Combining eddy-viscosity models and the algebraic structure-based Reynolds stress closure

By G. Kalitzin, G. Iaccarino and C. A. Langer, S. C. Kassinos†

Two linear eddy-viscosity models, the $v^2\cdot f$ and $k-\omega$ models, have been combined with an algebraic structure-based algorithm for the evaluation of the Reynolds stresses. This closure was originally designed as an integral part of the algebraic structure-based model (ASBM) to capture the turbulent anisotropy occurring in rotating wall bounded flows. It is shown that the algebraic structure-based evaluation of the Reynolds stresses can be used directly with conventional turbulence models sensitizing them to rotation. Significant improvement in the prediction of anisotropic turbulent flow can be achieved without an additional tuning of the closure coefficients.

The models are evaluated for spanwise rotating channel flow. The sensitivity to the Reynolds and Rossby numbers is investigated. The results are compared with DNS data.

1. Motivation and objectives

Linear eddy-viscosity models are known to be inaccurate in predicting the effect of strong streamline curvature and frame rotation. There is no shortage of modifications and adjustments proposed in the literature to correct their behavior. For example in the work by Shih et al. (1995) the $k-\epsilon$ model is modified by introducing a coefficients in the ϵ-equations that depend on the shear rate and frame rotation. A more consistent redesigning of the ϵ equation for flows with rotational effects has been proposed by Haire & Reynolds (2003). Another recent attempt by Durbin & Pettersson Reif (2001) consists in the modification of the eddy-viscosity coefficient (again by introducing dependency on the shear rate and frame rotation). In the latter case the justification for the choice of the selected functional dependency comes from the study of close form solutions of second-moment models in the case of homogeneous rotating shear. Although these modifications are shown to provide encouraging predictions for simple flows with rotation (namely channel flows), their accuracy for more complex situations remains unclear. Differential Reynolds stress models, on the other hand, possess the obvious advantage that the turbulence production terms and the stress anisotropy are automatically accounted for. Unfortunately, the difficulties in modeling the stress redistribution terms and their inherent numerical stiffness make them not amenable to mainstream use in engineering calculations.

Algebraic Reynolds stress models have received a substantial amount of attention given the potential benefit of introducing stress anisotropy in the controlled environment of an eddy-viscosity closure. Several models have been devised with various degree of success (Gatski & Speziale 1993; Wallin & Johansson 2002). The basic idea behind these models is to express the Reynolds stress tensor as a function of one or more (up to ten) different tensors. This is not different from what is used to derived the so-called non-linear

† Mechanical and Manufacturing Engineering, University of Cyprus and CTR
eddy-viscosity models where additional (high-order) terms are added to the Boussinesq relationship between mean strain and Reynolds stresses. Reynolds and coworkers (e.g., Reynolds 1994, Kassinos & Reynolds 1994, Kassinos et al. 1993) have repeatedly argued that for adequate modeling and description of rotating turbulence, information about the turbulence structure is crucial. The Reynolds stresses only characterize the componentality of turbulence, i.e., which velocity components are more energetic. The turbulent field has much more information than that contained in the Reynolds stresses, which is important in presence of rotation, and which is described by the turbulence structure. For instance, the dimensionality of the flow is important. This carries information about which directions are favored by the more energetic turbulent eddies; if the turbulent eddies are preferentially aligned with a given direction, then the dimensionality is smaller along that direction. Here hypothetical turbulent eddies are used to bring awareness of turbulence structure into the turbulence model. Averaging over an ensemble of eddies produces a set of one-point statistics, representative of the eddy field, and a set of equations of state relating the Reynolds stresses to these statistics.

The structure-based approach to build the Reynolds stress closure has lead in Langer & Reynolds (2003) to the development of the Algebraic Structure-Based Model (ASBM) in conjunction with a novel two-equation model based on the transport equation for turbulent kinetic energy, k, and large scale vorticity ω^2. The model has been calibrated for channel flow simulations and the results have shown excellent agreement with available DNS data.

The primary objective of this research project was to implement ASBM in a three-dimensional Reynolds-Average Navier-Stokes (RANS) solver to perform simulations of complex flows. In this report, we describe the combination of the ASBM Reynolds stress evaluation with conventional turbulence model, namely the $k-\omega$ and $\omega^2-\nu$ models. Results are presented for channel flow with and without spanwise rotation. For the primary objective some modifications to the original ASBM formulations have been developed to ease its numerical implementation. In particular, a scalar diffusivity has been introduced to the transport equations of the turbulent scalars and a new definition of the length scale that identifies the near-wall viscous dominated region has been introduced.

2. The structure-based algebraic stress model

The eddy-axis concept Kassinos & Reynolds (1994) is used to relate the Reynolds stress and the structure tensors to parameters of a hypothetical turbulent eddy field. Each eddy represents a two-dimensional turbulence field, and is characterized by an eddy-axis vector, a_i. The turbulent motion associated with this eddy is decomposed in a component along the eddy axis, the jetal component, and a component perpendicular to the eddy axis, the vortical component. This motion can be further allowed to be flattened in a direction normal to the eddy axis (a round eddy being characterized by a random distribution of kinetic energy around its axis). Averaging over an ensemble of turbulent eddies gives statistical quantities representative of the eddy field, along with constitutive equations relating the normalized Reynolds stresses and turbulence structure to the statistics of
the eddy ensemble.

\[
r_{ij} = \frac{u_i^j u_j^i}{2k} = (1 - \phi)\frac{1}{2}(\delta_{ij} - a_{ij}) + \phi a_{ij} + (1 - \phi)\chi [\gamma (1 - a_{nm}b_{mn})\delta_{ij} - \frac{1}{2}(1 + a_{nm}b_{mn})a_{ij} - b_{ij} + a_{mn}b_{nj} + a_{jn}b_{mi}] + (-\gamma \Omega^T / \Omega^T) (\epsilon_{ipj} a_{pj} + \epsilon_{jpj} a_{pi}) \{ -\frac{1}{2} [1 - \chi (1 - a_{nm}b_{mn})] \delta_{kr} + \chi b_{kr} - \chi a_{kn} b_{nr} \}
\]

The eddy-axis tensor, \(a_{ij} = \langle V^2 a_i a_j \rangle \), is the energy-weighted average direction cosine tensor of the eddy axes. The eddy-axis tensor is determined by the kinematics of the mean deformation. Eddies tend to become aligned with the direction of positive strain rate, and they are rotated kinematically by mean or frame rotation.

Motion around the eddy is called vortical, and motion along the axis is called jetal. The eddy jetting parameter \(\phi \) is the fraction of the eddy energy in the jetal mode, and \((1 - \phi) \) is the fraction in the vortical mode. Under irrotational mean deformation, eddies remains purely vortical \((\phi = 0)\). Shear produces jetal eddies, and in the limit of infinite rapid distortion \(\phi \to 1 \) for shear in a non-rotating frame. For shear in a rotating frame, \(\phi \) ranges from 1 for zero frame rotation to 0 for frame rotation that exactly cancels the mean rotation in the frame, for which the mean deformation in an inertial frame is irrotational.

The eddy helix vector \(\gamma_k \) arises from the correlation between the vortical and jetal components. Hence \(\gamma_k = 0 \) for purely vortical turbulence \((\phi = 0)\) or for purely jetal turbulence \((\phi = 1)\). Typically \(\gamma_k \) is aligned with the total rotation vector \(\Omega_k \). The eddy-helix vector is the key factor in setting the shear stress in turbulent fields.

Flattening is used to describe the degree of asymmetry in the turbulent kinetic energy distribution around an eddy. Around eddies has no preferential distribution. If the motion is not axisymmetric around the eddy axis, the eddy is called flattened. The eddy-flattening tensor, \(b_{ij} \), is the energy-weighted average direction cosine tensor of the flattening vector. The intensity of the flattening is given by the flattening parameter, \(\chi \). Under rapid irrotational deformation in a fixed frame eddies remain axisymmetric. Rotation tends to flatten the eddies in planes perpendicular to the rotation direction.

Following Reynolds et al. (2000), the eddy-axis tensor, \(a_{ij} \), is computed on the analysis frame, where the turbulence might be at equilibrium or very close to it. The eddy-axis tensor is computed with no reference to the frame rotation, as it is only kinematically rotated by it (Kassinos & Reynolds 1994, Haire & Reynolds 2003). The evaluation is divided in two parts. Initially a strained eddy-axis tensor, \(a_{ij}^\ast \), is evaluated based on the irrotational part of the mean deformation. Next a rotation operation is applied, sensitizing the eddy-axis tensor to mean rotation. This procedure produces eddy-axis tensor states that mimic the limiting states produced under RDT for different combinations of mean strain with on-plane mean rotation, while guaranteeing realizability of the eddy-axis tensor.

The strained \(a_{ij}^\ast \) is given by

\[
a_{ij}^\ast = \frac{1}{3}\delta_{ij} + \frac{S_{ij}^\ast a_k^\ast + S_{jk}^\ast a_i^\ast - \frac{2}{3}S_{mn}^\ast a_m^\ast \delta_{ij} r}{a_0 + 2\tau^2 S_{kp}^\ast S_{pq}^\ast a_p^\ast a_q^\ast},
\]

where \(S_{ij}^\ast = S_{ij} - S_{kk} \delta_{ij} / 3 \) is the traceless strain-rate tensor with \(S_{ij} = (\partial u_i / \partial x_j + \partial u_j / \partial x_i) / 2 \), \(\tau \) is a time scale (Eq. 3.4), and \(a_0 = 1.6 \) is a “slow” constant. This gives realizable states for the eddy-axis tensor under irrotational deformations.

The final expression for the homogeneous eddy-axis tensor, \(a_{ij} \) (for near-wall regions
see Equation 2.13), is obtained by applying a rotation transformation to the strained eddy-axis tensor, \(a^*_{ij}\),

\[
a_{ij} = H_{ik}H_{jk}a^*_{kl},
\]

\[
H_{ij} = \delta_{ij} + h_1 \frac{\Omega_{ij}}{\Omega_{pp}^2} + h_2 \frac{\Omega_{ik}\Omega_{kj}}{\Omega_{pp}^2},
\]

(2.3)

where \(\Omega_{pp}^2 = \Omega_{pq}\Omega_{qp}\). The orthonormality conditions \(H_{ik}H_{jk} = \delta_{ij}\) and \(H_{ki}H_{kj} = \delta_{ij}\) require

\[
h_1 = \sqrt{2} h_2 - \frac{h_2}{2}.
\]

(2.4)

\(h_2\) is determined with reference to RDT for combined homogeneous plane strain and rotation (see Reynolds et al. 2000, Haire & Reynolds 2003),

\[
h_2 = \begin{cases}
2 - 2\sqrt{\frac{1}{2}(1 + \sqrt{1 - r})} & \text{if } r \leq 1 \\
2 - 2\sqrt{\frac{1}{2}(1 - \sqrt{1 - 1/r})} & \text{if } r \geq 1
\end{cases}
\]

\[
r = \frac{\alpha_{pq}\Omega_{qr}S^*_p}{S^*_kS^*_m\alpha_{mk}}.
\]

(2.5)

The flattening tensor \(b_{ij}\) is modeled in terms of the mean rotation rate vector, \(\Omega_i\), and the frame rotation rate vector, \(\Omega_i^f\),

\[
b_{ij} = \frac{(\Omega_i + C_b\Omega_i^f)(\Omega_j + C_b\Omega_j^f)}{(\Omega_k + C_b\Omega_k^f)(\Omega_l + C_b\Omega_l^f)}, \quad C_b = -1.0.
\]

(2.6)

The helix vector \(\gamma_k\) is taken as aligned with the total rotation vector,

\[
\gamma_k = \gamma \frac{\Omega_k^T}{\sqrt{\Omega_k^T \Omega_k^T}}, \quad \gamma = \frac{\beta \sqrt{2(1 - \phi)}}{1 + \chi}.
\]

(2.7)

Modeling \(\phi, \beta\) (see Eq. 2.7), and \(\chi\) is a crucial part in the construction of the model. The equations for these scalars are found by analyzing target turbulent states corresponding to a mean deformation. Throughout the model development there is a strong effort to make it consistent with RDT solutions, aiming to improve model dependability and realizability for a wide range of mean deformations, as well as to obtain guidance in the functional shape chosen for the structure parameters. Tentative functional forms for the structure parameters are thus chosen with reference to RDT. A set of parameter values is chosen to mimic the isotropic turbulent state (the eddy structure is expected to consist of axisymmetric (\(\chi = 0\)), vortical (\(\phi = 0\)) eddies). Finally interpolation functions (along with model constants) are chosen to bridge these limiting states (isotropy and RDT). They are selected specially to match a canonical state of sheared turbulence, observed in the log region of a boundary layer.

The structure scalars are parameterized in terms of \(\eta_m, \eta_f, \) and \(a^2\), representatives of the ratio of mean rotation to mean strain, frame rotation to mean strain, and a measure of anisotropy respectively. These in turn are defined in terms of \(\tilde{\Omega}_m^2\tau^2, \tilde{\Omega}_f^2\tau^2,\) and \(S^2\tau^2\); measures of the strength of the mean rotation, total rotation, and mean strain respectively. \(\tau\) represents a time scale of the turbulence (Eq. 3.4).

\[
\eta_m \equiv \sqrt{\frac{\tilde{\Omega}_m^2}{S^2}}, \quad \eta_f \equiv \eta_m - \text{sign}(X) \sqrt{\frac{\tilde{\Omega}_f^2}{S^2}}, \quad a^2 \equiv \alpha_{pq}\alpha_{pq},
\]

(2.8)
\begin{equation}
\hat{\Omega}_m^2 \equiv -a_{ij} \Omega_{ik} \Omega_{kj}, \quad \hat{\Omega}_T^2 \equiv -a_{ij} \Omega_{ik}^T \Omega_{kj}^T, \quad \hat{S}^2 \equiv a_{ij} S_{ik} S_{kj}, \quad X \equiv a_{ij} \Omega_{ik}^T S_{kj}. \tag{2.9}
\end{equation}

In order to evaluate the structure parameters, they are first defined in a generic a^2 plane, along the mean-shear line, $\eta_m = 1$, and along the plane-strain line, $\eta_m = 0$. They are then interpolated or extrapolated in the same a^2 plane, depending on the flow location in this a^2 plane, specified in terms of η_f and η_m. The structure parameters are then sensitized to the degree of anisotropy of the turbulence, measured along the a^2 direction.

In the following, the subscripts “0” and “1” applied to ϕ, β, and χ, refer to values along the lines $\eta_m = 0$ and $\eta_m = 1$, respectively. The superscript “*” is used to denote values on the a^2 plane where $\eta_m = 0$ and $\eta_m = 1$ were evaluated.

The structure parameters are then defined with help from the auxiliary functions given by Tables 1-3.

\begin{equation}
\phi = \phi^* \left(\frac{(\eta_m - \eta_f)^2}{(\eta_m - \eta_f)^2 + (1 - a^2)^2} \right) \left(\frac{|\eta_m - \eta_f| \sqrt{\frac{1}{2} (a^2 - \frac{1}{2})}}{|\eta_m - \eta_f| \sqrt{\frac{1}{2} (a^2 - \frac{1}{2})} + p_0 (1 - a^2)} \right), \tag{2.10}
\end{equation}

\begin{equation}
\beta = \beta^*, \tag{2.11}
\end{equation}

\begin{equation}
\chi = \chi^* \left[\frac{3}{2} \left(a^2 - \frac{1}{3} \right) \right]^{p_1}. \tag{2.12}
\end{equation}

As a no-slip wall is approached, the velocity is driven to zero through the action of viscous forces. Furthermore, the velocity vector is reoriented into planes parallel to the wall through an inviscid mechanism (wall blocking) which acts over distances far larger than the viscous length scale. Thus the velocity component normal to the wall is driven to zero faster than the tangential components. In the structure-based model it is postulated that the eddy orientation shall also be parallel to the wall. A wall-blocking procedure is then introduced to reorient the eddies into planes parallel to the wall. The structure parameters are also sensitized to wall blocking, such that the modeled Reynolds stresses are consistent with the expected near wall asymptotic behavior.

Following Reynolds et al. (2000), the homogeneous eddy-axis tensor, a^{h}_{ij}, is computed based on the homogeneous algebraic procedure, Equations 2.2 and 2.3 (note that the superscript “h” has been added in the current section). It is then partially projected onto planes parallel to the wall,

\begin{equation}
a_{ij} = H_{ik} H_{jk} a^{h}_{kl}, \quad H_{ik} = \frac{1}{D_{a}} (\delta_{ik} - b_{ik}), \quad D_{a}^2 = 1 - (2 - B_{kk}) a_{mn}^h B_{nm}, \tag{2.13}
\end{equation}

where H_{ik} is the partial-projection operator, and D_{a}^2 is such that the trace of a_{ij} remains unity. The blockage tensor B_{ij} gives the strength and the direction of the projection. If the wall-normal direction is x_2, then B_{22} is the sole non-zero component, and varies between 0 (no blocking) far enough from the wall, to 1 (full blocking) at the wall. B_{ij} is computed by

\begin{equation}
B_{ij} = \frac{\Phi_i \Phi_j}{\Phi_k \Phi_k} \Phi \quad \text{if} \quad \Phi_k \Phi_k > 0. \tag{2.14}
\end{equation}

If all gradients of Φ vanish, the denominator in (2.14) has been clipped setting effectively B_{ij} to zero.

The blocking parameter, Φ, is computed by an elliptic relaxation equation

\begin{equation}
L^2 \frac{\partial^2 \Phi}{\partial x_k \partial x_k} = \Phi, \quad \frac{L u_r}{\nu} = 23, \tag{2.15}
\end{equation}
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
η_f & ϕ_1 & β_1 & χ_1 \\
\hline
$\eta_f < 0$ & $\frac{\eta_f - 1}{3 \eta_f - 1}$ & $1 - b_0 \frac{\eta_f}{(1 - a^2)} \left(1 + \sqrt{(a^2 - 1/3)} \right)^{-1}$ & $\frac{1}{2} \beta_1$

$0 < \eta_f < 1$ & $(1 - \eta_f)$ & 1 & $1 - \frac{(1 - \eta_f)^2}{1 + b_0 \eta_f (1 - a^2)}$

$\eta_f > 1$ & $\frac{\eta_f - 1}{3 \eta_f - 1}$ & $1 + b_2 \frac{(\eta_f - 1)}{(1 - a^2) \eta_f \sqrt{(a^2 - 1/3)}}^{-1}$ & $1 - \frac{(1 - \beta_1) (\eta_f - 1)}{(1 - a^2) + (\eta_f - 1)}$
\hline
\end{tabular}
\caption{Turbulence structure scalars: a^2 plane, $\eta_m = 1$ line}
\end{table}

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
η_f & ϕ_0 & β_0 & χ_0

$\eta_f \leq \sqrt{3}/4$ & $0.145 \left(\frac{(2 \eta_f)^2}{2} - \left(\frac{(2 \eta_f)^2}{2} \right)^2 \right)$ & 1 & $1 - \left(\frac{0.342 (2 \eta_f^2)}{3/4} + (1 - 0.342) \left(\frac{(2 \eta_f^2)^2}{3/4} \right) \right)$

$\eta_f > \sqrt{3}/4$ & $(1 + \chi_0)/3$ & $-\chi_0$ & $1 - \left(1 + \chi_0 \right) (\eta_f - \sqrt{3}/4) \eta_f \sqrt{(a^2 - 1/3)} \right)^{-1}$
\hline
\end{tabular}
\caption{Turbulence structure scalars: a^2 plane, $\eta_m = 0$ line}
\end{table}

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
η_m & ϕ^* & β^* & χ^*

$\eta_m < 1$ & $\phi_0(\eta_m) + [\phi_1(\eta_m) - \phi_0(\eta_m)] \eta_m^2$ & $\beta_0(\eta_m) + [\beta_1(\eta_m) - \beta_0(\eta_m)] \eta_m^2$ & $\chi_0(\eta_m) + [\chi_1(\eta_m) - \chi_0(\eta_m)] \eta_m^4$

$\eta_m > 1/3$ & $1 + \left(\phi_1(\eta_m) - 1/3 \right)$ & $1 + \left(\beta_1(\eta_m) \right)$ & $1 + \left(\chi_1(\eta_m) \right)$

$\eta_m = 1$ & $1/(1 - \eta^2)$ & $1/(1 - \eta^2)$ & $1/(1 - \eta^2)$
\hline
\end{tabular}
\caption{Turbulence structure scalars: a^2 plane, interpolation along the (η_m, η_f) directions. $\eta_* \equiv -\eta_m + \left(4/\sqrt{3} + (2 - 4/\sqrt{3}) \eta_m \right) \eta_f$.}
\end{table}

with $\Phi = 1$ at solid boundaries, and $\Phi_{,n} \equiv \partial \Phi / \partial x_n = 0$ at open boundaries, where x_n is the direction normal to the boundary.

To recover proper asymptotic behavior of the Reynolds stresses, $r_{12} \propto O(x_2)$ and $r_{22} \propto O(x_2^2)$, as the wall at $x_2 = 0$ is approached, the homogeneous jet, ϕ^h, and helix, γ^h, parameters are modified using

$$
\phi = 1 + (\phi^h - 1) (1 - B_{kk})^2, \quad (2.16)
$$

$$
\gamma = \gamma^h (1 - B_{kk}). \quad (2.17)
$$

A consequence of this approach is that realizability is automatically satisfied for r_{ij}.
3. Rotating channel flow computed with conventional turbulence models combined with ASBM

The steady RANS equations governing the motion of an incompressible viscous fluid in a Cartesian rotating frame of reference are given by conservation of mass and momentum as Greenspan (1968):

\[
\frac{\partial u_i}{\partial x_i} = 0, \\
u \frac{\partial u_i}{\partial x_j} + 2\varepsilon_{ijk} \Omega_j^f u_k = -\frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_k \partial x_k} + \frac{\partial}{\partial x_j} \left(-u_j u'_i \right),
\]

where \(u_i \) is the mean velocity measured in the coordinate system rotating with constant angular velocity \(\Omega_j^f \), and \(x_j, P, \rho \), and \(\nu \) represent respectively the position vector, reduced pressure, density, and kinematic viscosity. The reduced pressure is given by

\[
P = P + U - \frac{1}{2} (\varepsilon_{ijk} \Omega_j^f x_k)(\varepsilon_{lmq} \Omega_l^f x_q),
\]

where \(p \) is the thermodynamic pressure, \(U \) is such that a conservative body force per unit mass (e.g., gravity) is given by \(\partial U / \partial x_i \), and the last term represents the centripetal acceleration.

For fully-developed channel flow in a spanwise rotating frame the mean velocity is given by \(u_j = u(y) \) where \(y \) is the wall normal direction. The frame rotation rate vector is given by \(\Omega_j^f = \Omega_j^f z \) with \(z \) being the spanwise direction. The wall-normal mean velocity component vanishes by continuity for a fully developed channel flow with zero velocity at the walls. This simplifies the momentum equation; only the momentum equation in streamwise direction \(x \) needs to be solved and the term containing the angular velocity \(\Omega_j^f \) is zero.

The Reynolds stress in equation (3.2) is obtained with the algebraic structure-based procedure described in Section 2. The complete ASBM model, described in Langer & Reynolds (2003), includes two scalar transport equations for the turbulent kinetic energy \(k \) and the large-scale turbulent enstrophy \(\omega^2 \). The purpose of these two quantities is to provide the field distribution of \(k \) and of the turbulence time scale \(\tau \). The latter has the following relation to \(k \) and \(\varepsilon \):

\[
\tau^2 = \left(\frac{k}{\varepsilon} \right)^2 + \left(2.0 \sqrt{\frac{\nu}{\varepsilon}} \right)^2,
\]

In this work, field distributions of \(k \) and \(\tau \) have been obtained from the \(k-\omega \) model by Wilcox (1993) and \(v^2-f \) model by Lien & Durbin (1996). In addition, low-Re modifications given in Wilcox (1993) for the \(k-\omega \) model have been considered. For the \(k-\omega \) model, the time scale is computed as \(\tau^2 = 1/(\beta^* \omega)^2 + 4.0 \nu/(k \omega \beta^*) \) while equation (3.4) is used directly for \(v^2-f \) which includes transport equations for \(k \) and \(\varepsilon \).

The time scale is used to scale the vorticity \(\Omega_{ij} \) and strain \(S_{ij} \) tensors that are obtained from the mean flow velocity distribution. The blockage tensor \(B_{ij} \) is obtained as described above from an elliptic equation. The tensors \(\tau S_{ij}, \tau \Omega_{ij} \) and \(B_{ij} \) as well as \(k \) and \(\tau \) and the frame rotation vector \(\tau \Omega_j^f \) provide the necessary information for the ASBM Reynolds stresses \(\tau_{ij} = -u_j u'_i \).

Following equation (3.2), the Reynolds stress enters only the diffusion term in the momentum equation. In an incompressible RANS flow solver based on a standard SIMPLE
algorithm the diffusion term is usually treated implicitly for stability. This is straightforward when the Reynolds stress is computed over the Boussinesq approximation and an eddy-viscosity is used. With the ASBM procedure the Reynolds stress is computed explicitly and an explicit correction to the momentum equation is used. For the implementation of the ASBM procedure in the IBRANS code by Kalitzin & Iaccarino (2003) the last two terms in equation (3.2) have been re-written as:

\[
\begin{align*}
\frac{\partial}{\partial x_j} &\left[(\nu + \nu_i^n) \frac{\partial u_i^{n+1}}{\partial x_j} \right] - \frac{\partial}{\partial x_j} \left[\nu_i^n \frac{\partial u_i^n}{\partial x_j} - \frac{\tau_{ij}^n}{\rho} \right]
\end{align*}
\]

(3.5)

where \(n \) is the current iteration. The terms with the eddy-viscosity are equal to each other when the solution is converged. The eddy-viscosity used is as defined by the \(k-\omega \) or \(\nu^2-f \) model.

The Reynolds stress enters only the production term \(P_k = \tau_{ij} \partial u_i / \partial x_j \) in the transport equations of the turbulence models. The eddy-viscosity is retained in the diffusion terms and no additional modifications of the turbulence equations have been performed in respect to the frame rotation.

Haire & Reynolds (2003) also looked at using alternative scale equations along with an earlier version of the ASBM, for free shear flows. A few distinctions are present in the current investigation. Briefly, (i) the turbulent transport term in the scale equations has a tensorial form in Haire & Reynolds (2003), whilst here a scalar diffusion model is investigated, for its simplicity makes it possible to use the ASBM in available CFD packages. (ii) Haire and Reynolds concentrated on free shear flows. The analysis here regards wall-bounded flows, and (iii) the algebraic equations that constitute the current ASBM formulation are different from the earlier version explored by them.

The channel flow computations have been performed as streamwise periodic flow with one cell in flow direction. The pressure and velocity components at the outflow have been copied to the inflow and a source term has been added to the momentum equation to account for the pressure loss.

4. Numerical results

Channel flow simulations in orthogonal mode rotation have been performed for a variety of Reynolds and Rossby numbers. The first objective of these simulations is to identify the steps necessary to combine the ASB Reynolds stress evaluation and a conventional eddy-viscosity model. As shown earlier the RANS equations are \textit{closed} when the eddy-viscosity is introduced; therefore, the first, preliminary, step is to use the ASB procedure as a post-processing tool to evaluate the Reynolds stresses. Successive steps consist of introducing different levels of coupling between ASB and the overall solution procedure; first, only the mean equations are modified by discarding the eddy-viscosity and evaluating the divergence of the Reynolds stresses directly. Finally, a fully coupled solution is obtained when the Reynolds stresses are also used to close terms in the equations for turbulent quantities. The results obtained are summarized in Fig. 1 for the \(k-\omega \) and the \(\nu^2-f \) models in a channel flow without rotation. Not surprisingly, the best match with the experiments is obtained when the full coupling is employed; it is also very interesting to note that the use of ASB as a post-processing is already sufficient to obtain the correct level of anisotropy as opposed to the standard application of the eddy-viscosity models. This situation is clearly a peculiarity of this specific test case because the stress anisotropy does not affect the mean flow transport. Another important observation is
that the inclusion of the ASB stress evaluation in the turbulent kinetic energy production is necessary to obtain accurate results. It must be noted that in the original ASBM approach by Langer & Reynolds (2003), a tensorial turbulent diffusivity is also included whereas in the present implementation a scalar coefficient is used.

Fig. 2 shows the effect of the Reynolds number for flow without rotation. In this case the high- and low-Re ASB k-ω as well as the ASB v^2-f models are reported. Here we added the ASB prefix to the models to indicate that the Reynolds stresses are evaluated with the ASB procedure. The latter two produce results that are satisfactory for both Reynolds numbers whereas the high-Re ASB k-ω under-predicts the peak of the u_{rms} in particular for $Re = 180$.

The application of the fully-coupled approach for the flow in a channel with rotation is reported in Fig. 3 and Fig. 4 for a channel flow at two different Rossby numbers. The Rossby number is defined here as $Ro = \frac{\Omega L}{u_b h}$, where Ω is the magnitude of the frame rotation rate, h is the half-height of the channel and u_b is the bulk velocity in the channel.
In these plots DNS data and the original ASBM are compared to ASB k-ω and ASB v^2-f predictions. The asymmetry in the mean velocity profile is properly captured even for the high Rossby case. In addition, the Reynolds stress anisotropy is remarkably close to the DNS results at the turbulence-enhanced side of the channel. Notice that at the pressure-side of the channel (lower side in the Fig. 3 and Fig. 4) turbulence intensity is reduced and, eventually, the turbulent stresses are negligible with respect to the viscous stresses. The correspondence between mean flow predictions and correct level of anisotropy is very encouraging. The difference between the full ASBM approach and the current combined approach is also very small especially when v^2-f is used.

Further simulations have been performed at a variety of Rossby numbers in the $[0-0.77]$ interval. The results obtained using the v^2-f and the ASB v^2-f are presented. The mean velocity profile and the turbulent kinetic energy are reported in Fig. 5 and Fig. 6, respectively. As expected from the results previously shown, the current model and the DNS agree remarkably well.
5. Conclusions and future plans

The algebraic structure-based model has been used in this work in combination with conventional linear eddy-viscosity models to evaluate the Reynolds stress in the RANS equations. This approach has proven to be very accurate in predicting the mean flow and the stress anisotropy in rotating channel flow as opposed to the baseline eddy-viscosity predictions that are typically insensitive to frame rotation. Several modifications, that have not been reported in this paper, have been introduced to the ASBM model in order to facilitate its application to more general flow problems. In particular, a scalar turbulent diffusion coefficient is introduced in lieu of the original tensorial diffusivity and a modified formulation for the blockage effect that includes a new definition of the relevant length scale has been derived.

The current combination of the ASB Reynolds stress evaluation with the v^2-f and $k-\omega$ models is carried out in a full three-dimensional flow solver. However, only channel flow simulations were performed. Preliminary computations of flows in square-ducts appeared encouraging. Convergence for this flow was poor indicating that further work on
the numerical scheme and the ASB algorithm is needed. Current work focuses on the clarification of this issue.

REFERENCES

