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Evaluation of subgrid-scale models in terms of
time correlations

By Guo-Wei He†, Meng Wang AND Sanjiva K. Lele

In certain applications such as the computation of turbulent sound sources, Large-Eddy
Simulation (LES) is required to predict correctly the space-time correlations of the ve-
locity field. A previous study (He, Rubinstein & Wang 2002) has shown that LES with
the spectral eddy-viscosity model over-predicts time correlations. In this work, we eval-
uate the Smagorinsky model, the dynamic Smagorinsky model and the multi-scale LES
method in terms of time correlations. The dynamic Smagorinsky model is shown to give
better predictions on time correlations than the constant-coefficient Smagorinsky model,
which gives significant over-predictions. The results from the multi-scale LES method
are in between. The over-predictions are discussed according to the random backscatter
and the sweeping hypothesis. Based on those discussions, a history-dependent sub-grid
scale model is suggested for time correlations.

1. Motivation and objectives

The goal of this work is to evaluate and develop subgrid-scale (SGS) models for pre-
dicting time correlations in turbulent flows. Here by “time correlation” we refer to the
two-time, two-point correlation of velocity fields ui(x, t) in physical space

C(r, τ) = 〈ui(x, t)ui(x+ r, t+ τ)〉, (1.1)

or, equivalently, the two-time correlation of velocity Fourier modes ui(k, t) in spectral
space

C(k, τ) = 〈ui(k, t)ui(−k, t+ τ)〉. (1.2)

where r = |r| is the magnitude of spatial separation r, k = |k| is the magnitude of wave
number k, and τ is time delay. The turbulence is assumed statistically homogeneous and
isotropic, but not necessarily stationary. Hence, the correlation function also depends on
t in general.
Time correlation describes temporal statistics of turbulent flows. It has been shown by

previous evaluations (Meneveau & Katz 2000) that large-eddy simulation (LES) with an
appropriate SGS model is capable of predicting correctly the single-time spatial statistics
of turbulent flows, such as turbulent kinetic energy and Reynolds stress. The temporal
statistics did not enter such evaluations. However, a major application of LES is the
prediction of unsteady flows in which time accuracy, even if in the statistical sense, is im-
portant. This emphasis will impose new requirements on SGS modeling. For instance, in
the computation of flow-generated sound the Lighthill acoustic analogy (Lighthill 1952)
shows that the radiated sound power depends on the space-time properties of turbulence.
Therefore, it is necessary to investigate the predictive power of LES in terms of time cor-
relations. A recent study by He et al. (2002) has shown that LES with the spectral
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eddy-viscosity model (Chollet & Lesieur 1981) over-predicts the time correlation relative
to Direct Numerical Simulation (DNS). The over-prediction, which can be significant,
alters the frequency distribution of the sound radiated by turbulence. A follow-up ques-
tion to ask is then: which of the currently existing SGS models can better predict time
correlations, and to what extent?

The dynamic Smagorinsky model (Germano et al. 1991) has been applied in many
different flows, generally with good results. Therefore, this model is the first choice in
our evaluations. The multi-scale LES method of Hughes, Mazzei & Oberai (2001) is
also attractive in that the SGS model acts only on the small scales in the resolved
field, and thus may have less impact on time-correlations, particularly at large spatial
separations. We also use the classical Smagorinsky model (Smagorinsky 1963) to calculate
time correlations, in order to verify our previous results and compare it with the dynamic
Smagorinsky model and the multi-scale LES method.

The above SGS models are mainly based on energy balance. For example, the eddy-
viscosity coefficients in the Smagorinsky models are determined by the energy-balance
equation. They are not required to satisfy the governing equations for time correlations,
which is the root cause of potential errors. As an extension of the present work, we
incorporate the physical mechanism for time correlations into SGS modeling, and suggest
a history-dependent Smagorinsky model.

2. Numerical setup

We will use a calculation of decaying homogeneous isotropic turbulence to evaluate the
Smagorinsky model, the dynamic Smagorinsky model and the multi-scale LES method.
The previous evaluation of He et al. (2002) was carried out for forced homogeneous
isotropic turbulence at a moderate Taylor-scale Reynolds number (Reλ) of 108 in a cubic
box of side 2π, using DNS on a 1283 grid and LES on a 643 grid. That evaluation may have
been affected by the forcing scheme, the moderate Reynolds number and the relatively
small grid ratio between DNS and LES. These deficiencies are rectified or reduced in the
present study.

The new setting is a decaying turbulence of initial Reλ = 127.4 in the same cube as
before. It is simulated by DNS with grid size 2563 and LES with grid size 643. A standard
pseudo-spectral method is used, in which spatial differentiation is by the Fourier spectral
method, time advancement is by a second-order Adams-Bashforth method with the same
time steps for both DNS and LES, and molecular viscous effects are accounted for by
an exponential integrating factor. All nonlinear terms are de-aliased with the two-thirds
rule, except those involving SGS eddy viscosity.

The following SGS models are evaluated:

(1) The Smagorinsky model: the Smagorinsky constant is Cs = 0.22 and the filter
width is set equal to the inverse of the largest effective wave number kc = 21.

(2) The dynamic Smagorinsky model: the Smagorinsky coefficients are determined by
the Germano identity. The grid filter width is k−1

c and the test filter width is taken as
2k−1

c .

(3) The multi-scale LES method: we decompose the filtered Navier-Stokes equations
into the large-scale equations for the lower one-half of the Fourier modes and the small-
scale equations for the remaining half of the Fourier modes. The Smagorinsky model is
applied only to the small-scale equations.
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Figure 1. Energy spectra at t = 2.4. DNS field; LES with dynamic
Smagorinsky model; Multi-scale LES; LES with Smagorinsky model.

The initial condition for DNS is an isotropic Gaussian field with energy spectrum

E(k, 0) ∝ (k/k0)
4 exp[−2(k/k0)

2], (2.1)

where k0 = 4.68 is the wavenumber corresponding to the peak of the energy spectrum.
The shape of the energy spectrum excludes the effects of the box size. The initial condition
for LES is obtained by filtering the initial DNS velocity fields with filter wavenumber
kc = 64/3 ≈ 21. Therefore, the initial LES and filtered DNS velocity fields are exactly
the same. At early stages, the LES and DNS velocity fields are highly correlated due to
the same initial conditions. Therefore, the time correlations of the LES velocity field are
nearly the same as those of the DNS field. As time progresses, the LES fields become
decorrelated from the DNS fields. The difference in time correlations between the LES
and DNS velocity fields are then observed.

3. Main results

In figure 1, energy spectra are presented at t = 2.4. Generally speaking, the results
from the Smagorinsky model, the dynamic Smagorinsky model and the multi-scale LES
method are in agreement with the DNS result. However, the multi-scale LES method over-
predicts a little more than the Smagorinsky and dynamic Smagorinsky models between
k = 3 and k = 10. There is also a slight under-prediction for k ≥ 10 which is shared by
the Smagorinsky model. Beyond k = 20, the resolution limit is exceeded, and the LES
results are meaningless.
Figure 2 shows the normalized time correlations, c(k, τ) = C(k, τ)/C(k, 0), of the

DNS and LES fields for wavenumbers k = 7, 11, 15, and 17, spanning a range of scales
from the integral scale to the upper end of the resolved scale. The starting time is
t = 1.4. The figure confirms our previous observations: LES with eddy-viscosity-type
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Figure 2. Time correlation c(k, τ) vs time lag τ (start time t = 1.4) for (a) k = 7, (b) k = 11,
(c) k = 15, (d) k = 17. DNS field; LES with dynamic Smagorinsky model;

Multi-scale LES; LES with Smagorinsky model.

models over-predicts time correlations. The over-predictions can be understood by the
following physical arguments: the contribution of unresolved scales to resolved scales
can be described as energy dissipation and random backscatter. The eddy-viscosity-type
SGS models are designed to model the drain of energy from resolved scales to unresolved
scales, but fail to account for the random backscatter from unresolved scales to large
scales. This leads to a more coherent field at resolved scales. Therefore, the LES field
evolves in a more correlated fashion, in the sense that their time correlations decay more
slowly. The extent of over-estimation on time correlations varies with the SGS model, as
seen in figure 2. This can be understood by the sweeping effects (Kraichnan 1964): the
Eulerian time correlations are dominated by the sweeping velocity. The eddy-viscosity-
type models reduce the sweeping velocity by excessive dissipation, which causes the
time correlations of the LES fields to decay more slowly than those of the DNS fields.
It is observed from our numerical calculations that, among the SGS models evaluated,
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the Smagorinsky model produces the largest dissipation and thus the smallest sweeping
velocity. Therefore, it predicts the slowest correlation decay. The dynamic Smagorinsky
model introduces the most appropriate amount of dissipation and hence gives the best
predictions on time correlations. The dissipation produced in the multi-scale LES is
smaller than the Smagorinsky model but larger than the dynamic Smagorinsky model.
Therefore, its predictions for time correlation lie between those of the other two models.
Figure 2 also indicates that the time correlations of the LES fields deviate more from

the DNS fields at small scales than at large scales. This is in agreement with the well-
known divergence property of Eulerian time correlations discovered by Kraichnan (1964).
It implies that the cutoff effects are stronger in the near range than those in the far range.
It is further noted from figure 2 that, although the dynamic Smagorinsky model and

the multi-scale LES method give better overall predictions than the Smagorinsky model,
all curves near τ = 0 are in good agreement, implying that the Taylor microscales are
well predicted by all models. The maximum time delay used in the calculations is τ =
1.0, which is not long enough to catch the zero-crossing points of time correlations.
Nonetheless, the relatively large differences of the LES curves relative to the DNS value
at τ = 1.0 are still observed, indicating that the decorrelation scales are poorly predicted.

4. Conclusions and future work

We have evaluated the Smagorinsky model, the dynamic Smagorinsky model and the
multi-scale LES method in terms of time correlations. Comparatively speaking, the dy-
namic Smagorinsky model predictions are in better agreement with DNS fields, with
some over-prediction of the decorrelation length scales. The Smagorinsky model obvi-
ously over-predicts time correlations. The results of the multi-scale LES method, using
the Smagorinsky model on the small scale equations, lie in between. However, we be-
lieve that the results from the multi-scale LES method could be much improved if an
appropriate SGS model is applied to the small scale equations.
Evaluations have also been made on forced turbulence, and similar results are obtained

but will be presented in a forthcoming paper (He, Wang & Lele 2002). This is because
the sweeping hypothesis is true for both forced and decaying turbulence. However, the
sweeping hypothesis may not be valid for general unsteady flows, such as ‘kicked’ turbu-
lence, where turbulence is forced periodically. In this case, the eddy viscosity coefficients
should be history-dependent. Therefore, we suggest a history-dependent Smagorinsky
model for time correlations

τij(x, t) =

∫ t

−∞

[−2νr(t
′)S̃ij(x, t

′)]w(t′)dt′ (4.1)

where τij is the sub-grid scale stress, and w(t′) is a weighting function. νr(t
′) is a history-

dependent-eddy-viscosity coefficient, which can be determined by either one time or two
time Germano identity. This work is in progress.
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