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Subgrid-scale modeling in solar convection
simulations

By M. S. Miesch†, N. N. Mansour AND T. Hartlep

The relatively quiescent core of the sun is surrounded by an envelope of highly turbu-
lent convection. High-resolution numerical simulations in spherical-shell geometries have
revealed much about the nature of this convection zone, but global simulations cannot
resolve all of the dynamically active scales. Some version of subgrid-scale (SGS) modeling
is essential. Previous SGS models have employed crude eddy viscosities and diffusivities.
Here we introduce more sophisticated SGS modeling strategies into global solar convec-
tion models and report preliminary results. The new SGS models include a standard
Smagorinsky model (constant Cs) as well as a dynamic Smagorinsky model.

1. Introduction

It is well known that the sun is powered by nuclear fusion. Throughout most of the
solar interior, the energy released by fusion reactions in the solar core is transported
outward by radiation as photons diffuse through the solar plasma on a time scale of
millions of years. In the outer 30% by radius of the solar interior (r ≈ 0.7–1 R where R
is the solar radius), the plasma opacity increases and radiative transport becomes less
efficient. Here thermal convection ensues and transports heat to the surface of the sun,
where it is radiated into space. This is the solar convection zone, which, as the driver of
the solar dynamo, is ultimately responsible for solar variability and space weather.

Modeling solar convection is a formidable challenge. The solar envelope is spherical,
rotating, stratified, and magnetized. Abrupt changes in the stratification give rise to
relatively small-scale granulation near the surface and convective penetration into the
stably-stratified radiative interior underlying the convection zone. The range of dynamical
scales present is tremendous; from the depth of the convection zone, 2× 1010 cm to the
viscous dissipation scale, which is estimated to be of order 1 cm (see, e.g., Miesch 2005).
The Reynolds number varies across the convective envelope, but is everywhere greater
than 1012.

As turbulence researchers can readily appreciate, this system is beyond the reach of
direct numerical simulation (DNS). The best we can hope for is a Large-Eddy Simulation
(LES) that explicitly resolves the largest scales of motion while taking into account the
influence of unresolved scales through an appropriate subgrid-scale (SGS) model.

A new global solar convection code was introduced in 1999 that is designed for efficient
performance on scalable parallel computing architectures (Clune et al. 1999). This has
since become known as the ASH (anelastic spherical harmonic) code, a moniker that
reflects the anelastic equations of motion and the pseudo-spectral algorithm.

By substantially increasing the resolution relative to previous global solar convection
models, ASH simulations have provided unprecedented insights into the intricate convec-
tive patterns that are likely to exist in the deep solar convection zone, into the subtleties
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of turbulent transport processes and mean flows, and into the amplification and orga-
nization of magnetic fields through hydromagnetic dynamo action (Miesch et al. 2000,
2006; Elliott et al. 2000; Brun & Toomre 2002; DeRosa et al. 2002; Brun et al. 2004;
Browning et al. 2006). ASH has also been used to simulate turbulent convection and
dynamo processes in A-type stars (Browning et al. 2004; Brun et al. 2005).

Direct comparison with observations is not easy as we cannot observe the solar in-
terior. However, the techniques of helioseismology allow us to infer flows and thermal
structure below the solar surface through frequency shifts in global acoustic oscillations
and through travel-time variations in local acoustic wave fields (Christensen-Dalsgaard
2002). This is a young but vibrant discipline. ASH simulations provide essential inter-
pretive support and guidance to ongoing helioseismic missions such as NASA’s Solar and
Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO), the latter
to be launched in 2008.

Despite these successes, ASH simulations suffer from crude modeling of unresolved
processes. Current SGS models are diffusive in nature with a specified viscosity ν and
thermal diffusivity κ that depend on the radial dimension r, but are fixed in time. Al-
though ASH simulations have achieved higher resolution than previous simulations of
global-scale solar convection, the contribution of SGS processes is still significant.

As an example, consider the solar internal rotation profile. Doppler measurements of
the longitudinally-averaged longitudinal (zonal) velocity at the surface of the sun have
long indicated that the angular velocity near the solar equator is about 30% larger than
it is near the poles. Helioseismic inversions have revealed that this differential rotation
persists throughout the convection zone (Thompson et al. 2003).

The solar differential rotation is thought to be maintained by Reynolds stresses associ-
ated with the global-scale convection. Reynolds stresses, baroclinicity, and Coriolis forces
also establish an axisymmetric meridional circulation that advects angular momentum,
altering the mean rotation profile. In order to achieve a statistically steady state, these
two processes must balance such that

∇·FRS = −∇·FMC , (1.1)

where FRS and FMC are the time-averaged fluxes of specific angular momentum induced
by Reynolds stresses and meridional circulation respectively (see, e.g. Miesch 2005). In
global convection simulations FRS includes contributions from both the resolved flow
and from SGS motions that must be modeled. Inaccurate SGS models would upset the
dynamical balance expressed by Eq. (1.1). It is our goal to either minimize the SGS
component or at least to properly model it to give a more realistic estimation of FRS .

More generally, reliable SGS models would allow us to better assess the coherent struc-
tures thought to be present in the solar convection zone and to better capture their
associated turbulent transport and hydromagnetic dynamo processes.

In this summer program we have implemented two new SGS modeling procedures into
the ASH code. The first is the well-known Smagorinsky model in which the turbulent
viscosity is taken to be proportional to the strain rate of the resolved velocity field
(Smagorinsky 1963; Pope 2000). The second is a dynamic Smagorinsky model in which
the proportionality factor is allowed to vary in space and time and is computed based
on the transport properties of the resolved flow (Germano et al. 1990, 1991; Moin et al.
1992). The physical basis and the numerical algorithm of the ASH code will be discussed
in Section 2 and our SGS modeling strategies will be described in Section 3. Preliminary
results will be presented in Section 4.
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2. The ASH code

The ASH code solves the equations of fluid motion under the anelastic approximation,
which may be regarded as a compromise between fully compressible and Boussinesq ap-
proaches. The compressible fluid equations are linearized about a hydrostatic spherically-
symmetric reference state, assuming the Mach number of the motions is small and the
background stratification remains nearly adiabatic (see, e.g., Miesch 2005). Both assump-
tions are well justified in the deep solar convection zone. The first-order perturbation
equations are

∇· (ρ̂v) = 0 (2.1)

ρ̂

(
∂v

∂t
+ (v·∇)v

)
= −∇P − ρgr̂ − 2ρ̂(Ω×v) +∇·τ , (2.2)

ρ̂T̂

(
∂S

∂t
+ v ·∇S

)
= −ρ̂T̂ vr

dŜ

dr
+∇·Fh + Φ , (2.3)

where v is the fluid velocity relative to a frame rotating at an angular velocity of Ω and ρ̂ is
the mean density stratification. The equations are expressed in spherical polar coordinates
r, θ, and φ with corresponding unit vectors r̂, θ̂, and φ̂. The reference state density,
temperature, pressure, and specific entropy are denoted as ρ̂, T̂ , P̂ , and Ŝ, whereas ρ,
T , P , and S denote perturbations. Dimensional cgs units are used throughout, with the
reference state and the gravitational acceleration g obtained from a solar structure model.
A linearized ideal gas equation of state is assumed such that

ρ

ρ̂
=

P

γP̂
− S

CP
, (2.4)

where γ = CP /CV and CP and CV are the specific heats per unit mass at constant
pressure and volume respectively.

SGS motions are represented by the SGS stress tensor τ , to be discussed in §3. Since
the SGS models we consider are dissipative in nature, there is also a corresponding viscous
heating rate Φ in the thermal energy equation (2.3). The diffusive heat flux Fh is given
by

Fh = κrρ̂CP∇
(
T + T̂

)
+ κtρ̂T̂∇

(
S + Ŝ

)
, (2.5)

where κr is the radiative diffusivity obtained from a solar structure model. Whereas the
radiative diffusivity operates on the temperature gradient, the SGS thermal diffusivity
κt operates on the entropy gradient as is appropriate for heat transport by thermal
convection.

The mass continuity equation (2.1) allows for a background density stratification (es-
sential for solar applications) but filters out high-frequency acoustic waves that would
otherwise severely limit the time step. The ASH code has the capability of solving the
magneto-hydrodynamic equations of motion, but in this paper we neglect magnetic fields.

Eqs. (2.1)–(2.5) are solved using a pseudo-spectral method with spherical harmonic
basis functions in the horizontal dimensions and Chebyshev basis functions in the ra-
dial dimension. Nonlinear and Coroilis terms are advanced by means of a second-order
Adams-Bashforth scheme while the remaining linear terms are advanced through a semi-
implicit Crank-Nicolson scheme. The continuity equation (2.1) is satisfied identically by
expressing the mass flux in terms of stream functions Z and W defined such that

ρ̂v =∇× (Zr̂) +∇×∇× (W r̂) . (2.6)
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The ASH code is written in Fortran 90 and parallelized using the Message Pass-
ing Interface (MPI). It has achieved high performance on a variety of scalable paral-
lel computing architectures including the SGI Altix system at NASA Ames Research
Center (Columbia), the Compaq AlphaServer at the Pittsburgh Supercomputing Cen-
ter (Lemieux), and the IBM Power4+ system at the San Diego Supercomputing Center
(DataStar).

3. SGS modeling

3.1. Basic strategy

We assume that SGS transport is diffusive in nature, so the elements of the stress tensor
τ may be written as

τij − (1/3)δijτkk = −2ρ̂ν [Sij − (1/3) (∇·v) δij ] , (3.1)

where Sij is the strain rate tensor and the turbulent viscosity is assumed to be of the
form

ν = ν0

(
ρ̂(rt)

ρ̂

)α
+ Cs∆

2|S| . (3.2)

The first term on the right-hand side of Eq. (3.2) increases with radius r for α > 0
and is independent of time. This is the form of the viscosity profile used in all previous
ASH simulations with the exception of those reported in Young et al. (2003), which was
a preliminary investigation of the Smagorinsky model. The value of ν0 may be estimated
from mixing-length theory but in practice it is chosen to be the smallest value that yields
a well-resolved solution. Here we take α = 1.

The second term on the right-hand-side of Eq. (3.2) was introduced by Smagorinsky
(1963) and is discussed for example by Pope (2000). It is derived by assuming that
the production of turbulence by shear locally balances dissipation, neglecting rotation,
stratification, and compressibility. In Eq. (3.2) CS is referred to as the Smagorinsky
coefficient†, |S| = (2SijSij)

1/2 is the strain rate, and ∆ is the geometric mean of the
effective grid spacing in the three spatial dimensions:

∆ =

[
π2r2∆r

L (L+ 1)

]1/3

, (3.3)

where ∆r is the radial grid spacing and L is the maximum degree of the spherical har-
monic expansions.

The Smagorinsky model is implemented by specifying the value of CS . In this paper
we use CS = 0.0289, which is the value derived by Lilly for homogeneous, isotropic,
incompressible turbulence (see Pope 2000). Alternatively, the value of CS may be calcu-
lated dynamically based on the local transport properties of the resolved flow. In §3.2 we
describe how we accomplish this.

Since the trace of the right-hand-side vanishes, Eq. (3.1) only strictly provides a model
for the traceless part of the SGS stress tensor. A separate model may in principle be
applied for the trace component, τkk, which reflects the kinetic energy of the SGS mo-
tions. However, τkk may be neglected if its magnitude is much less than the gas pressure

† CS is sometimes also referred to as the Smagorinksy constant but this is misleading termi-
nology here because in the dynamic model described in §3.2 CS varies with space and time.
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associated with the resolved motions. We assume that this is the case and set τkk = 0 in
the remainder of this paper.

3.2. Dynamic calculation of CS

The Smagorinsky expression in Eq. (3.2) is a model of advective momentum transport
by unresolved motions. To show this explicitly, we may regard the velocity field of the
simulation, v, as a filtered version of the full velocity field v∗ such that v = 〈v∗〉g with the
brackets denoting a low-pass filtering operation that removes structure on scales smaller
than the grid spacing. Then, if we neglect the ν0 term, Eqs. (3.1) and (3.2) imply

τij = ρ̂
(〈
v∗i v
∗
j

〉
g
− vivj

)
= 2ρ̂Cs∆

2|S| [Sij − (1/3) (∇·v)] . (3.4)

Eq. (3.4) may be derived by applying the filtering operation to the equations of motion
for v∗ as described in Appendix A. It is assumed here that commutation errors may be
avoided or neglected and that the filtering operation incorporates a Favre-type density
weighing (see Appendix A).

If Eq. (3.4) is a reliable representation of SGS stresses, then an analogous model may
also apply to the resolved scales. This is the rationale behind dynamic modeling. If we
refer to the first filtering operation as the grid filter, we may introduce a second low-pass
filter, which we refer to as the test filter and which operates on the resolved velocity field
v. We may again decompose the velocity field and in analogy with Eq. (3.4) we can write

Tij = ρ̂
(〈〈

v∗i v
∗
j

〉
g

〉
t
− 〈vi〉t 〈vj〉t

)
= 2ρ̂Cs∆t2|S̃|

[
S̃ij − (1/3) (∇· 〈v〉t)

]
, (3.5)

where <>t denotes the application of the test filter, ∆t is its characteristic smoothing
scale and S̃ij and |S̃| represent the strain rate tensor computed using 〈v〉t.

Whereas the test filter is an explicit operation on the resolved velocity field, the grid
filter is implied by Eqs. (2.2) and (3.1). The SGS velocity remains undefined; we only
need to know its associated Reynolds stress, which is given by Eq. (3.4).

In this paper the test filter is taken to be a spherical harmonic cutoff in which all
spherical harmonic modes of degree ` > Lt are set to zero. No explicit filtering is per-
formed in the radial dimension. The cutoff wavenumber is set to Lt = L/2, where L is
the maximum resolved wavenumber. This method of filtering has been used successfully
in channel flow (Germano et al. 1991; Moin et al. 1991) in which filtering was done in the
streamwise and spanwise directions but no explicit filtering was done in the cross-stream
direction.

Applying the test filter to Eq. (3.4) and subtracting it from Eq. (3.5) yields

Lij = 2ρ̂CS∆2
tMij , (3.6)

where

Lij = Tij − 〈τij〉t = ρ̂
(
〈vivj〉t − 〈vi〉t 〈vj〉t

)
(3.7)

Mij = |S̃|
[
S̃ij − (1/3) (∇· 〈v〉t)

]
− β 〈|S| [Sij − (1/3) (∇·v)]〉t (3.8)

and β = ∆/∆t. The tensors Lij and Mij can be computed from the resolved velocity
field so Eq. (3.6) may be solved for CS . However, there are two complications. First, Eq.
(3.6) is a tensor equation and each tensor element may in general give a different value
for CS . Second, Mij is a non-linear product of derivatives and may be expected to be
highly intermittent in space and time. If it approaches zero at any point, dividing Eq.
(3.6) by Mij would not give a reliable result for CS .
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Figure 1. The radial velocity near the top of the shell is shown in an orthographic projection for
(a) Case R (CS = 0) and (b) Case DS at t = 5.5 and t = 3.6 respectively. Bright and dark tones
denote upflow and downflow respectively. The north pole is tilted 35◦ toward the line of sight
to illustrate the disparity between polar and equatorial convective patterns. The corresponding
eddy viscosity in Case DS is also shown (c). Peak radial velocity amplitudes in these images are
of order 50 m s−1 (a, b use the same gray scale) and the peak value of νs in c is 3.2×1012 cm2

s−1.

The first complication may be overcome by selecting the value of CS that minimizes
the squared difference

Q = (Lij − 2ρ̂CS∆2
tMij)

2 (3.9)

summed over all the matrix elements. This was first suggested by Lilly (1992). By setting
∂Q/∂CS = 0 we obtain

CS∆2
t = − 1

2ρ̂

LijMij

MijMij
, (3.10)

where again a summation over i and j is implied. At this value of CS it is straightforward
to show that ∂2Q/∂C2

S > 0 so Q is indeed minimized.
The second complication referred to above regarding the intermittency of Mij may

be avoided by averaging the numerator and denominator of Eq. (3.10) before dividing
them. In this paper we average over horizontal surfaces so CS is a function of radius
and time alone. Similar approaches have been used previously in channel flow where
averaging of the numerator and denominator was performed over planes parallel to the
boundaries (Germano et al. 1991; Moin et al. 1991). The rationale behind this is that
these dimensions are relatively homogeneous compared to the dimension perpendicular
to the boundary. In the sun there is some latitudinal dependence of the flow structure,
but this can be neglected as a lowest-order approximation for SGS motions.

Eq. (3.10) remains unchanged even if the trace of the SGS stress tensor τkk is non-
zero because Mkk = 0. More generally, a separate dynamic procedure may be used to
determine τkk. This will be considered in future work.

4. Preliminary results

Fig. 1a-b compares the convection patterns in a reference simulation (Case R) with
no Smagorinsky component to a similar case (DS) that includes dynamic modeling. In
Case R the eddy viscosity at the top of the shell is ν0 = 2.2× 1013 cm2 s−1 according to
Eq. (3.2) with CS = 0. In Case DS the time-independent viscosity component has been
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Figure 2. (a) Instantaneous power spectra of the fluctuating (non-axisymmetric) velocity com-
ponent near the top of the shell in Cases R and DS, summed over longitudinal wavenumber
m. The radial level and time is that shown in Fig. 1. (b) Amplitude of the Smagorinsky eddy
viscosity component in Cases DS (t = 1) and S (t = 20) as a function of radius, averaged over
horizontal surfaces. Also shown in (b) is the background viscosity component proportional to
ν0ρ̂
−1 (dotted line).

reduced to ν0 = 1012 cm2 s−1 and CS has been computed dynamically as described in
§3.2.

Both simulations were initiated from the same state at t = 0. At t = 5.5 (Fig. 1a) Case
R is similar to the initial state whereas Case DS is significantly different by t = 3.6 (Fig.
1b).

The striking asymmetry between upflows and downflows evident in Fig. 1 arises from
the density stratification and the dramatic variation in convective patterns with latitude
arises from rotation. At high latitudes, narrow downflow lanes form an interconnected
network surrounding broader, weaker upflows. Near the equator, the downflow lanes align
in a north-south orientation in order to minimize the inhibiting influence of Coriolis forces
(see, e.g., Miesch 2005).

The downflow lanes are generally more turbulent than the upflows and this is reflected
in the horizontal structure of the eddy viscosity shown in Fig. 1c. Downflows are fed
by horizontally converging flows near the top of the shell that acquire cyclonic vorticity
due to Coriolis forces. Shearing and vortex stretching instabilities within the downflows
further enhance their turbulent nature.

The convective patterns in Cases R and DS are similar, although the downflow lanes
in the latter are somewhat sharper and the scale of the downflow network is somewhat
smaller. This is further demonstrated in Fig. 2a which compares the velocity spectra
in these two cases. Both spectra peak at `p ∼ 10 but Case DS has more power at high
wavenumbers. Case DS may also be marginally closer to power-law behavior which might
signify a self-similar inertial rage. However, the presence of an inertial range is difficult to
establish here due to the limited resolution; less than one decade is represented beyond
`p.

Fig. 2b shows the Smagorinsky component of the turbulent viscosity νs in Case DS as
a function of radius, averaged over horizontal surfaces. Also shown is νs for a simulation
in which CS is fixed at 0.0289 and ν0 = 2 × 1013 cm2 s−1. In the latter case, which we
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refer to as Case S, the spatial dependence of νs is due entirely to the strain rate |S| which
peaks near the middle of the convection zone. By contrast, νs in Case DS is much more
strongly peaked near the top of the convection zone due to the radial dependence of CS.

The mean amplitude of the Smagorinsky viscosity component in case DS is comparable
to the ν0 component, although νs can be roughly an order of magnitude larger in localized
areas (cf. Fig. 1c). In Case S, ν0 is an order of magnitude larger than in Case DS and it
dominates the total viscosity except in localized areas. Eventually we wish to substantially
reduce ν0 such that νs dominates but preliminary attempts to do this have resulted in
numerical instability.

5. Summary and conclusion

We have implemented two new SGS modeling strategies into numerical simulations
of global-scale solar convection. The first is a conventional Smagorinsky model in which
the turbulent viscosity is proportional to the strain rate of the resolved flow. The second
strategy is a dynamic Smagorinsky model in which the coefficient of proportionality CS
is allowed to vary with radius and time and is computed based on the effective turbulent
viscosity of resolved small-scale motions. The resulting turbulent viscosity peaks strongly
in downflow lanes where vorticity and shear are maximized and near the top of the shell
where velocity amplitudes are greater as a result of the density stratification.

Preliminary results look promising; the largest scales are less viscous than in previous
models and power is spread over a wider range of wavenumbers for a given spatial reso-
lution. This brings us closer to solar conditions where the Reynolds number is extremely
large (Re ∼ 1012). However, our current simulations S and DS are not numerically sta-
ble for long durations so they should be viewed as tentative. Further work is needed to
identify and correct the source of instability.
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Appendix A. LES filtering and commutation errors

If we decompose the velocity field into resolved and SGS components as in §3.2, then
the non-linear advection terms in the evolution equation for the full velocity field v∗ may
be written as

ρ̂
∂v∗

∂t
= −ρ̂ (v∗ ∇) v∗ + . . . =∇· (ρ̂A) + . . . , (A 1)

where

Aij = v∗i v
∗
j . (A 2)
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Now we define a Favre filtering operation on an arbitrary variable f as (Moin et al. 1991)

〈f〉g =
〈ρ̂f〉r
ρ̂

, (A 3)

where <>r denotes a filter associated with the spatial resolution. In the ASH code,
<>r is a spectral cutoff filter with spherical harmonic basis functions in the horizontal
dimension and Chebyshev basis functions in the vertical dimension.

Applying the grid filter to Eq. (A 1) yields

ρ̂
∂v

∂t
=∇·

(
ρ̂ 〈A〉g

)
+ ε+ . . . = −ρ̂ (v ∇) v +∇·τ + ε . . . , (A 4)

where v = 〈v∗〉g and

ε = 〈∇· (ρ̂A)〉g −∇·
(
ρ̂ 〈A〉g

)
(A 5)

is the commutation error. Apart from ε, Eq. (A 4) is equal to Eq. (2.2) with

τij = ρ̂
(〈
v∗i v
∗
j

〉
g
− vivj

)
(A 6)

as expressed in Eq. (3.4).

Commutation errors arise from both the spherical geometry and the presence of bound-
aries. In a pseudo-spectral method they may also arise from the nature of the basis
functions such as the Chebyshev polynomials used in ASH.

For illustration we consider the case in which <>r is a spherical harmonic filter with
a cutoff wavenumber L. The commutation error may be estimated by first expressing an
arbitrary function f by means of a spherical harmonic series:

f(r, θ, φ) = Σ∞`=0Σ`m=0f`m(r)Y`m(θ, φ) , (A 7)

where Y`m(θ, φ) is a spherical harmonic of degree ` and order m. The triangular trunca-
tion m ≤ ` in Eq. (A 7) provides uniform resolution over horizontal surfaces.

Now we may operate on f with a linear differential operator D in the horizontal
dimensions. The result will have its own series representation which is in general infinite
even if the series for f is finite:

g = D {f} = Σ∞`=0Σ`m=0f`m(r)D{Y`m(θ, φ)} = Σ∞`=0Σ`m=0g`m(r)Y`m(θ, φ) . (A 8)

The spectral coefficients are given by

g`m =

∫ 2π

0

∫ π

0

gY ∗`m(θ, φ) sin θdθdφ

= Σ∞`′=0Σ`
′
m′=0f`′m′

∫ 2π

0

∫ π

0

D {Y`′,m′(θ, φ)}Y ∗`m(θ, φ) sin θdθdφ , (A 9)

where Y ∗`m is the complex conjugate of Y`m.

So far we have not applied any filtering. If we apply a spectral cutoff filter after applying
the derivative operation D, then the spherical harmonic coefficients of g will be given by
Eq. (A 9) but g`m will be zero for ` > L. If instead we apply the filter before the derivative
operation, then the g`m will in general form an infinite series but the summation over `′

on the right-hand side of Eq. (A 9) will only extend to L rather than ∞.
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The commutation error for this operation, εD(`,m) may then be expressed as

εD(`,m) = 〈D {f}〉r −D {〈f〉r}

= Σ∞`′=L+1Σ`
′
m′=0f`′m′

∫ 2π

0

∫ π

0

D {Y`′,m′(θ, φ)}Y ∗`m(θ, φ) sin θdθdφ . (A 10)

The commutation error only depends on the SGS component of f , ` > L, which will
be small if most of the energy is in the resolved modes. Furthermore, many operations
such as ∂f/∂φ and sin θ∂f/∂θ are local in spectral space in the sense that D {Y`m} only
involves modes between `−1 and `+1. Thus, for these operators, the commutation error
will vanish for the resolved velocity field where ` < L due to the orthogonality of the
spherical harmonics. We have focused here on the horizontal grid filtering but similar
arguments apply to the radial grid filtering and the test filtering.

Commutation errors are only relevant when justifying Eqs. (3.4) and (3.5) which relate
the stress tensors τij and Tij to subfilter-scale velocity correlations. As demonstrated
in this appendix, these equations are only strictly valid if commutation errors can be
neglected. However, Eqs. (3.4) and (3.5) may alternatively be taken at face value, as
SGS models in their own right. Then explicit filtering of the momentum equations is
unnecessary and commutation errors do not arise.
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