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Budget of disturbance energy in gaseous reacting
flows

By A. Giauquef, T. Poinsot{, M. Brear] aAND F. Nicoud||

This paper presents an energy analysis of the disturbances that occur in gaseous com-
bustion. It builds upon the previous work of Myers (1991) by including species and heat
release terms, thus extending Myers’ exact and linearized energy corollaries to combust-
ing flows. These energy corollaries identify additional and significant energy density, flux,
and source terms, thereby generalizing the recent results of Nicoud and Poinsot (2005)
to include non-zero mean flow quantities, large amplitude disturbances, and varying spe-
cific heats. The associated stability criterion is therefore significantly different from the
Rayleigh criterion in several ways. The closure of the exact equation is performed on
an oscillating 2-D laminar flame. Results show that in this case the general equation
can be substantially simplified by considering only entropy, heat release, and heat flux
terms. The first one behaves as source term whereas the latter two dissipate the distur-
bance energy. Moreover, terms associated with the non-zero baseline flow are found to
be important for the global closure of the balance even though the mean Mach number
is small.

1. Introduction

Combustion stability has received sustained attention in both the academic and indus-
trial communities, particularly over the last fifty years. During this time, the literature
on this issue has grown enormously, and now spans numerous applications, including
rockets (Flandro 1985; Culick 2001), afterburners (Bloxsidge et al. 1988), gas turbines
(Dowling and Stow 2003; Poinsot and Veynante 2001), and industrial burners (Putnam
1971). The ”"Rayleigh criterion” is the most common argument for explaining combus-
tion stability. While Rayleigh himself only first stated this criterion in prose form (Lord
Rayleigh 1878), it is often written as

/Qp’wépdx > L, (1.1)

where p’, wh., L, and Q are the static pressure and heat release rate disturbances at a
point in space, the losses from the combustor, and the combustor volume, respectively. (7)
denotes the time average. This criterion states that the combustor is unstable when the
relative phase of the pressure and heat release disturbances over the combustor volume
are such that the integral is larger than the (at present unspecified) losses.

Despite the Rayleigh criterion having its origin well over a century ago, a recent paper
by Nicoud and Poinsot (2005) suggests that it is still at the very least unclear under
what conditions this criterion can be derived from the equations governing combusting
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fluid motion. The earlier works of Chu (1956, 1965), Bloxsidge et al. (1988), and Dowling
(1997) attempted to show precisely this, using progressively more general definitions
of acoustic or disturbance energies that have appeared over the last fifty or so years.
These works illustrate that deriving the Rayleigh criterion from the governing equations
first requires a valid conservation equation for the energy contained in the disturbances,
whether these disturbances are considered acoustic or otherwise.

In combusting flows, any equation stating disturbance energy conservation must start
from equations of motion that at least include non-zero mean flow quantities and entropy
variation. To ignore either the mean flow or entropy variation causes conceptual problems,
discussed later in this paper. It appears that only the energies defined by Morfey (1971)
and Myers (1991) do this. Viscous dissipation and heat conduction, while included in
these works, are not essential and are usually small. The derivation in Dowling (1997) of
an acoustic energy conservation equation for combusting flows extended the approach of
Morfey (1971) for non-combusting flows. In Morfey’s analysis, any entropy disturbances
are shifted into the source term. Myers (1991) allows entropy disturbances to remain
in both the energy density and flux terms. Myers’ equation was consistent with those
developed earlier by Chu (1965) and Pierce (1981) for zero-mean flow.

Nicoud and Poinsot (2005) rederived the fluctuating energy equation of Chu (1965) and
argued that the Rayleigh criterion is an incomplete description of the significant sources of
fluctuating energy in combustion. In the limit of small disturbance amplitude, a source
term proportional to Tiwr; was found where wp; and T are the first terms in the
heat release and static temperature asymptotic expansions. This term is analogous but
significantly different to the Rayleigh term in Eq. (1.1). Entropy disturbances through
the flame were also argued to be a significant source of disturbance energy, but Nicoud
and Poinsot’s formulation was conceptually problematic because they assumed zero-mean
flow quantities. Bloxsidge et al. (1988) and Dowling (1997) also showed that terms other
than the Rayleigh term existed for their differently defined acoustic energy equation, but
both argued that these terms were small in practice.

This difference of opinion on such a fundamental and practically important problem needs
to be resolved. This can be achieved by first deriving a general equation for disturbance
energy, as this paper does, and then studying numerically the magnitudes of all the
identified source terms. The basic equation should not be linear as it is often the case
when dealing with acoustics. Indeed the temperature, entropy, and velocity disturbances
in particular can be large within flames and non-linear effects are already known to
be significant in the acoustic energy analysis of solid rocket combustion (Flandro 1985;
Culick 2001). Since Myers (1991) presented both exact and linearized disturbance energy
equations, comparison of the two would determine the applicability of the linearized
equations on a given combustor if the generalization of Myers’ approach to combusting
flows can be handled appropriately.

This paper supports the questioning of the validity of the Rayleigh criterion (Nicoud
and Poinsot 2005) in common combusting flows. It draws heavily on Myers’ exact and
linearized energy corollaries (Myers 1991), and extends Nicoud and Poinsot’s results to
non-zero mean Mach numbers, large amplitude disturbances, and varying specific heats.
Preliminary testing of the proposed exact disturbance energy equation is then performed
by post-processing numerical simulation of a 2-D laminar oscillating flame.
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2. Formulation
2.1. What is a "disturbance energy” ?

The notion of a disturbance energy Fd is somewhat vague; we first present a set of
properties that we believe this quantity should meet in order to be useful when analyzing
combustion stability. Many of these properties are obtained when expanding F; or any
other quantity as f(x,t) = fo(x) + Y €' fi(x,t), where € is a small parameter.

e P0: E; should be zero when there are no fluctuations, that is E49 = 0,

e P1: F,; should be quadratic in the primitive variable fluctuations, that is F4; = 0,
and reduce properly to the well-established energies derived earlier for small amplitude
disturbances (Chu 1965; Myers 1991; Nicoud and Poinsot 2005) when proper assumptions
are made. P1 is also a pre-requisite for P3,

e P2: The leading order term of E4, viz. E42, should only depend on the first-order
term of the primitive variable fluctuations py, p1, uy, etc.

e P3: F;5 should be definite positive so that it increases with the amplitude of the fluc-
tuations. The disturbance energy itself should remain positive even for large amplitude
fluctuations.

While PO is an obvious statement, P1 is enforced for consistency with previous works.
Noting FE the sensible stagnation energy of the mixture, P1 disqualifies £ — Ey as a
disturbance energy since (E — Ey); = C,T for a calorifically perfect mixture at rest.
Property P2 is required for practical use: if F4o were depending on both p; and po, for
instance, one would have to define and handle two different pressure fluctuations when
computing/analysing F4. Eventually, let us assume a conservation equation of the form

%+V~W:D (2.1)

for E4, where W and D stand for the flux vector and source of the disturbance energy.
If property P3 is satisfied, a stability criterion can easily be derived by integrating Eq. (
2.1) over the flow domain Q bounded by the surface S:

STABILITY N / Ddx — / W - ndS < 0, (2.2)
Q S

where n is the outward normal vector.

At this point, it is unclear whether a disturbance energy satisfying P0-P3 exists and if
it is unique. A potential candidate for which we can show that P0-P2 and at least partly
P3 are satisfied is discussed in the rest of this paper.

2.2. Basic equations

The exact disturbance energy conservation equation is derived from statements of mass
conservation, species mass conservation, momentum transport, energy conservation, and
entropy transport for a mixture of n gaseous species,
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%+V.m:0, (2.3)

agfk YV (mtq) =wp, for k=1,2,..n (2.4)
g—?+C+VH—TVs:w+¢*, (2.5)
%(pH—p)+V-(mH)—m'¢:TQ7 (2.6)
XV (sm)=Q Q" (2.7)

In Egs. (2.3)-(2.7), p is the volumetric density, u is the velocity vector, m = pu
is the momentum, £ = V X u is the vorticity and ¢ = &€ x u, H = hs +u-u/2 is
the sensible stagnation enthalpy, T' is the temperature, s is the sensible entropy, 1 is
such that ¢;; = (1/p)(07;;/0x;) where 7;; is the ij'" component of the viscous stress
tensor. Noting Yx, wk, hsk, gsk, Vi and qi = pY; Vi the mass fraction, volumic rate of
production, sensible enthalpy, sensible Gibbs free energy, diffusion velocity and diffusion
mass flux of the k' species respectively, one also defines 1p* = Sore1 95t VYy, TQ* =
=Y h 1 9sk (wr — V-qi) and TQ = —V-q+¢+wy where q = —AVT+p >, Yihg Vi,
is the heat flux, ¢ is the viscous dissipation, and wy is the heat release per unit volume.
Splitting each quantity () into time-averaged (~) and fluctuating components ()’, Egs.
(2.3)—(2.7) can be time averaged to give:

V.-m=0, (2.8)

V. (Yym)+ V- g + V- -m'Y/ =y, (2.9)
C+VH-TVs—T'Vs =+, (2.10)

V- mH)+V - mH —m-¢%-—m' ¢ =TQ+T'Q, (2.11)
V. (ms)+ V- -m's' =Q+ Q*. (2.12)

Note that Egs. (2.8)—(2.12) have been obtained by assuming that the time averages of
time derivatives are zero, which implies averaging either over a very long period of time
or over a finite number of periods of oscillation. For variables u, p, m, Y, qx, wg, ¢, H,
Ta S, 110771/)*, Qv Q*, €s; Jsk and Qk = wk_v'qk_v'(myk)v f(X,t) = f(X)+E€Zf1(X,t)
where f(x) defines the baseline flow. Note that f’ is therefore not equivalent to f; as
defined in Section 2.1. It is exactly Z:;Of i(x,t)e’ and thus equals €f; to order €2. Note
also that Myers (1991) defined his disturbances around a laminar base flow, which has
little meaning in many combusting cases, particularly those undergoing strong limit cycle
oscillations. Nonetheless, if the disturbances are sufficiently small, the time averages of
the products of the disturbances in Egs. (2.8)—(2.12) are negligible and the laminar
equations are recovered.

2.3. Non-linear disturbance energy

Myers’ approach (1991) consists of subtracting from Eq. (2.6) an appropriate linear
combination of Eqs. (2.3), (2.5), and (2.7) in order to obtain an ezact conservation
equation for a disturbance energy. The same approach has been followed in this study,
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including combustion and mixing effects by including the species mass conservation Eq.
(2.3) into the linear combination that is removed from (2.6). A guide to determine a
proper linear combination of these equations is to eventually obtain a disturbance energy
that satisfies properties P0-P3. One shows that a proper choice is to multiply Eq. (2.3)
by (H—T5— Y 1_, 9sxYx), Eq. (2.7) by T, Eq. (2.5) by m, and Eq. (2.4) by g5 and
then subtract all these from ( .6). Making use of Egs. (2.8), (2.9), (2.11), and (2.12),
one eventually obtains an equation of the form (2.1), where the disturbance energy, flux
vector, and source terms are defined respectively as

Eyj=plH—H—-T(s—5)]—m-(u—1u)— )= Garp(Ye — Yi) — el (2.13)
k=1
W=(m-m)[(H-H)-T(s—3)]+m(T—T)(s - 35) (2.14)
+m'H — Tm's’
and
D =D¢+ Ds+ Dg + Dg+ + Dy, + Dy~ + Dy, (2.15)
where

De = ~(m —m) (¢~ &)~ - €. ]
—(m—rh)-(s—§)VT+(s—§)rh~V(T—T)
-VI'—m-T'Vs'

DQ:(T NQ-Q)+TQ

S
I

Do = (T -T)(Q"— Q")+ T'Q¥
Dy =(m-m)- (¢ — 'l/J)-i-m’q/)
Dy- = (m —1m) - (4" — ") +m’ 4"
Dy, = > g%+ (guYi + TorY) V - m’
k=1 k=1
+ Zg;kQ;c +g:V -m/,
k=1

where Q) = wp, — V- q — V- (mY%). Note that the correlation term in Eq. (2.13) as been
introduced so that the leading order term of the disturbance energy does not contain a
constant contribution and is positive. Also note that the disturbance energy contains the
fluctuation of the turbulent kinetic energy, Ey, = pi (uju} — ujul).

2.4. Linearization

It is obvious from Eq. (2.13) that Ey satisfies property P0. Disturbances of the form
() =0 —(")=>:2,€(); are then substituted into the exact Eq. (2.1), and only the
lowest order terms in € are retained. In keeping with the other studies of disturbance
energy in isentropic and homentropic flows (Morfey 1971; Cantrell and Hart 1964; Pierce
1981), the remaining terms are of second order in the disturbances, meaning that F, also
satisfies P1. Retention of all second-order terms in the exact flux vector and source terms
results in a rather complex disturbance energy equation, where much of the complexity
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is contained in viscous stress, dissipation, and heat conduction terms that can be argued
to be negligible in most combusting flows. Ignoring such terms as well as the vorticity
terms results in the following linearized disturbance energy equation,

ot

where the disturbance energy density Fgo, flux vector Wy, and source Dy terms are

+V-W, =D, (2.16)

2 _7 2
Pi 1_ _ pTs?
Eo=—" 4= . . E 2.17
d2 250 + 2pu1 u; +pu-ug + 2, + Liy2, ( )
Wy = (p1 + pu - uy) (u1 + p—1u> +mTis1 +m’H —Tm's’, (2.18)
p

and

Dy=-m's - VI —m-T'Vs
—symy - VT 4+ sym- VT
wlTl (JTT12 —_—
et R T
< o)
+ Qi +T'Q" +my ¢} +m’ - o

+ O g1 + Y (9561 Ve + garVer) V - my

k=1 k=1
+ ) g + IV ', (2.19)
k=1

The Eys term in Eq. ( 2.17) is the contribution from the pgsx(Yx — Yi) terms in Eq.
(2.13) and is equal to

_Py W sW N gsh—esk W 1]
EY22ZK”W;€ R) T +Wk<1+Yk)]Y’“

k=1
n
_ W SkW gsj — esj W
1+ —— 28 % 4 |y, Y
+PZZK W R ) o wy) T
k=1 j#k
PN - RT
+ c. ; (9sk — €sk) $1Y1 + kzz:l {(7 = 1)(gsk — esk) + WJ p1Yr. (2.20)

From Egs. (2.17)-(2.20), the proposed disturbance energy also satisfies property P2
since its leading order term only depends on first-order quantities. Note also that Eq.
(2.16) simplifies to other, existing acoustic energy conservation equations under the con-
dition of homentropic flow and homogeneous mixture. The energy density Fg4o and flux
W, terms then become those defined by Cantrell and Hart (1964) for acoustic propa-
gation in a non-stationary medium. Under the zero Mach number flow assumption and
calorific perfection, Eq. (2.16) reduces to the form given in Nicoud and Poinsot (2005).
The last three lines in Eq. (2.19) as well as Eyo are related to mixture inhomogeneities
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over space. These terms do not seem to have been reported elsewhere and require fur-
ther investigation. Although not negligible, they are not necessary to obtain a reasonable
closure of the disturbance energy budget (see Section 3.2).

2.5. Definite positivity of FEg2

It is not evidenced that Fgo as defined in Eq. (2.17) is a positive definite quadratic form
(property P3). Even in the case of a homogeneous mixture where all the mass fraction
fluctuations are zero, this property is not clearly established because of the piu - uy
term (Hanifi et al. 1996). We propose in the following a simple proof that Fgq is indeed
definite positive in the case of a flow without mass fraction fluctuations (Eyo = 0) at
small enough mean Mach number. Making use of p1/p = p1/(7D) — s1/C)p, which is true
only at chemical equilibrium, and then rewriting E4o in the following matrix form:

Ego = F'AF, (2.21)

where F is the reduced first order fluctuation vector F'* = [p1/(pc®) |lwi]|/¢ s1/Cp) and
A is the following matrix:

ﬁEQ 1 Ml’lo -1 0 ﬁEQ
A= 7 MIIQ ‘1 1 —MII() ‘1| = TB, (222)
0 —Mng-n;  1/(y—1)

where ng and n; are u/||ul| and u;/||u;]|| respectively. Note that B being symmetric,
it admits three real eigenvalues 1 > puo > p3 and that the eigenvalues of A are then
simply \; = pé2pu; /2. Thus Ego is positive definite as soon as A3 > 0, viz. uz > 0. From
Eq. (2.22), the characteristic polynomial of B is proportional to

Pp)=(y—1)p* =2y = p?+ (v+ Dp— (1 —yM?*(ng - ny)?)

and its roots are such that g +pa+ps = (2y—1)/(y—1) > 0 and pypops = (1—yM?(ng-
ny)?)/(y — 1), which is strictly positive as soon as M < 1/,/7 < 1/(|no - ny|,/7). Under
this latter restriction, it follows that the eigenvalues of A are either (a) all positive or (b)
such that gy > 0 and p3 < ps < 0. Since v > 1, it is obvious that the two roots of the
derivative of P(u), viz. P'(u) = 3(y—1)pu? —2(2y— 1)+~ + 1, are both strictly positive
so that at least two roots of P(u) are positive. Thus only the (a) choice is acceptable and
p3 > 0 as long as M < 1/,/7, which is not a restrictive condition in many combusting
flows. In other words, the linearized disturbance energy can be recast under the form:

Eap = M07 + Xob2 + X302,

where the A;’s are all positive and the 6,’s are linear combinations of & - uy, p;, and 1.
Further work is required to investigate whether this P3 property still holds in the case
where mass fraction fluctuations are accounted for (Ey # 0).

3. Numerical Results
3.1. Configuration

The 2-D laminar oscillating flame configuration considered for testing the closure of the
budget of the disturbance energy is adapted from an experiment described in Le Helley
(1994). The burner consists of a ducted premixed propane-air flame that is stabilized
thanks to a perforated plate with multiple holes. For certain operation modes this burner
features small laminar Bunsen tip flames behind each hole and no turbulence effects are
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FIGURE 1. Schematic of the computational domain.

| ]
) —
o o

FIGURE 2. Heat release when the flame is the shortest (most left) and the longest (second on
the left) during the cycle of oscillation. The above illustrates time averaged heat release (first
on the right) and temperature (most right).

present. We limit our study to this regime. The 2-D planar computational mesh has been
chosen such that chemistry and thermodynamic effects are resolved on the mesh (50,000
nodes). Chemistry is modeled using a single-step Arrhenius law involving five gaseous
species. The pre-exponential factor, mass fraction exponent, and activation temperature
are fitted to produce the proper flame speed in the lean regime. The main characteristics
of the computational flow domain are depicted in Fig. 1 (not to scale). The velocity and
temperature are imposed at the inlet while static pressure is prescribed at the outlet. In
both cases partially reflecting characteristic boundary conditions (Kaufmann et al. 2002;
Selle et al. 2004) have been used for numerical stability reasons. For the time average mass
flow rate (4.1x1073kg.s!) concerned and at stoichiometric equivalence ratio, the flame
is self-excited at a frequency close to 820 Hz, which corresponds to the third longitudinal
acoustic mode of the combustor including the air feeding line.

The extreme positions of the flame over the cycle are shown in Fig. 2, where the time
averaged temperature and heat release fields in the flame are shown. Recall that the
time averaged solution is the baseline flow and corresponds to no fluctuation and zero
disturbance energy in the present analysis.

The numerical tool used in this section is the unstructured combustion code AVBP de-
veloped at CERFACS (AVBP 2006). AVBP solves the complete Navier-Stokes equations
including chemistry in two and three spatial dimensions. The unstructured approach al-
lows computing not only the combustor but also the whole air feeding line as well as
the exhaust system. This code was selected because it solves the complete compressible
Navier-Stokes equations under a form that is mathematically equivalent to Egs. (2.3),
(2.4), (2.5), and (2.6). Its ability to reproduce the unsteady behavior of the Le Helley’s
flame has been demonstrated elsewhere (Kaufmann et al. 2002).

3.2. Energy budget

The disturbance energy and all the sources and flux terms in Eq. (2.1) have been com-
puted by post-processing 40 fields over two periods of the limit cycle of the flame depicted
in Fig. 2. These quantities have subsequently been integrated over the computational do-
main to obtain

Edz/EddQ W:/W-ndS D:/DdQ.
Q s Q
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FIGURE 3. Time evolution of (a) the time derivative of the total disturbance energy
dEq/dt (w ) and spatial terms D — W ( ) and (b) the disturbance energy Eg4 for

3.4x107% < |m| < 4.8x1073 kg/s. (present flame, )and 1.1x107% < |m| < 1.3x1072 kg/s
-

As shown in Fig. 3a, the global budget d€;/dt = D — W closes nicely when all the terms
are included. Note that the scaling is by the time averaged total heat release of the flame
P = fQ qdS). The net power curve shows a near derivative discontinuity at time ¢ ~ 0.97".
It corresponds to the shrinking of the flame front, which quickly creates disturbance
energy. Note that the time sampling shown on Fig. 3 is not the one used for the assessment
of the time derivative of E4. Fig. 3b depicts the time evolution of the disturbance energy
for the flame of Fig. 2 as well as for a calculation with smaller mean and oscillating mass
flow rate (1.1x1073 < |m| < 1.3x1073 kg/s instead of 3.4x1072 < |m| < 4.8x1073 kg/s).
In both cases the disturbance energy remains positive (property P4), E; being larger for
larger oscillating mass flow rate.

Order of magnitude analysis suggests that the viscous stress, thermal diffusion, viscous
dissipation (D) terms are usually small in combustion. The vorticity term (D¢) should
also be insignificant in most combusting flows although several orders of magnitude larger
than the other small terms (D). This is confirmed by the numerical results from the
2-D oscillating laminar flame, as shown in Fig. 4. Some terms are 1000 times (or more)
smaller than d€/dt (see Fig. 4a) and do not contribute to the global budget. Note that
besides the vorticity and viscous dissipation terms, the boundary terms (W) belong to
this category. This result seems to contradict the findings of Martin et al. (2004), where
the boundary terms were balancing the first-order Rayleigh term p’w/.. The difference
comes from the fact that only the acoustic part of the fluctuating energy was considered
in Martin et al. (2004), while F; also contains the entropy fluctuations. Although the
boundary terms are still of the same order as p’w/. (not shown), they are much smaller
than the first-order term in the total disturbance energy balance, viz. T'w/.. Indeed, the
Rayleigh term is approximately 1.5x10~% P, while the T'w/. term is roughly 2x10~! P
(see Fig. 5).

Other terms in the energy balance are only a few percent of d€4/dt and only contribute
slightly to the global budget. As shown in Fig. 4b, these terms are the contributions of the
Dg«, Dy, and Dy, terms in Eq. (2.15) and are related to the mixture inhomogeneities
and mass fraction fluctuations. Eventually, the first-order term in the energy balance are
the contributions from Dg and D, (see Fig. 4c). Since Q = (-V -q+ ¢ +wr)/T is
almost equal to wr/T — V - q/T, the entropy, heat release, and heat flux terms are the
most important terms in the energy balance. Figure 4d shows that keeping only these
large terms leads to a reasonable closure of the disturbance energy equation.

Figure 5a,b shows the contributions of the different terms in the definition of Dg and
D, (see Eq. (2.15)). In both cases, all the terms have approximately the same magnitude,
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FIGURE 4. Time evolution of the volume integrals of (a) the boundary (W, —=--), D¢ ( )
and Dy, (=== ) terms, (b) the Dg= ( )y D= (------- ) and Dy, (---- ) terms, (c) the
Dg (- ) and D; ( ) terms. Approximate budget (d) based on the heat release (Dg)

and entropy (Ds) terms only: exact time derivative of the total disturbance energy (m ) and
approximate spatial terms ( )

meaning that no further simplification can be made in the energy budget. Noticeably,
the correlation terms are important and cannot be neglected in the disturbance energy
balance. Recall that these correlation terms arise from the choice of the time averaged so-
lution as the baseline flow. Although it is natural that the definition of the no-fluctuation
state appears in the disturbance energy equation, it seems that the importance of these
correlation terms has not been reported elsewhere. Figure 5c also shows that only the
heat release and heat flux terms contribute in the 7'Q’ term, the viscous dissipation
based term being negligible. The heat release term can be further split in three terms by

using the identity
1 1 1\
—_ = T w. =
(0] (7))

where the three contributions on the RHS have similar amplitude as shown in Fig. 5d.
Note however that the time average of T'w/.(1/T)’ is zero so that this term does not
contribute to the (in)stability of the flow. The first term in this decomposition, viz.
T'wh /T, is a source term. Note that assuming small amplitude fluctuations, this term
becomes Tywr1 /T, the corrected Rayleigh term of Nicoud and Poinsot (2005). The second
term in the decomposition of T”(wr/T)’ is proportional to wr and can be linearized as
—wr(Ty/T)? for small amplitude fluctuations, indicating that this term tends to dissipate
disturbance energy. Figure 5d indeed shows that the wp term is a sink term in which
amplitude is comparable to the corrected Rayleigh source term so that the heat flux term
eventually contributes more than the heat release terms (Fig. 5¢). Note that under the
zero Mach number assumption used by Nicoud and Poinsot (2005), the time averaged
heat release wr is null and only the positive contribution of T”(wz /T, viz. Tywr1 /T, is
present. This is another output of the present analysis that non-zero Mach number terms

’ /
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and T7Q" (-------- ) and (b) the terms in D, viz. —m’ - s’V T ( ), s'm - VT (-------- ),
—-m's’- VT (---- ) and —m - T'Vs’ (—--), (c) the terms in 7"Q’, viz. T (wr/T) (—— ),
-T"(v-q/T) (- yand T (¢/T)" (=== ), (d) the terms in T’ (wr /T)’, viz. T'wp /T (——),
wrT' ()T = 1/T) (------- ) and —T"wh.(1/T) (----)

can have a significant contribution in the energy balance, even though the mean Mach
number is very small (of order 3x1072 for the flame considered).

The production terms for the disturbance energy equation are related to entropy as
shown in Fig. 5b. In the low Mach number limit, Vp = 0 and VT « V35 so that the
—m’ - s'VT term is proportional to the classical production term —m’ - s’ V5 for scalars.
Assuming that acoustic fluctuations are negligible in the reaction zone, one obtains that
s oc T’ so that the s'm - V7" term in D, is proportional to m - V(s'?), which is most
likely positive since m is from the fresh to the burnt gas and the entropy fluctuations are
generated in the flame region. This is indeed also confirmed by Fig. 5b. The remaining
entropy terms are based on time averaged correlations and require further investigation.

4. Conclusions

The exact transport equation derived for the disturbance energy from the basic gov-
erning equations for a combusting gaseous mixture can be used for generating the most
general stability criterion if E 4o is indeed positive definite. Although the positive definite-
ness of E4o has only been shown analytically in cases where mass fraction fluctuations
can be neglected, the numerical results obtained for a 2-D laminar flame suggest that it
might hold also in the case of large amplitude fluctuations and variable mass fractions.
Moreover, the numerical results suggest that the time evolution of the global fluctuating
energy is mostly governed by the heat release, heat flux, and entropy source terms, the
contribution arising from the mixture changes over space and time being the largest of
the negligible terms. Previous classical energy forms for homentropic flows are recovered
as special cases of the fluctuating energy defined in this study. It is also shown that the
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terms proportional to the mean Mach number can be significant even if the baseline flow
speed is very small (M = 3x1072 in the present study).
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