall-normal velocity is assumed to be zero, and a slip velocity in both
the streamwise and spanwise direction is imposed as given by the model of Beavers &
Joseph (1967). In the present study we directly solve the governing equations for the flow
within the porous medium together with the Navier-Stokes equations for the flow in the
channel. The flow field is continuous over the interface between the porous medium and
the channel, and hence no boundary conditions need to be prescribed at the interface.
A fifth-order polynomial in the wall-normal coordinate is adopted to model the rapid
variation of the porosity in a thin layer near the interface. Of course our approach results
in a more complicated set of equations and larger computational costs than in the studies
of Jiménez et al. (2001) and Hahn et al. (2002).

The organization of the paper is as follows. In section 2 we discuss the governing
equations for the porous medium and give a short outline of the numerical method that
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Figure 1. A sketch of the channel flow geometry (not on scale).

we use to solve these equations. In section 3 we present turbulence statistics obtained from
a simulation such as mean-profiles, rms-profiles and Reynolds-stress budgets. Finally, in
section 4 some conclusions are given.

2. Governing equations and numerical method

In this section we present the flow geometry, the governing equations for the flow
along and through a porous medium, and the numerical method that we use to solve
these equations.

2.1. Governing equations

In figure 1 we show the geometry of the channel flow. The flow is bounded by two
impermeable walls located respectively on top of the two-dimensional channel (at z = H)
and below the porous medium (at z = −h). Following Ochoa-Tapia & Whitaker (1995a),
we distinguish between three regions:

(a) The homogeneous fluid region between z = 0 and z = H.
(b) The interface region between z = −wi and z = 0, which is characterized by rapid

changes in the porous structure and the permeability.
(c) The homogeneous porous region between z = −h and z = −wi, with a constant

porosity (ε = εh) and an isotropic permeability.

In the studies performed by Jiménez et al. (2001) and Hahn et al. (2002), the porous
medium is modeled by specifying boundary conditions at the interface (z = 0). In con-
trast to their approaches, in our study we directly describe the flow inside the porous
medium by means of the Volume-Averaged Navier-Stokes equations. These equations
can be derived by averaging the standard Navier-Stokes equations for the flow inside the
pores, over a small spatial volume. Figure 2 gives an illustration of the volume-averaging
procedure. The constraints for the length scale R of the averaging volume are that it has
to be much larger than the typical length scale lβ of the flow inside the pores, but also
much smaller than the characteristic length scale of the volume-averaged flow.
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Figure 2. An illustration of the volume-averaging procedure.

It is important to distinguish between superficial and intrinsic volume-averages. The
intrinsic velocity is denoted by square brackets and defined according to

<u(x, t)>≡
1

Vβ

∫

Vβ

u(x+ y
β
, t)dV (2.1)

where Vβ is the part of the averaging volume V that is occupied by fluid. The vector x
points to the centroid of the volume, and y

β
is the position vector with respect to the

centroid of V and points only into the fluid phase β (see figure 2). The subscript β refers
to the fluid or β–phase, in distinction to the solid or σ–phase. The superficial velocity is
related to the intrinsic velocity according to

<u(x, t)>s≡
1

V

∫

Vβ

u(x+ y
β
, t)dV = ε <u(x, t)> (2.2)

where the superscript s refers to the superficial instead of the intrinsic average. The
porosity ε is the ratio of the volume taken up by the fluid phase to the total averaging
volume, i.e.

ε ≡
Vβ
V

Notice that the superficial and intrinsic averages are defined everywhere inside the porous
medium, in the β-phase as well as in the σ-phase.

The local deviations of the velocity and pressure insides the pores from the correspond-
ing volume-averaged quantities are denoted by a tilde and defined as respectively

ũ ≡ u− < u >

p̃ ≡ p− < p >

By applying the volume-averaging procedure to the Navier-Stokes equations for the
incompressible flow inside the pores, Whitaker (1996) gives a formal derivation of the
Volume-Averaged Navier-Stokes equations. The result reads:

D < u >

Dt
+ ε−1∇· < ũũ >s = −

1

ρ
∇< p >+ ν∇2< u >+
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ν
∇ε

ε
∇< u >+ ν

∇2ε

ε
< u >+

1

ρ

1

Vβ

∫

Aβσ

nβσ · (−Ip̃+ µ∇ũ)dA (2.3)

∇·(ε< u >) = 0 (2.4)

where Aβσ is the contact area between the β– and σ–phase within the averaging volume,
nβσ the normal vector pointing into the σ–phase, and I the unity tensor. For homogeneous
porous media (ε = constant) the terms containing derivatives of the porosity are zero,
and so these terms are significant only in the interface region (see figure 1). Notice from
equation (2.4) that when the porosity is varying in space, only the superficial and not
the intrinsic velocity is divergence-free.

We need closures for the second term at the left-hand-side and the last term at the
right-hand-side of equation (2.3). The second term on the left-hand-side of equation
(2.3) is a dispersive flux term. It represents the effect of spatial correlations between
flow variations inside the pores, on the volume-averaged flow. In the literature it is often
implicitly assumed that this term can be neglected, as we will do in the present study.
For the last term on the right-hand-side of equation (2.3), Whitaker (1996) formulates a
closure problem in which the surface integral is replaced by the following expression

1

ρ

1

Vβ

∫

Aβσ

nβσ · (−Ip̃+ ν∇ũ)dA = −νεK−1·< u >β − νε(K−1·F )· < u >β (2.5)

where K and F are referred to as respectively the (yet unknown) permeability and the
Forchheimer tensor. The first term on the right-hand side of equation (2.5) is known
as the Darcy term, and it basically represents the effect of the viscous drag that the
flow inside the pores encounters. The second term on the right-hand side represents
the effect of pressure drag on the flow inside the pores. In the literature semi–empirical
relationships are available for the tensors K and F for homogeneous porous media. Based
on one of these relations, known as the Ergun equation - see MacDonald et al. (1979)
- the Forchheimer and permeability parameters can then be expressed by the following
scalars

F =
1

100(1− ε)

dp‖ < u >s ‖

ν
(2.6)

K =
dp

2ε3

180(1− ε)2
(2.7)

with the mean particle diameter dp defined as six times the ratio of the total volume Vp
to the total surface area Ap of the σ–phase

dp ≡
6Vp
Ap

(2.8)

The major advantage of a direct description of the flow inside the porous medium is
that we do not need to prescribe any boundary conditions at the interface, because the
flow field is continuous over the interface. Yet we have to deal with another problem as
strictly speaking the closure (2.5) is not valid in the interface region. The thickness of the
interface region is on the order of the mean particle diameter, and inside this region the
flow field is very complicated due to roughness. In our present study we use a variable-
porosity-model for the interface region, see Ochoa-Tapia & Whitaker (1995b), and still
assume the validity of the closure in this region. The porosity is described by a fifth-order
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polynomial in the wall-normal coordinate, such that it satisfies the requirements that its
derivatives are zero at z = 0 and z = −wi, that at z = 0 the porosity equals 1, and that
at z = −wi its value is equal to εh.

2.2. Numerical method

The governing equations (2.3) and (2.4) are discretized with a pseudo-spectral method in
the x- and y-directions and with a second-order finite-difference method in the direction
perpendicular to the porous medium, i.e. the z-direction. The (staggered) grid in this
direction is non-uniform with points clustered around the interface (z = 0) between the
clear fluid and the porous medium. The solution is advanced in time with a second-order
explicit Adams-Bashforth method. The pressure-correction method is used to ensure
conservation of mass. The flow in both the porous medium and the channel is forced in
the x-direction by a constant pressure gradient dp/dx.

3. Results

In this section we present some turbulence statistics that are obtained from a fully
developed channel flow simulation over a permeable wall. The simulation is one of the
first that we performed to test our DNS code. The porosity in the homogeneous porous
region is high and equal to εh = 0.95. In table 1 some characteristics of the simulation
are listed. As the flow in the channel is asymmetric, the Reynolds number based on the
friction velocity at the upper wall is different from the corresponding Reynolds number
based on the square root of the total stress at the interface with the lower wall. The
Reynolds number based on the bulk velocity in the channel is 4517. The thickness of
the porous medium is 1/16 of the channel height. In this simulation the thickness of the
interface region is set equal to the thickness of the porous medium as this requires less
grid points in the porous medium. The numerical resolution of this test-simulation is
coarse with grid spacings in (upper) wall-units of dx+ = 33.9, dy+ = 20.3, dz+

min = 1.0
and dz+

max = 5.1 for the streamwise, spanwise and wall-normal directions, respectively.
The stretch factor for the grid spacing in the wall-normal direction is 2.5 % for both the
porous medium and the channel. Unfortunately, there is a jump in the grid spacing over
the interface where the first grid cell above the interface is a factor 2.2 smaller than the
first grid cell below the interface. The simulation is run until the bulk velocity reached a
steady state. Once the flow reached a steady state, 60 data fields were stored each equally
separated in time by H/u∗, with u∗ the friction velocity at the upper wall. The statistics
in this study are obtained from these 60 data fields. The simulation has been performed
on a AMD-Athlon with 1Gb of core memory.

To start with we show the mean-velocity profile. (figure 3). The dashed line marks the
interface with the permeable wall. Clearly, there is a non-zero velocity (slip-velocity) at
the interface. The velocity profile has its maximum above the centerline of the channel,
already indicating a higher total shear stress at the permeable wall.

In figure 4 we show the root-mean-square profiles of the three velocity components
and of the pressure, normalized with the friction velocity at the upper wall. Near the
upper wall, the rms-profiles behave as expected and are similar to the profiles for standard
channel flow. The rms-profiles near the lower wall are clearly altered by wall permeability.
A strong increase can be observed in the spanwise and wall-normal velocity fluctuations,
and in the pressure fluctuations. The axial rms has its peak just at the interface, with a
value slightly smaller than at the peak near the upper impermeable wall.

In figure 5 the turbulent and viscous stresses as a function of the channel height are
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Re∗(top) 325.
Re∗(bottom) 393.

Reb 4517.
Nx ×Ny ×Nz 48× 48× (128 + 8)
Lx × Ly × Lz 5× 3× (1 + 1/16)

εh 0.95
dp 1/125
wi 1/16

Table 1. Characteristics of the channel flow simulation.
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Figure 3. The mean velocity profile as function of the channel height. The dashed line marks
the position of the interface between the porous medium and the clear fluid.

plotted. The total stress (sum of the viscous plus the turbulent stress) is linear, which is
a direct consequence of the constant pressure gradient that drives the flow. We clearly
observe a strong increase in drag on the lower permeable wall compared to the upper
solid wall. In this simulation the drag increase is almost 50 %. This increase in drag is
caused by the exchange of momentum between the clear fluid and the porous medium.
In engineering appliances porous materials are sometimes used as heat-exchanger. From
the results presented in figures 4 and 5, it is clear that a porous wall aligned parallel to
the mean-flow direction will indeed give a very efficient turbulent heat exchange between
the flow over and the flow in the porous medium (the behavior of the turbulent heat flux
<u′><T ′> will be very similar to that of the turbulent stress <u′><w′>).

To get a better insight into the mechanisms behind the drag increase we have calculated
the budgets of the transport equations of all the individual Reynolds stresses. The terms
are made dimensionless with u4

∗/ν, where u∗ is the friction velocity at the upper wall.
The exact equations are given in Appendix A. In figure 6 the budgets of the transport
equation for the streamwise normal stress (streamwise contribution to turbulent kinetic
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Figure 4. The rms-profiles of the streamwise, spanwise and wall-normal velocity fluctuations
together with the rms-profile of the pressure, all normalized by friction velocity.
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Figure 5. The turbulent, viscous and total stress profiles as a function of the channel height.

energy) are shown. The left part of the figure gives the budgets near the permeable
wall and the right part the budgets near the upper impermeable wall. The budgets in
the upper part of the channel are similar to the budgets calculated by Mansour et al.
(1988) for standard channel flow between two impermeable walls. Very close to the upper
wall the dissipation term (uuDISS) is balanced by the transport term (uuTRANS). At
more than about 40 wall units from the upper wall, the pressure-strain term (uuPS)
is on the order of the dissipation term and their sum balances the production term
(uuPROD). At the lower permeable wall the budgets have changed dramatically. Just
above the interface the production term is balanced by the sum of the transport term, the
pressure-strain term and the dissipation term. Within the porous wall, the Forchheimer
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Figure 6. The budget of the transport equation for the streamwise contribution to turbulent
kinetic energy. Left: the budget at the lower permeable wall (the interface is located at z = 0).
Right: the budget at the upper wall. (The ‘kink’ in the production term (uuPROD) and in the
transport term (uuTRANS) is a consequence of the jump in the wall-normal grid spacing over
the interface, as mentioned before at the beginning of this section.)
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Figure 7. The budget of the transport equation for the spanwise contribution to turbulent
kinetic energy. Left: The budget at the lower permeable wall (the interface is located at z = 0).
Right: The budget at the upper wall.

term (uuFORC) becomes the dominant loss term, but it vanishes again close to the
impermeable wall below the porous medium. The Darcy term (uuDARC) is of minor
importance, a consequence of the high porosity of the wall. The porosity term (uuPOR)
basically represents the sum of the advection and the production/dissipation of kinetic
energy by changes in the porous structure. It appears to be negligible in this simulation,
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Figure 8. The budget of the transport equation for the wall-normal contribution to turbulent
kinetic energy. Left: The budgets at the lower permeable wall (the interface is located at z = 0).
Right: The budgets at the upper wall.
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Figure 9. The budget of the transport equation for the Reynolds stress <u′><w′>. Left: the
budgets at the lower permeable wall (the interface is located at z = 0). Right: the budgets at
the upper wall.

because of the high porosity and the large width of the interface region over which the
porosity is varying. Notice also from figure 6 that the peak in the production term just
below the permeable interface is roughly twice as large as the corresponding peak near
the upper wall.

In figure 7 the budgets of the transport equation for the spanwise kinetic energy are
shown. Again the left graph shows the budgets near the permeable wall, and the right
graph the budgets near the upper wall. At the upper wall the pressure-strain term (vvPS)
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balances the dissipation term (vvDISS), except in a region less than about 5 wall units
from the wall. In this small region the pressure-strain term falls off to zero and the
transport of energy (vvTRANS) by viscous diffusion balances the dissipation. Above the
interface with the lower permeable wall, the transport term remains small and there
is basically a balance between only the pressure-strain term and the dissipation term.
Inside the porous wall, the Forchheimer term becomes the dominant loss term in a small
region. The porosity term (vvPOR) is not significant, and the Darcy term (vvDARC) is
only of importance in a region of roughly 10 wall units close to the impermeable wall
below the porous medium. As we saw before for the production term in the axial case, in
the spanwise case the pressure-strain term has a peak inside the porous medium which
is more than twice as large as the corresponding peak near the upper wall. The pressure-
strain term is a redistribution term, which is responsible for the transfer of axial kinetic
energy into spanwise and wall-normal kinetic energies. The enormous increase in this
term near the permeable wall explains the increase in the rms of the spanwise velocity
fluctuations near the permeable wall as compared to the peak at the upper wall.

In figure 8 the budgets in the transport equation for the wall-normal kinetic energy
are shown. Close to the upper wall, the velocity-pressure-gradient term (wwP) becomes
smaller than the turbulent-transport term (wwTRT). This behavior is slightly different
from that of a standard channel flow described by Mansour et al. (1988), where close to
the wall the turbulent-transport term is still smaller than the velocity-pressure-gradient
term. The reason for this discrepancy might be a matter of grid resolution, as we have in
our simulation a coarse grid. In the region just above the interface with the permeable
wall, the turbulent-transport term changes of sign and is responsible for a flux of wall-
normal kinetic energy into the porous medium. Strangely enough, the velocity-pressure-
gradient term is negative in a small region around the interface. In this region the only
source of wall-normal kinetic energy comes from the turbulent-transport term. Inside the
porous medium there is again a region where the Forchheimer term (wwFORC) is the
most important loss term. The Darcyterm (wwDARC) is of minor importance except
close to the impermeable wall below the porous medium. The porosity term (wwPOR) is
everywhere negligible. Notice that the velocity-pressure-gradientterm has a peak above
the permeable interface, which is almost three times larger than the corresponding peak
near the upper wall. This energy-redistribution term is responsible for the increase in the
rms of the wall-normal velocity fluctuations near the permeable wall as compared to the
peak at the upper wall.

In figure 9 the budgets of the transport equation for the turbulent stress (<u′><w′>)
are shown. At the upper as well as near the lower permeable wall, the leading terms are
the production term (uwPROD) and the velocity-pressure-gradient term (uwP). Different
from the case for the kinetic energies, the Forchheimer term is nowhere the leading loss
term. The Darcy term (uwDARC) and the porosity term (uwPOR) are negligible. It is
striking that near the permeable interface, the peak values of the production termg and
the velocity-pressure-gradient term are more than twice as large as the corresponding
peak values near the upper wall. The increase in the production term is caused solely
by the enormous increase in the wall-normal velocity fluctuations as the gradient of the
mean velocity near the permeable interface is reduced as compared to the upper wall.
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PHYSICAL FLOW DOMAIN
FRINGE
REGION

POROUS MEDIUM

PERIODIC BOUNDARY CONDITIONS

Figure 10. A sketch of the computational domain for the simulation of the spatially
developing boundary layer over a permeable wall.

4. The turbulent boundary layer over a permeable wall.

In the previous section we presented some results for the flow over a porous channel
wall. It was assumed that the flow in the channel was fully developed. In this section we
will give some preliminary results for a turbulent, spatially-developing boundary layer
over a permeable wall.

The boundary layer is not periodic in the streamwise direction. However, we would
like to use the pseudo-spectral method as outlined in the previous section. This method
requires that the flow field can be considered as periodic in the streamwise direction. In
order to make the problem periodic we have added a ‘fringe’ region to our domain in
which an artificial force drives the velocity field to a specified target. This is illustrated
in figure 10. This fringe region can also be seen as a region in which the mean flow in
the boundary layer is accelerated and where turbulent kinetic energy is dissipated. A
first result of these simulations is shown in figure 11. The porosity in the homogeneous
porous region is 0.8. The thickness wi of the interface region is equal to 1/25 H, where
H is the height of the flow domain above the permeable interface. The thickness of the
porous medium is 0.4 H. The mean particle diameter associated with the porous medium
is 1/62.5 H. The dimensions of the flow domain are Lx×Ly×Lz = 20× 3× (1+0.4) for
respectively the streamwise, spanwise and wall-normal direction. The artificial force in
the fringe region is a smooth function of the streamwise coordinate and has a significant
value over a length of about 2 H. The number of grid points is 192× 64× (82 + 24) for
respectively the streamwise, spanwise and wall-normal direction.

5. Conclusions

In this paper we have presented results from a direct numerical simulation of the flow
over and through a permeable wall forming one wall of a channel with fully-developed
turbuloent flow. In contrast to the simulations presented in the literature, Jiménez et al.
(2001) and Hahn et al. (2002), we have solved for the flow in the channel coupled with
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Figure 11. A preliminary result of a simulation of the spatially developing boundary layer over
a permeable wall. The graph shows an instantaneous snapshot of the velocity field (u,w) in
plane with y=constant, where the solid lines are contours of constant streamwise velocity.

the flow in the porous medium. Over the interface with the permeable wall, the flow
is continuous and hence no boundary conditions need to be prescribed at the interface.
From the simulation we observe a considerable increase in the total drag at the permeable
wall. This is caused by the exchange of wall-normal momentum through the interface
with the wall, resulting in a higher Reynolds stress <u′><w′> as compared to the
impermeable wall. The budgets in the transport equations for all the Reynolds stresses
have demonstrated that for the evaluated simulation with a porosity of 0.95, the Darcy
term is small compared to the Forchheimer term. The Darcy term represents the loss
of Reynolds stresses by the viscous drag that the flow inside the pores encounters. The
Forchheimer term represents losses due to the pressure drag acting on the flow inside the
pores. The porosity term, which represents the advection and production/dissipation of
Reynolds stresses by porosity variations, appears to be negligible throughout the porous
medium. Furthermore, a start has been made with the simulation of a spatially developing
boundary layer over a permeable wall.

Appendix A. transport equations for all the Reynolds stresses

In the following equations, the velocity components and the pressure are all intrinsic
volume-averages, but for clarity we have omitted the square brackets.

• transport equation for the axial kinetic energy 1
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• transport equation for the spanwise kinetic energy 1
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• transport equation for the wall-normal kinetic energy 1
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• Tranport equation for the turbulent stress u′w′.
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