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Analysis of a subgrid-scale model for turbulent
condensation

By R. Paoli†, K. Shariff AND A. Shirgaonkar

A model for the condensation of a population of cloud droplets in a homogeneous
turbulent flow is presented. The model consists of a set of Langevin (stochastic) equations
for the droplet area, supersaturation, and temperature surrounding the droplets. These
equations yield corresponding ordinary differential equations for various moments and
correlations, and can be integrated exactly. The statistics predicted by the model, for
instance the droplet area-supersaturation correlation, reproduce well those from available
DNS of condensation in forced homogeneous turbulence. The application of the model
as a closure for subgrid microphysics in LES of clouds is discussed.

1. Motivation and objectives

Interaction between turbulence and particles plays an important role in a number
of cloud processes such as radiation scattering and absorption, precipitation efficiency,
and heterogeneous chemical reactions (Shaw 2003). One challenging and still unsolved
issue in the atmospheric science community (Cooper 1989, Pinsky & Khain 1997, Shaw
2003) is whether and how turbulence affects the evolution of the droplet size distribution
f(r,x, t) in a cloud. This is the fundamental quantity in most cloud microphysics models
(see Pruppacher & Klett 1997 for a review): it represents the density of particles that
have a size between r and r+ dr in a neighborhood of a given point x, at a given time t.
Particle size distributions evolve according to a classical Boltzmann transport equation
(see, e.g., Seinfeld & Pandis 1997)

∂f

∂t
+∇ · (fu) +

∂

∂r
(f ṙ) = K (1.1)

where ṙ and K are source terms for particle size growth and particle collisions, respec-
tively. During the early stages of droplet growth, water vapor condensation on to the
particle surface is the relevant microphysical process (particles are too small for colli-
sions to be effective) and their growth can be described by the law (Seinfeld & Pandis
1997, Pruppacher & Klett 1997)

ṙ = α
S

r
, S = ρv − ρsatv (T ) (1.2)

where temperature T , vapor mass fraction Yv and density ρv ≡ ρYv, and supersaturation
S with respect to water are evaluated at the particle location. As suggested by Srivas-
tava (1989) and Khvorostyanov & Curry (1999a), (1.1) and (1.2) show that, if turbulent
fluctuations in temperature T ′ and vapor density Y ′v arise in a cloud, the resulting su-
persaturation fluctuations S ′ lead to different growth rates ṙ′ from particle-to-particle,
thus affecting their size distribution f(r). On the other hand, as large droplets consume
more water vapor than small particles (see (1.3) below), supersaturation fluctuations are
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N Le/Lbox Reλ kmaxη 〈T 〉 〈Yv〉 σT σYv

64 0.162 49 1.15 292K 0.014 0.3K 1.4× 10−5

128 0.162 69 1.68 292K 0.014 0.3K 1.4× 10−5

Table 1. Flowfield parameters of forced turbulence.
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Figure 1. Average kinetic energy spectra normalized by the Kolmogorov length η and velocity
uη. Solid line: 1283 simulation; dashed line: 643 simulation; symbols: Reλ ' 69 grid-turbulence
experiments of Comte-Bellot & Corrsin (1971).

in turn influenced by the particle size distribution. Applying this picture to a compu-

tational cell in a large-eddy simulation means that correlations such as S ′r′, S′r2′, etc.,
exist at the subgrid-scale level. The first of these correlations appears after applying an
LES filter, denoted by an overbar, to the transport equation of vapor density (Paoli &
Shariff 2003):

∂ρv
∂t

+∇ · ρvu−Dv∇ · (ρ∇Yv) = −nṁw = −4πnρwr2ṙ = −4πnρwα rS, (1.3)

where n is the number density of droplets, mw ≡ 4/3πρwr
3 is the mass of a water

droplet, and ṁw represents the consumption of water vapor by condensation. Radius-
supersaturation correlations also appear when one applies the method of moments to
solve (1.1). To obtain evolution equations for the moments mk ≡

∫∞
0
rkf(r)dr, one mul-

tiplies (1.1) by rk and integrates in r. This results (Paoli et al. 2002) in unclosed terms of
the type

〈
Srk

〉
, where the angle brackets denote an ensemble average. Most LES codes

used for cloud or contrail simulations usually neglect these correlations so that supersat-
uration is distributed uniformly over the computational cell. One major consequence of
this assumption is that the particle size distribution is too narrow compared to what is
observed e.g., in cumulus clouds (see for example Khvorostyanov & Curry 1999a, 1999b
and Vaillancourt & Yau 2000).

The objective of this study is to propose a model for subgrid scale condensation that
could be used to close subgrid scale correlations in LES of turbulent condensation. The
model is based on a stochastic representation of condensation of a population of droplets.
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Figure 2. Forced turbulence: evolution of the standard deviations, normalized by the mean of
the three componets of the velocity field (left), and temperature and vapor mass fraction (right).

For the sake of validation, we compare the correlations predicted by the model with
those obtained from a DNS of turbulent condensation. The DNS database is described in
Section 2, the derivation of the model and comparisons with DNS are shown in Section
3. Conclusions are provided in Section 4.

2. DNS database

Direct Numerical Simulations of turbulent condensation by Paoli and Shariff (2004)
were used to test the model. The simulations were carried out using a mixed Eule-
rian/Lagrangian solver to treat the condensation of water vapor and the growth of cloud
droplets in a box of turbulence. This was generated by forcing momentum, temperature,
and water vapor equations with appropriate source terms designed to provide the desired
level of fluctuations:

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+

∂p

∂xi
=
∂τij
∂xj

+ ρqfi , i = 1, . . . , 3 (2.2)

∂(ρT )

∂t
+
∂(ρTuj)

∂xj
=

λ

cv

∂2T

∂x2
j

+ ρqT (2.3)

∂(ρYv)

∂t
+
∂(ρYvuj)

∂xj
= Dv

∂

∂xj

(
ρ
∂Yv
∂xj

)
+ ρωv + ρqYv . (2.4)

Following the method proposed by Eswaran and Pope (1988), the source terms qfi , qT ,
and qYv are obtained as combinations of (low wavenumber) modes whose amplitudes are
modeled as Ornstein-Uhlenbeck processes that satisfy appropriate Langevin equations
(see e.g., Lemons 2002). Forcing parameters were designed to provide the correct energy
spectrum and the desired levels of fluctuations for each of the forced variables. Figure
1 shows nice agreement of the simulated energy spectrum with the grid generated tur-
bulence experiments of Comte-Bellot and Corrsin (1971), while Fig. 2 (right) and Table
1 show that temperature and vapor fluctuations are in the range of values observed in
the atmosphere. For example, Kulmala et al. (1997) report σT∞/ 〈T∞〉 = σYv∞ / 〈Yv∞〉 ≈
0.001. Droplets were inserted in the developed turbulent field at t/τe ' 50 with uniform
radius r0 = 5µm while relative supersaturation was set to 0.5%, i.e., Yv0

/Y sv0
= 1.005.
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Particle trajectories were followed using a Lagrangian tracking approach and (1.2) was
used to model droplet growth by vapor condensation. This approach provided direct
computation of the particle ensemble averages and correlations that were used to vali-
date the stochastic model derived in the following section. Given that our simulations are
spatially homogeneous, an ensemble average at a given instant is obtained as an average
over the population of droplets.

3. A model for stochastic condensation

Consider a population of N droplets in a parcel of volume V OL in a homogeneous
turbulent cloud. For an inhomogeneous cloud, transport between parcels will need to
be considered. Since droplet inertia is negligible (at least during the early stages of
condensation), they behave as fluid particles, each carrying some scalar properties. Since
the cloud is homogeneous, particles are uniformly distributed in a volume V = V OL/N ≡
1/n, which is the inverse of the number density. The model begins by assuming that
temperature and vapor fluctuations around each droplet evolve according to two Langevin
equations:

dT = −T − 〈T 〉
τe

dt+

√
2σ2

T∞

dt

τe
N t+dt
t (0, 1) (3.1)

dYv = −Yv − 〈Yv〉
τe

dt− n

ρ
d

(
4

3
πρw r

3

)
. (3.2)

The first terms on both right-hand sides are the classical relaxation to the mean model
with a time scale equal to the eddy turnover time τe (Pope 2000). The last term (3.2)
accounts for loss of vapor by condensation. The last term in (3.1) is the Brownian motion
associated to a Ornstein-Ulenbeck process and is supposed to model all processes like
radiation that cannot be explicitly accounted for here. Brownian motions are random
normal processes having the following properties:

〈
N t+dt
t (0, 1)

〉
= 0,

〈
[N t+dt

t (0, 1)]2
〉

= 1,
〈
ϕ(t)N t+dt

t (0, 1)
〉

= 0 (3.3)

for any continuous function ϕ(t) (see Lemons 2002 for details). The formulation (3.1)–
(3.2) gives the desired mean temperature 〈T 〉 = T∞ and variance σT → σT∞ in the
atmosphere. Saturation conditions are taken from the fit by Sonntag (1994):

psv(T ) = pXs
v(T ) = exp

(
a1T

−1 + a2 + a3T + a4T
2 + a5 lnT

)
(3.4)

Y sv =
Xs
v

Xs
v + (1−Xs

v)Wair/Wv
. (3.5)

As temperature fluctuations are small in the atmosphere (σT∞/T∞ ' 0.001), one can
expand Y sv (T ) around the ambient temperature T∞. Expanding (3.4) around T∞ and
defining ϕ∞ = −a1 T

−2
∞ + a3 + 2a4 T∞ + a5T

−1
∞ , yields after some algebra

Y sv (T ) ' Y sv (T∞) +
dY sv
dT

∣∣∣
T∞

(T − T∞) = Y sv (T∞) [1 + ϕ∞(T − T∞)]. (3.6)

Substituting the latter into (3.1) with the help of (3.2) yields

dS = −S − 〈S〉
τe

dt+

√
β2∞

dt

τe
N t+dt
t (0, 1)− 4πnρw

3ρ
dr3 (3.7)

dr2 = 2αS dt (3.8)



Analysis of a subgrid-scale model for turbulent condensation 263

where we have defined β2
∞ = 2σ2

T∞ϕ
2
∞Y

s
v (T∞). Due to the non-linearity of the conden-

sation term in (3.7), no exact solutions can be obtained for the system of stochastic
differential equations (3.7)–(3.8). However, consider the “surface area” A ≡ r2 and as-
sume its variation with respect to the instantaneous mean 〈A〉 is sufficiently small that
the following approximation is valid:

r3 ≡ A3/2 ' 〈A〉3/2 +
3

2
〈A〉1/2 (A− 〈A〉) ⇒ dr3 ≡ dA3/2 ' 3

2
〈A〉1/2 dA. (3.9)

Inserting (3.9) into (3.7), introducing the characteristic time for condensation 〈τc〉 with
respect to the mean radius (see, e.g., Khvorostyanov & Curry 1999a)

〈τc〉 ≡
Γ

4πnDv 〈A〉1/2
=

ρ

4πnρwα 〈A〉1/2
, (3.10)

finally yields

dS = −S − 〈S〉
τe

dt+

√
β2∞

dt

τe
N t+dt
t (0, 1)− S

〈τc〉
dt (3.11)

dA = 2αS dt. (3.12)

3.1. Evolution of mean quantities

Taking the ensemble average of (3.11)–(3.12) yields

d 〈S〉
dt

+
〈S〉
〈τc〉

= 0 (3.13)

d 〈A〉
dt

= 2α 〈S〉 (3.14)

where (3.3) was used. The above pair of equations can be easily solved numerically,
however, if we make the expansion (3.9) about the initial mean 〈A〉0, then closed form
solutions can be written:

〈A〉 = 〈A〉0 + 2α 〈S〉0 〈τc〉0
(

1− e−t/〈τc〉0
)

(3.15)

〈S〉 = 〈S〉0 e−t/〈τc〉0 , (3.16)

where 〈τc〉0 denotes the condensation time scale with respect to the initial size distribu-
tion.

3.2. Evolution of auto-correlations

We now examine the variances of S and A, taking care of the non-differentiable random
function N . To compute 〈S〉 for example, we start from the differential form dS2 =
S2(t+ dt)− S2(t) as explained, for example, by Lemons (2002):

dS2 =

[
S(t)− S(t)− 〈S〉

τe
dt+

√
β2∞

dt

τe
N t+dt
t (0, 1)− S

〈τc〉
dt

]2

− S(t)2

=
β2
∞
τe

dt− 2S(t)

(
S(t)− 〈S〉

τe

)
dt− 2

S2(t)

〈τc〉
dt+O(dt3/2)

where we used (3.3). Neglecting terms smaller than dt and taking the ensemble average
yields

d
〈
S2
〉

dt
+ 2

(
1

τe
+

1

〈τc〉

)〈
S2
〉

=
1

τe
〈S〉2 +

β2
∞
τe
. (3.17)
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Figure 3. Evolution of model radius-supersaturation correlation: top, normalized correlation
〈A′S′〉 /A0S0; bottom, correlation coefficient CAS = 〈A′S′〉 /σAσS . Time is plotted in seconds
in the two left plots, and scaled by τe in the two right plots. The different curves correspond to
different τe from 0.4 seconds (solid line) to 20 seconds (dash-dotted line).

Again, this equation can also be solved numerically. However, replacing 〈τc〉 with 〈τc〉0,
using (3.16), and skipping the details of the computations, a closed form expression

results for
〈
S2
〉

and σ2
S ≡

〈
S2
〉
− 〈S〉2:

〈
S2
〉

= S2
0 e
−2t/〈τc〉0 +

β2
∞/τe

2(1/ 〈τc〉0 + 1/τe)

[
1− e−2t(1/〈τc〉0+1/τe)

]
(3.18)

σ2
S =

β2
∞/τe

2(1/ 〈τc〉0 + 1/τe)

[
1− e−2t(1/〈τc〉0+1/τe)

]
(3.19)

3.3. Evolution of the correlation < AS >

We are interested in the 〈AS〉 correlation. Following the same method we write the
differential d(AS):

d(AS) ≡ A(t+ dt)S(t+ dt)−A(t)S(t) = −A(t)S(t)−A(t) 〈S〉
τe

dt

+

√
β2∞

dt

τe
A(t)N t+dt

t (0, 1)− 1

〈τc〉
A(t)S(t) dt+ 2αS2(t)dt+O(dt3/2).

Averaging and using the relation
〈
A(t)N t+dt

t (0, 1)
〉

= 0 gives

d 〈AS〉
dt

+

(
1

τe
+

1

〈τc〉

)
〈AS〉 =

1

τe
〈A〉 〈S〉+ 2α

〈
S2
〉
. (3.20)



Analysis of a subgrid-scale model for turbulent condensation 265

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0  5  10  15  20

PSfrag replacements

t/τe

〈A
〉

A
0

〈S〉〈
A′S′

〉
σAσS〈
A′S′

〉
A0S0

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 0  5  10  15  20  25  30

PSfrag replacements

t/τe

〈A〉
A0

〈S
〉

〈
A′S′

〉
σAσS〈
A′S′

〉
A0S0(a) (b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  5  10  15  20

PSfrag replacements

t/τe

〈A〉
A0

〈S〉〈
A′S′

〉
σAσS

〈 A
′ S
′〉

A
0
S

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20

PSfrag replacements

t/τe

〈A〉
A0

〈S〉

〈 A
′ S
′〉

σ
A
σ
S

〈
A′S′

〉
A0S0(c) (d)

Figure 4. Comparison between the statistics predicted by the model (solid line) and the DNS
statistics (dashed lines) obtained by forcing (2.3), and both (2.3) and (2.4), respectively (see
Paoli and Shariff 2004): (a) normalized mean particle surface 〈A〉 (a); (b) mean supersaturation
〈S〉; (c) normalized correlation 〈A′S′〉 /A0S0; (d) correlation coeffcient CAS = 〈A′S′〉 /σAσS .

Skipping again the details of the computations, the solution after setting 〈τc〉 ≈ 〈τc〉0 is

〈AS〉 = 〈A〉0 〈S〉0 e−t/〈τc〉0 + 2α 〈τc〉0 S2
0

(
e−t/〈τc〉0 − e−2t/〈τc〉0

)

+
αβ2
∞/τe

(1/ 〈τc〉0 + 1/τe)
2

[
1− 2e−t(1/〈τc〉0+1/τe) + e−2t(1/〈τc〉0+1/τe)

]
. (3.21)

3.4. Comparison of model predictions with DNS data

The ensemble average statistics predicted by the model are summarized below for con-
venience:

〈A〉 = 〈A〉0 + 2α 〈S〉0 〈τc〉0
(

1− e−t/〈τc〉0
)

〈S〉 = 〈S〉0 e−t/〈τc〉0

σ2
S =

β2
∞/τe

2(1/ 〈τc〉0 + 1/τe)

[
1− e−2t(1/〈τc〉0+1/τe)

]

σ2
A =

2α2β2
∞/τe

(1/ 〈τc〉0 + 1/τe)
3

[
2t (1/ 〈τc〉0 + 1/τe)− 3 + 2e−t(1/〈τc〉0+1/τe) − e−2t(1/〈τc〉0+1/τe)

]

〈A′S′〉 =
αβ2
∞/τe

(1/ 〈τc〉0 + 1/τe)
2

[
1− 2e−t(1/〈τc〉0+1/τe) + e−2t(1/〈τc〉0+1/τe)

]
.

Before comparing the model with the DNS, we did a parametric analysis of the model by
varying τe, which is supposed to model the turbulent mixing in the cloud. For simplicity,
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we also assume an initial uniform supersaturation and droplet surface area, i.e., 〈A〉0 ≡ A0

and 〈S〉0 ≡ S0. This gives an initial characteristic condensation time 〈τc〉0 ≡ τc0 ≈ 10
seconds. Figure 3 shows the evolution of the correlation coefficient CAS = 〈A′S′〉 /σAσS
for different τe ranging from 0.4 seconds (same as in the DNS) to 20 seconds. On dimen-
sional arguments, it can be estimated as Le/urms or K/ε, Le,K and ε being the integral
length scale, the turbulent kinetic energy and the dissipation rate in a cloudy parcel (or
in a computational cell in the LES context).

In Fig. 4 we compare the model results with 643 DNS results. The model reproduces
reasonably well the evolution of the mean surface area and supersaturation. Radius-
supersaturation correlations are also well recovered for a few integral time scales. In
particular, the model gives the correct trend of the decay law of CAS , as well as the
asymptotic value of 〈A′S′〉 correlation at t/te ' 5.

4. Conclusions

We presented a stochastic model for turbulent condensation, which could form a ba-
sis for a subgrid scale model for LES of clouds or contrails. The model reproduces the
statistics obtained from previous DNS of condensation in forced homogeneous turbu-
lence, where each droplet was tracked and correlations could be accurately measured. In
particular, the model could recover the evolution of the area-supersaturation correlation,
an important unclosed term in the filtered equation of water vapor density. This study
represents a first attempt to model subgrid scale microphysics of clouds; the final goal will
ultimately be to test the model in high Reynolds number LES of turbulent condensation
in non-homogeneous flows.
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